Linear independence

Recall: A vector space V, $x_1, \ldots, x_n \in V$. We say that x_1, \ldots, x_n are **linearly independent** if, for all $\lambda_1, \ldots, \lambda_n \in \mathbb{F}$, if $\lambda_1 x_1 + \cdots + \lambda_n x_n = 0$, then $\lambda_1 = \cdots = \lambda_n = 0$.

We say that x_1, \ldots, x_n are **linearly dependent** if they are not linearly independent, i.e., there exists $\lambda_1, \ldots, \lambda_n \in \mathbb{F}$ not all zero and $\lambda_1 x_1 + \cdots + \lambda_n x_n = 0$.

Examples:

1) x_1 is linearly independent if and only if $x_1 \neq 0$.

Pf: We prove the contrapositive: x_1 is linearly dependent if and only if $x_1 = 0$.

2) Assume x_1 is linearly dependent. Then there exists $\lambda_1 \neq 0$ such that $\lambda_1 x_1 = 0$. Since $\lambda_1 \neq 0$, λ_1 has an inverse $\frac{1}{\lambda_1}$ in \mathbb{F}.

$\frac{1}{\lambda_1} \lambda_1 x_1 = \frac{1}{\lambda_1} \cdot 0 = 0$. But $\frac{1}{\lambda_1} = 1$. Hence $x_1 = 0$.

3) Conversely, assume $x_1 = 0$. Then $1 \cdot x_1 = 0$, but $1 \neq 0$.

Hence x_1 is linearly dependent.

2) For which values of $a \in \mathbb{R}$ are the vectors $[\begin{smallmatrix} a \\ a \\ a \end{smallmatrix}]$, $[\begin{smallmatrix} a \\ 1 \\ a \end{smallmatrix}]$, $[\begin{smallmatrix} 1 \\ a \\ a \end{smallmatrix}]$ linearly independent?

We study the equation $\lambda_1 [\begin{smallmatrix} a \\ a \\ a \end{smallmatrix}] + \lambda_2 [\begin{smallmatrix} a \\ 1 \\ a \end{smallmatrix}] + \lambda_3 [\begin{smallmatrix} 1 \\ a \\ 1 \end{smallmatrix}] = 0$.

The vectors are linearly independent if it has $\lambda_1 = \lambda_2 = \lambda_3$ as the only solution.

- For $a = 1$:

 $[\begin{smallmatrix} a \\ a \\ a \end{smallmatrix}]$ is linearly dependent.

- For $a = -2$:

 $[\begin{smallmatrix} 1 \\ a \\ a \end{smallmatrix}]$ is linearly dependent.

- For $a \neq 1$ and $a \neq -2$:

 $[\begin{smallmatrix} 1 + a \\ a \\ 1 + a \end{smallmatrix}]$ is linearly independent otherwise.
3) In the vector space \(\mathbb{F}(\mathbb{R}, \mathbb{R}) \), the functions \((t \mapsto \cos(t))\) and \((t \mapsto \sin(t))\) are linearly independent.

Proof: Assume \(\lambda_1 \cos(t) + \lambda_2 \sin(t) = 0 \) for some \(\lambda_1, \lambda_2 \in \mathbb{R} \). This means, for all \(t \in \mathbb{R} \), \(\lambda_1 \cos(t) + \lambda_2 \sin(t) = 0 \).

For \(t = 0 \): \(\lambda_1 \cos(0) + \lambda_2 \sin(0) = 0 \), so \(\lambda_1 = 0 \).

For \(t = \pi/2 \): \(\lambda_1 \cos(\pi/2) + \lambda_2 \sin(\pi/2) = 0 \), so \(\lambda_2 = 0 \).

So \(\cos, \sin \) are linearly independent. \(\square \)

4) Sometimes, the values of the function are not so easy, and other ideas have to be used...

The functions \(f_1: \{ t \mapsto e^t \} \) and \(f_2: \{ t \mapsto e^{2t} \} \)

are linearly independent. Idea: \(f_2 \) grows "much faster" than \(f_1 \), towards \(\infty \). If \(f_1 \) and \(f_2 \) were linearly dependent, they would have the same behaviour at \(+\infty \).

More precisely: we have \(\lim_{t \to \infty} \frac{f_1(t)}{f_2(t)} = 0 \).

Assume \(\lambda_1 f_1 + \lambda_2 f_2 = 0 \) for some \(\lambda_1, \lambda_2 \in \mathbb{R} \).

Then for all \(t \in \mathbb{R} \), \(\lambda_1 e^t + \lambda_2 e^{2t} = 0 \).

