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Moduli spaces and Teichmüller spaces of Riemann surfaces have
been studied for many years, since Riemann.

They have appeared in many subjects of mathematics, from
geometry, topology, algebraic geometry to number theory. They
have also appeared in theoretical physics like string theory: many
computations of path integrals are reduced to integrals of Chern
classes on such moduli spaces.

The Teichmüller space Tg ,m of Riemann surfaces of genus g with m
punctures (such that n = 3g − 3 + m > 0) can be holomorphically
embedded into Cn. The moduli space Mg ,m is a complex orbifold,
as a quotient of Tg ,m by mapping class group Modg ,m.
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Mg ,m has several natural compactifications such as the
Baily-Borel-Satake compactification and the Deligne-Mumford
compactification. In this talk we will use the DM compactification.

All of the following results hold for Mg ,m and Tg ,m. To simplify
the notation, we state the results for Mg and Tg .

The topology of Teichmüller space is trivial. However, the moduli
space and its compactification have highly nontrivial topology, and
have been actively studied from many point of views in
mathematics and physics.

For example, Harris-Mumford and Harris showed the moduli space
is general type when the genus g ≥ 24. On the other hand, there
are famous counterexamples showed the moduli space is uniruled in
low genus.
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The moduli space has also played important role in physics. For
examples, the Witten conjecture, proved by Kontsevich, states that
the intersection numbers of the ψ-classes are governed by the KdV
hierarchy. Other elegant proofs are given by Kim-Liu, Mirzakhani
and Okounkov-Pandhripande.

Mariño-Vafa formula, proved by Liu-Liu-Zhou, gives a closed
formula for the generating series of triple Hodge integrals of all
genera and all possible marked points, in terms of Chern-Simons
knot invariants. Many other conjectures related to Hodge integrals
can be deduced from Mariño-Vafa formula by taking various limits.

Gromov-Witten theory can be viewed as a natural extension of the
moduli space theory. In fact, Gromov-Witten theory for the DM
moduli space is not well understood.
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The geometry of the Teichmüller spaces and moduli spaces of
Riemann surfaces also have very rich structures. There are many
very famous classical metrics on the Teichmüller and the moduli
spaces:

1. Finsler Metrics: (complete)

Teichmüller metric;

Kobayashi metric;

Caratheódory metric.
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2. Kähler Metrics:

Weil-Petersson (WP) metric (incomplete);

Kähler-Einstein metric;

McMullen metric;

Induced Bergman metric;

Asymptotic Poincaré metric.

3. New Kähler Metrics:

Ricci metric;

Perturbed Ricci metric.

The last six Kähler metrics are complete. The works in part 3 are
joint works with K. Liu and X. Sun.
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Our project is to study the geometry of the Teichmüller and the
moduli spaces. More precisely to understand the various metrics on
these spaces, and more importantly, to introduce new metrics with
good properties and to find their applications in algebraic geometry
and physics.

The key point is the understanding of the Ricci and the perturbed
Ricci metrics: two new complete Kähler metrics. Their curvature
and asymptotic behavior, are studied in great details, and are very
well understood.

As an easy corollary we have proved all of the above complete
metrics are equivalent. Also we proved that the new metrics and
the Kähler-Einstein metrics have (strongly) bounded geometry in
Teichmüller spaces. Here by a metric with strongly bounded
geometry we mean a complete metric whose curvature and its
derivatives are bounded and whose injectivity radius is bounded
from below.
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¿From these we have good understanding of the Kähler-Einstein
metric on both the moduli and the Teichmüller spaces, and find
interesting applications to geometry.

The slope stability of the logarithmic cotangent bundle of the DM
moduli spaces, Chern number inequality and other properties will
follow.

The perturbed Ricci metric that we introduced has bounded
negative holomorphic sectional and Ricci curvatures, bounded
geometry and Poincaré growth. So this new metric has practically
all interesting properties: close to be the best, except for the
non-positivity of the bisetional curvature.
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Goodness

The Weil-Petersson, Ricci and perturbed Ricci metrics are good in
the sense of Mumford: Chern-Weil theory hold, study of L2

cohomology.

Negativity

The Weil-Petersson metric is dual Nakano negative: vanishing
theorems of L2 cohomology, infinitesimal rigidity.
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Basics of the Teichmüller and Moduli Spaces

Fix an orientable surface Σ of genus g ≥ 2.

Uniformization Theorem

Each Riemann surface of genus g ≥ 2 can be viewed as a quotient
of the hyperbolic plane H by a Fuchsian group. Thus there is a
unique Poincaré metric, or the hyperbolic metric on Σ.

The group Diff +(Σ) of orientation preserving diffeomorphisms acts
on the space C of all complex structures on Σ by pull-back.
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Teichmüller Space

Tg = C/Diff +
0 (Σ)

where Diff +
0 (Σ) is the set of orientation preserving

diffeomorphisms which are isotopic to identity.

Moduli Space

Mg = C/Diff +(Σ) = Tg/Mod(Σ)

is the quotient of the Teichmüller space by the mapping class
group where

Mod (Σ) = Diff +(Σ)/Diff +
0 (Σ).
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Dimension

dimC Tg = dimCMg = 3g − 3.

Tg is a pseudoconvex domain in C3g−3: Bers’ embedding theorem.
Mg is a complex orbifold, it can be compactified to a projective
orbifold by adding normal crossing divisors D consisting of stable
nodal curves, called the Deligne-Mumford compactification, or DM
moduli.

Shing-Tung Yau Geometry of the Moduli Space of Curves



Tangent and Cotangent Space

By the deformation theory of Kodaira-Spencer and the Hodge
theory, for any point X ∈Mg ,

TXMg
∼= H1(X ,TX ) = HB(X )

where HB(X ) is the space of harmonic Beltrami differentials on X .

T ∗
XMg

∼= Q(X )

where Q(X ) is the space of holomorphic quadratic differentials on
X .
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For µ ∈ HB(X ) and φ ∈ Q(X ), the duality between TXMg and
T ∗

XMg is

[µ : φ] =

∫
X
µφ.

Teichmüller metric is the L1 norm and the WP metric is the L2

norm. Alternatively, let
π : X →Mg be the universal curve and let ωX/Mg

be the relative
dualizing sheaf. Then

ω
WP

= π∗

(
c1

(
ωX/Mg

)2)
.
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Curvature

Let X be the total space over the Mg and π be the projection.
Pick s ∈Mg , let π−1(s) = Xs . Let s1, · · · , sn be local
holomorphic coordinates on Mg and let z be local holomorphic
coordinate on Xs .
The Kodaira-Spencer map is

∂

∂si
7→ Ai

∂

∂z
⊗ dz ∈ HB(Xs).

The Weil-Petersson metric is

hi j =

∫
Xs

AiAj dv

where dv =
√
−1
2 λdz ∧ dz is the volume form of the KE metric λ

on Xs .
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By the work of Royden, Siu and Schumacher, let

ai = −λ−1∂si∂z log λ.

Then
Ai = ∂zai .

Let η be a relative (1, 1) form on X. Then

∂

∂si

∫
Xs

η =

∫
Xs

Lviη

where

vi =
∂

∂si
+ ai

∂

∂z

is called the harmonic lift of ∂
∂si

. In the following, we let

fi j = AiAj and ei j = T (fi j).

Here T = (� + 1)−1 with � = −λ−1∂z∂z , is the Green operator.
The functions fi j and ei j will be the building blocks of the
curvature formula.
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Curvature Formula of the WP Metric

By the work of Wolpert, Siu and Schumacher, the curvature of the
Weil-Petersson metric is

Ri jkl = −
∫

Xs

(ei j fkl + ei l fkj) dv .

The sign of the curvature of the WP metric can be seen
directly.

The precise upper bound − 1
2π(g−1) of the holomorphic

sectional curvature and the Ricci curvature of the WP metric
can be obtained by the spectrum decomposition of the
operator (� + 1).