Divide by \(e^{2t} \): \(\frac{\lambda_1}{e^{2t}} e^t + \frac{\lambda_2}{e^{2t}} = 0 \).

Taking \(t \to \infty \), \(\frac{\lambda_1}{e^{2t}} \to 0 \).

Then \(\frac{\lambda_1}{\lambda_2} = 0 \) so \(\lambda_2 = 0 \).

Hence, \(f_1 \) and \(f_2 \) are linearly independent. \(\square \)
Generalization: assume $a_1 < \cdots < a_m$

let $f_i(t) = e^{a_i t}$.

Then f_1, \ldots, f_m are linearly independent.

Proof: we proceed by induction on m.

- base case $m = 1$: since $f_1 \neq 0$, f_1 is linearly independent.

- inductive step: assume that f_1, \ldots, f_m are linearly independent for some $m > 1$. We prove that f_1, \ldots, f_{m+1} are linearly independent.

Assume that $\lambda_1 f_1 + \cdots + \lambda_m f_m + f_{m+1} = 0$ for some $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$.

Then for all $t \in \mathbb{R}$ we have: $\lambda_1 e^{a_1 t} + \cdots + \lambda_m e^{a_m t} + e^{a_{m+1} t} = 0$.

Divide by $e^{a_{m+1} t}$: $\lambda_1 e^{(a_1 - a_{m+1}) t} + \cdots + \lambda_m e^{(a_m - a_{m+1}) t} + 1 = 0$. \((*)\)

For $i < m$, we have $e^{(a_i - a_{m+1}) t} \to \infty$ since $a_i - a_{m+1} < 0$.

So taking limits when $t \to +\infty$ in \((*)\) gives $\lambda_m = 0$.

Hence $\lambda_1 f_1 + \cdots + \lambda_m f_m = 0$. By assumption, f_1, \ldots, f_m are independent.

So $\lambda_1 = \cdots = \lambda_m = 0$. Thus we proved $\lambda_1 = \cdots = \lambda_m = 0$, and f_1, \ldots, f_{m+1} are linearly independent.

5) Work over the field $F = \mathbb{Q}$.

We can view \mathbb{R} as a \mathbb{Q}-vector space (usual addition and multiplication).

Then $1, \sqrt{2}$ are linearly independent over \mathbb{Q}, (but not over \mathbb{R}!)

Proof: assume $a + b \sqrt{2} = 0$ for $a, b \in \mathbb{Q}$.

if $b \neq 0$, then $\sqrt{2} = -\frac{a}{b} \in \mathbb{Q}$: contradiction!

so $b = 0$. Thus we also have $a = 0$, and $1, \sqrt{2}$ are linearly independent.
Bases and dimension:

Recall: a basis of \(V \) is a subset \(B \) of \(V \) that is both linearly independent and generates \(V \).

The dimension of \(V \) is the number of elements in \(B \).

(you have seen in lecture that this number does not depend on the choice of the basis \(B \)).

Examples:

1) Consider the vectors \(u_1 = (2, -3, 1) \), \(u_2 = (1, 4, -2) \), \(u_3 = (8, 12, -4) \), \(u_4 = (1, 37, -17) \) and \(u_5 = (-3, -5, 8) \).

Find a subset of \(\{u_1, \ldots, u_5\} \) that is a basis of \(\text{Span} \{u_1, \ldots, u_5\} \).

To solve this, we now reduce the matrix \([u_1, \ldots, u_5]\).

\[
\begin{bmatrix}
2 & 1 & -8 & 1 & -3 \\
-3 & 4 & 12 & 37 & -5 \\
1 & -2 & -4 & -17 & 8
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 0 & -4 & -3 & 0 \\
0 & 1 & 0 & 7 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

The leading 1's of the row reduced form are in columns 1, 2 and 5.

\(\Rightarrow \{u_1, u_2, u_5\} \) is a basis.

The row-reduced form makes it easy to find the relation between the \(\{u_1, \ldots, u_5\} \).

For instance, we see that in the row-reduced form,

Column 4 = 7 Column 2 - 3 Column 1.

So \(u_4 = 7u_2 - 3u_1 \). Similarly, \(u_3 = -4u_1 \).
Remark: This is not the only correct answer.
For instance, \(\{ u_2, u_3, u_5 \} \) would also be correct.

2) Consider \(W = \{ (x_1, x_2, x_3, x_4, x_5) | x_1 + x_3 + x_4 + x_5 = 0 \text{ and } x_2 + 2x_3 - x_5 = 0 \} \).

Find a basis of \(W \) and its dimension.
(remark: \(W \) is a subspace of \(\mathbb{F}^5 \), exercise!)

We need to solve the system of equations:

\[
\begin{bmatrix}
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 2 & 0 & -1
\end{bmatrix}
\]

is already now reduced.