The curvature of the WP metric is not bounded from below.
But surprisingly the Ricci and the perturbed Ricci metrics
have bounded (negative) curvatures.

The WP metric is incomplete.
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Observation

The Ricci curvature of the Weil-Petersson metric is bounded above
by a negative constant, one can use the negative Ricci curvature of
the WP metric to define a new metric.
We call this metric the Ricci metric

τi j = −Ric(ωWP)i j .

We proved the Ricci metric is complete, Poincaré growth, and has
bounded geometry.
We perturbed the Ricci metric with a large constant multiple of
the WP metric to define the perturbed Ricci metric

ωτ̃ = ωτ + C ωWP .

We proved that the perturbed Ricci metric is complete, Poincaré
growth and has bounded negative holomorphic sectional and Ricci
curvatures, and bounded geometry.
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Curvature Formula of the Ricci Metric

R̃i jkl =− hαβ

{
σ1σ2

∫
Xs

T (ξk(ei j))ξl(eαβ) dv

}
− hαβ

{
σ1σ2

∫
Xs

T (ξk(ei j))ξβ(eαl) dv

}
− hαβ

{
σ1

∫
Xs

Qkl(ei j)eαβ dv

}
+ τpqhαβhγδ

{
σ1

∫
Xs

ξk(eiq)eαβ dv

}
×{

σ̃1

∫
Xs

ξl(epj)eγδ) dv

}
+ τpjh

pqRiqkl .
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Here σ1 is the symmetrization of indices i , k, α.
σ2 is the symmetrization of indices j , β.
σ̃1 is the symmetrization of indices j , l , δ.
ξk and Qkl are combinations of the Maass operators and the Green
operators.

The curvature formula has 85 terms, since it contains fourth order
derivatives of the WP metric. The curvature formula of the
perturbed Ricci metric even has more. It is too complicated to see
the sign. We work out its asymptotic near the boundary.
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Selected Applications of These Metrics

Royden proved that

Teichmüller metric = Kobayashi metric.

This implies that the isometry group of Tg is exactly the
mapping class group.

Ahlfors: the WP metric is Kähler, the holomorphic sectional
curvature is negative.

Masur: WP metric is incomplete.

Wolpert studied WP metric in great details, found many important
applications in topology(relation to Thurston’s work) and algebraic
geometry(relation to Mumford’s work).
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Each family of stable curves induces a holomorphic maps into the
moduli space.
A version of Schwarz lemma that I proved, gave very sharp
geometric height inequalities in algebraic geometry. Corollaries
include:

Kodaira surface X has strict Chern number inequality:

c1(X )2 < 3c2(X ).

Beauville conjecture: the number of singular fibers for a
non-isotrivial family of semi-stable curves over P1 is at least 5.

Geometric Height Inequalities, by K. Liu, MRL 1996.
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McMullen proved that the moduli spaces of Riemann surfaces are
Kähler hyperbolic, by using his metric ωM which he obtained by
perturbing the WP metric.

This means ωM has bounded geometry and the Kähler form on the
Teichmüller space is of the form dα with α bounded one form.
Corollaries include:

The lowest eigenvalue of the Laplacian on the Teichmüller
space is positive.

Only middle dimensional L2 cohomology is non-zero on the
Teichmüller space.

Shing-Tung Yau Geometry of the Moduli Space of Curves



Theorem

All complete metrics on Tg and Mg are equivalent. Furthermore,
the Caratheódory metric, Kobayashi metric, Bergman metric and
KE metric are equivalent on general homogeneous holomorphic
regular manifolds.

Subsequently, S.K. Yeung published a weaker version of this
theorem.

Theorem

The Ricci, perturbed Ricci and Kähler-Einstein metrics are
complete, have (strongly) bounded geometry and Poincaré growth.
The holomorphic sectional and Ricci curvatures of the perturbed
Ricci metric are negatively pinched.
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Algebraic-geometric consequences

Theorem

The log cotangent bundle T ∗
Mg

(log D) of the DM moduli of stable

curves is stable with respect to its canonical polarization.

Corollary

Orbifold Chern number inequality.
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Basic Ideas of Proof

Equivalence: Schwarz Lemma and asymptotic analysis.
Example: ωτ̃ ∼ ωKE : the perturbed Ricci metric ωτ̃ has negatively
pinched holomorphic sectional curvature and the KE metric has
constant Ricci curvature −1. Apply the versions of Schwarz lemma

id : (Mg , ωτ̃ ) → (Mg , ωKE )

we get
ωKE ≤ c1ωτ̃ .

Conversely, since

id : (Mg , ωKE ) → (Mg , ωτ̃ )

we get
ω3g−3

τ̃ ≤ c2ω
3g−3
KE .

These imply ωτ̃ ∼ ωKE .
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Asymptotic

Deligne-Mumford Compactification: For a Riemann surface
X , a point p ∈ X is a node if there is a neighborhood of p
which is isomorphic to the germ

{(u, v) | uv = 0, |u| < 1, |v | < 1} ⊂ C2.

A Riemann surface with nodes is called a nodal surface.
A nodal Riemann surface is stable if each connected
component of the surface subtracting the nodes has negative
Euler characteristic. In this case, each connected component
has a complete hyperbolic metric.
The union of Mg and moduli of stable nodal curves of genus
g is the Deligne-Mumford compactification Mg , the DM
moduli.
D = Mg \Mg is a divisor of normal crossings.
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Principle: To compute the asymptotic of the Ricci metric and
its curvature, we work on surfaces near the boundary of Mg .
The geometry of these surfaces localize on the pinching
collars.

Model degeneration: Earle-Marden, Deligne-Mumford,
Wolpert: Consider the variety

V = {(z ,w , t) | zw = t, |z |, |w |, |t| < 1} ⊂ C3

and the projection Π : V → ∆ given by

Π(z ,w , t) = t

where ∆ is the unit disk.
If t ∈ ∆ with t 6= 0, then the fiber Π−1(t) ⊂ V is an annulus
(collar).
If t = 0, then the fiber Π−1(t) ⊂ V is two transverse disks
|z | < 1 and |w | < 1.
This is the local model of degeneration of Riemann surfaces.
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Methods

Find the harmonic Beltrami differentials Ai .

Find the KE metric on the collars.

Estimate the Green function of (� + 1)−1.

Estimate the norms and error terms.

We use elliptic estimates to control the error terms causing by the
transition of the plumbing coordinate to the rotationally symmetric
coordinates to deal with the first two problems.
We then construct approximation solutions on the local model,
single out the leading terms and then carefully estimate the error
terms one by one.

Shing-Tung Yau Geometry of the Moduli Space of Curves



Asymptotic in pinching coordinates

Theorem

Let (t1, · · · tm, sm+1, · · · sn) be the pinching coordinates. Then WP
metric h has the asymptotic:

(1) hi i = 1
2

u3
i

|ti |2
(1 + O(u0)) for 1 ≤ i ≤ m;

(2) hi j = O(
u3

i u
3
j

|ti tj | ) if 1 ≤ i , j ≤ m and i 6= j ;

(3) hi j = O(1) if m + 1 ≤ i , j ≤ n;

(4) hi j = O(
u3

i
|ti |) if i ≤ m < j .

Here ui = li
2π , li ≈ − 2π2

log |ti | and u0 =
∑

ui +
∑
|sj |.
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Theorem

The Ricci metric τ has the asymptotic:

(1) τi i = 3
4π2

u2
i

|ti |2
(1 + O(u0)) if i ≤ m;

(2) τi j = O

(
u2

i u
2
j

|ti tj | (ui + uj)

)
if i , j ≤ m and i 6= j ;

(3) τi j = O
( u2

i
|ti |
)

if i ≤ m < j ;

(4) τi j = O(1) if i , j ≥ m + 1.