We have 3 free variables: \(x_3, x_4, x_5 \).
2 leading variables: \(x_1, x_2 \).

Solution:

\[
\begin{align*}
x_1 &= -s - t - u \\
x_2 &= -2s + u \\
x_3 &= s \\
x_4 &= t \\
x_5 &= u
\end{align*}
\]

or \((x_1, x_2, x_3, x_4, x_5) = (-s - t - u, -2s + u, s, t, u) \)

\[= s(-1, -2, 1, 0, 0) + t(-1, 0, 0, 1, 0) + u(-1, 1, 0, 1, 0).\]

So a basis of \(W \) is \(\{ (-1, -2, 1, 0, 0), (-1, 0, 0, 1, 0), (-1, 1, 0, 1, 0) \} \).

And \(\dim W = 3 \).
Around Grassmann's formula:

If V is finite dimensional vector space and W_1, W_2 are subspaces, then:

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$$

Analogy: If S is a finite set, and T_1, T_2 are subsets, then

$$\text{Card}(T_1 \cup T_2) = \text{Card}(T_1) + \text{Card}(T_2) - \text{Card}(T_1 \cap T_2).$$

Illustration: $V = \mathbb{R}^3$, W_1, W_2 planes intersecting at a line.

$W_1 + W_2 = \mathbb{R}^3 \Rightarrow \dim(W_1 + W_2) = 3$

$W_1 \cap W_2$ is a line $\Rightarrow \dim(W_1 \cap W_2) = 1$

$\dim(W_1) = \dim(W_2) = 2$

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2) \Rightarrow 3 = 2 + 2 - 1 \checkmark$$

In particular, if $V = W_1 \oplus W_2$, then we have

$$\dim(V) = \dim(W_1) + \dim(W_2).$$

A useful converse:

Prop. Assume that $W_1 \cap W_2 = \{0\}$ and $\dim(W_1) + \dim(W_2) = \dim(V)$.

Then $V = W_1 \oplus W_2$.

Pf. We need to show that $V = W_1 + W_2$. We have $W_1 + W_2 \subseteq V$.

Furthermore by Grassmann's formula, we have

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2) = \dim(V).$$

So $W_1 + W_2 = V \square$
Interest: you do not need to check both \(W_1 \oplus W_2 = V \) and \(W_1 \cap W_2 = \{ 0 \} \) to prove \(V = W_1 \oplus W_2 \) if you know the dimensions of \(W_1, W_2 \) and \(V \).

Example: \(V = M_n(R) \)

\[
W_1 = \{ \text{symmetric matrices} \} = \{ M \in M_n(R) \mid b_M = M \} \\
W_2 = \{ \text{anti-symmetric matrices} \} = \{ M \in M_n(R) \mid b_M = -M \}.
\]

We proved that \(V = W_1 \oplus W_2 \)

New proof: \(W_1 \cap W_2 = \{ 0 \} \) proved as before.

Instead of proving \(W_1 + W_2 = V \), we compute the dimensions.

A basis of \(V \) is given by \(E_{ij} \), \(i, j \in \{ 1, \ldots, n \} \)

where \(E_{ij} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \) so \(\dim(V) = n^2 \).

If \(M = (a_{ij}) \in W_1 \), we have \(a_{ij} = a_{ji} \) for all \(i, j \).

\[
M = \sum_{i,j} a_{ij} E_{ij} = \sum_{i=1}^n a_{ii} E_{ii} + \sum_{1 \leq i < j \leq n} a_{ij} (E_{ij} + E_{ji})
\]

A basis of \(W_1 \) is \(\{ E_{ii}, i = 1, \ldots, n \} \cup \{ E_{ij} + E_{ji}, 1 \leq i < j \leq n \} \).

\(\Rightarrow \) \(\dim(W_1) = \frac{n(n+1)}{2} \).

Similarly, if \(M = (a_{ij}) \in W_2 \), we have \(a_{ii} = 0 \) for all \(i \)

and \(a_{ij} = -a_{ji} \) for \(i \neq j \).

\[
M = \sum_{1 \leq i < j \leq n} a_{ij} (E_{ij} - E_{ji})
\]

A basis of \(W_2 \) is \(\{ E_{ij} - E_{ji}, 1 \leq i < j \leq n \} \).

\(\Rightarrow \) \(\dim(W_2) = \frac{n(n-1)}{2} \).

We have \(\dim(W_1) + \dim(W_2) = n^2 = \dim(V) \) and \(W_1 \cap W_2 = \{ 0 \} \).

\(\Rightarrow \) \(V = W_1 \oplus W_2 \).