Finally we derive the curvature asymptotic:

Theorem

The holomorphic sectional curvature of the Ricci metric τ satisfies

R̃i i i i = −
3u4

i

8π4|ti |4
(1 + O(u0)) > 0 if i ≤ m

R̃i i i i = O(1) if i > m.
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To prove that the holomorphic sectional curvature of the perturbed
Ricci metric

ωτ̃ = ωτ + C ω
WP

is negatively pinched, we notice that it remains negative in the
degeneration directions when C varies and is dominated by the
curvature of the Ricci metric.
When C large, the holomorphic sectional curvature of τ̃ can be
made negative in the interior and in the non-degeneration
directions near boundary from the negativity of the holomorphic
sectional curvature of the WP metric.
The estimates of the bisectional curvature and the Ricci curvature
of these new metrics are long and complicated computations.
The lower bound of the injectivity radius of the Ricci and perturbed
Ricci metrics and the KE metric on the Teichmüller space is
obtained by using Bers embedding theorem, minimal surface theory
and the boundedness of the curvature of these metrics.
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Bounded Geometry of the KE Metric

The first step is to perturb the Ricci metric by using the
Kähler-Ricci flow {

∂gi j

∂t = −(Ri j + gi j)

g(0) = τ

to avoid complicated computations of the covariant derivatives of
the curvature of the Ricci metric.
For t > 0 small, let h = g(t) and let g be the KE metric. We have

h is equivalent to the initial metric τ and thus is equivalent to
the KE metric.

The curvature and its covariant derivatives of h are bounded.
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Then we consider the Monge-Amperé equation

log det(hi j + ui j)− log det(hi j) = u + F

where ∂∂u = ωg − ωh and ∂∂F = Ric(h) + ωh.

Equivalences: ∂∂u has C 0 bound.

The strong bounded geometry of h implies ∂∂F has C k

bounds for k ≥ 0.

We need C k bounds of u for k ≥ 2. Let

S = g i jgklgpqu;iqku;jpl

V =g i jgklgpqgmn
(
u;iqknu;jplm + u;inkpu;jmlq

)
where the covariant derivatives of u were taken with respect to the
metric h.
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C 3 estimate implies S is bounded.
Let f = (S + κ)V where κ is a large constant. By using the
generalized maximum principle, the inequality

∆
′
f ≥ Cf 2 + ( lower order terms )

implies f is bounded and thus V is bounded. So the curvature of
the KE metric are bounded. Same method can be used to derive
boundedness of higher derivatives of the curvature.

A recent work of D. Wu on the complete asymptotic expansion of
the KE metric on a quasi-projective manifold (assuming
K + [D] > 0) may give a different proof of the boundedness of the
curvature of the KE metric.
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Stability of the Log Cotangent Bundle E

The proof of the stability needs the detailed understanding of the
boundary behaviors of the KE metric to control the convergence of
the integrals of the degrees.

As a current, ω
KE

is closed and represent the first Chern class
of E .

[ω
KE

] = c1(E ).

The singular metric g∗
KE

on E induced by the KE metric

defines the degree of E .

deg(E ) =

∫
Mg

ωn
KE
.
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The degree of any proper holomorphic sub-bundle F of E can
be defined using g∗

KE
|F .

deg(F ) =

∫
Mg

−∂∂ log det
(
g∗

KE
|F
)
∧ ωn−1

KE
.

Also needed is a basic non-splitting property of the mapping class
group and its subgroups of finite index.
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Goodness and Negativity

Now I will discuss the goodness of the Weil-Petersson metric, the
Ricci and the perturbed Ricci metrics in the sense of Mumford, and
their applications in understanding the geometry of moduli spaces.

The question that WP metric is good or not has been open for
many years, according to Wolpert. Corollaries include:

Chern classes can be defined on the moduli spaces by using
the Chern forms of the WP metric, the Ricci or the perturbed
Ricci metrics; the L2-index theory and fixed point formulas
can be applied on the Teichmüller spaces.

The log cotangent bundle is Nakano positive; vanishing
theorems of L2 cohomology; rigidity of the moduli spaces.
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Goodness of Hermitian Metrics

For an Hermitian holomorphic vector bundle (F , g) over a closed
complex manifold M, the Chern forms of g represent the Chern
classes of F . However, this is no longer true if M is not closed
since g may be singular.

X : quasi-projective variety of dimCX = k by removing a
divisor D of normal crossings from a closed smooth projective
variety X .

E : a holomorphic vector bundle of rank n over X and
E = E |X .

h: Hermitian metric on E which may be singular near D.
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Mumford introduced conditions on the growth of h, its first and
second derivatives near D such that the Chern forms of h, as
currents, represent the Chern classes of E .
We cover a neighborhood of D ⊂ X by finitely many polydiscs{

Uα =
(
∆k , (z1, · · · , zk)

)}
α∈A

such that Vα = Uα \ D = (∆∗)m ×∆k−m. Namely,
Uα ∩ D = {z1 · · · zm = 0}. We let U =

⋃
α∈A Uα and

V =
⋃

α∈A Vα. On each Vα we have the local Poincaré metric

ωP,α =

√
−1

2

(
m∑

i=1

1

2|zi |2 (log |zi |)2
dzi ∧ dz i +

k∑
i=m+1

dzi ∧ dz i

)
.
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Definition

Let η be a smooth local p-form defined on Vα.

We say η has Poincaré growth if there is a constant Cα > 0
depending on η such that

|η(t1, · · · , tp)|2 ≤ Cα

p∏
i=1

‖ti‖2
ω

P,α

for any point z ∈ Vα and t1, · · · , tp ∈ TzX .

η is good if both η and dη have Poincaré growth.
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Definition

An Hermitian metric h on E is good if for all z ∈ V , assuming
z ∈ Vα, and for all basis (e1, · · · , en) of E over Uα, if we let
hi j = h(ei , ej), then∣∣∣hi j

∣∣∣ , (det h)−1 ≤ C (
∑m

i=1 log |zi |)2n for some C > 0.

The local 1-forms
(
∂h · h−1

)
αγ

are good on Vα. Namely the
local connection and curvature forms of h have Poincaré
growth.
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Properties of Good Metrics

The definition of Poincaré growth is independent of the choice
of Uα or local coordinates on it.

A form η ∈ Ap(X ) with Poincaré growth defines a p-current
[η] on X . In fact we have∫

X
|η ∧ ξ| <∞

for any ξ ∈ Ak−p(X ).

If both η ∈ Ap(X ) and ξ ∈ Aq(X ) have Poincaré growth, then
η ∧ ξ has Poincaré growth.

For a good form η ∈ Ap(X ), we have d [η] = [dη].

The importance of a good metric on E is that we can compute the
Chern classes of E via the Chern forms of h as currents.
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Mumford has proved:

Theorem

Given an Hermitian metric h on E, there is at most one extension
E of E to X such that h is good.

Theorem

If h is a good metric on E, the Chern forms ci (E , h) are good
forms. Furthermore, as currents, they represent the corresponding
Chern classes ci (E ) ∈ H2i (X ,C).

With the growth assumptions on the metric and its derivatives, we
can integrate by part, so Chern-Weil theory still holds.
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Good Metrics on Moduli Spaces

Now we consider the metrics induced by the Weil-Petersson metric,
the Ricci and perturbed Ricci metrics on the logarithmic extension
of the holomorphic tangent bundles over the moduli space of
Riemann surfaces.

Our theorems hold for the moduli space of Riemann surfaces with
punctures.

Let Mg be the moduli space of genus g Riemann surfaces with
g ≥ 2 and let Mg be its Deligne-Mumford compactification. Let
n = 3g − 3 be the dimension of Mg and let D = Mg \Mg be the
compactification divisor.

Let E = T ∗
Mg

(log D) be the logarithmic cotangent bundle over

Mg .
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For any Kähler metric p on Mg , let p∗ be the induced metric on
E . We know that near the boundary {t1 · · · tm = 0},(

dt1
t1
, · · · , dtm

tm
, dtm+1, · · · , dtn

)
is a local holomorphic frame of E .

In these notations, near the boundary the log tangent bundle
F = TMg

(− log D) has local frame{
t1
∂

∂t1
, · · · , tm

∂

∂tm
,

∂

∂tm+1
, · · · , ∂

∂tn

}
.

We have proved several results about the goodness of the metrics
on moduli spaces. By very subtle analysis on the metric,
connection and curvature tensors.
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We first proved the following theorem:

Theorem

The metric h∗ on the logarithmic cotangent bundle E over the DM
moduli space induced by the Weil-Petersson metric is good in the
sense of Mumford.

Based on the curvature formulae of the Ricci and perturbed Ricci
metrics we derived before, we have proved the following theorem
from much more detailed and harder analysis: estimates over 80
terms.

Theorem

The metrics on the log tangent bundle TMg
(− log D) over the DM

moduli space induced by the Ricci and perturbed Ricci metrics are
good in the sense of Mumford.
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A direct corollary is

Theorem

The Chern classes ck

(
TMg

(− log D)
)

are represented by the

Chern forms of the Weil-Petersson, Ricci and perturbed Ricci
metrics.

This in particular means we can use the explicit formulas of Chern
forms of the Weil-Petersson metric derived by Wolpert to represent
the classes, as well as those Chern forms of the Ricci and the
perturbed Ricci metrics.
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Dual Nakano Negativity of WP Metric

It was shown by Ahlfors, Royden and Wolpert that the
Weil-Petersson metric have negative Riemannian sectional
curvature.

Schumacher showed that the curvature of the WP metric is
strongly negative in the sense of Siu.

In 2005, we showed that the curvature of the WP metric is dual
Nakano negative.

Let (Em, h) be a holomorphic vector bundle with a Hermitian
metric over a Kähler manifold (Mn, g). The curvature of E is
given by

Pi jαβ = −∂α∂βhi j + hpq∂αhiq∂βhpj .
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(E , h) is Nakano positive if the curvature P defines a positive form

on the bundle E ⊗ TM . Namely, Pi jαβC iαC jβ > 0 for all n × n
complex matrix C 6= 0.

E is dual Nakano negative if the dual bundle (E ∗, h∗) is Nakano
positive. Our result is

Theorem

The Weil-Petersson metric on the tangent bundle TMg and on the
log tangent bundle TMg

(− log D) are dual Nakano negative.

To prove this theorem, we only need to show that (T ∗Mg , h
∗) is

Nakano positive. Let Ri jkl be the curvature of TMg and Pi jkl be
the curvature of the cotangent bundle.

We first have Pmnkl = −hinhmjRi jkl .
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If we let akj =
∑

m hmjCmk , we then have

PmnklC
mkCnl = −

∑
i ,j ,k,l

Ri jklaijalk .

Recall that at X ∈Mg we have

Ri jkl = −
∫

X

(
ei j fkl + ei l fkj

)
dv .

By combining the above two formulae, to prove that the WP
metric is Nakano negative is equivalent to show that∫

X

(
ei j fkl + ei l fkj

)
aijalk dv > 0.

For simplicity, we assume that matrix [aij ] is invertible.

Write T = (� + 1)−1 the Green operator. Recall ei j = T
(
fi j

)
where fi j = AiAj and Ai is the harmonic representative of the

Kodaira-Spencer class of ∂
∂ti

.
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Let Bj =
∑n

i=1 aijAi . Then the inequality we need to prove is
equivalent to

−
∑
j ,k

R(Bj ,Bk ,Ak ,Aj) =

∑
j ,k

∫
X

(
T
(
BjAj

)
AkBk + T

(
BjBk

)
AkAj

)
dv ≥ 0.

Let µ =
∑

j BjAj . Then the first term in the above equation is

∑
j ,k

∫
X

T
(
BjAj

)
AkBk dv =

∫
X

T (µ)µ dv ≥ 0.

We then let G (z ,w) be the Green’s function of the operator T .
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Let
H(z ,w) =

∑
j

Aj(z)Bj(w).

The second term is∑
j ,k

∫
X

T
(
BjBk

)
AkAj dv =

=

∫
X

∫
X

G (z ,w)H(z ,w)H(z ,w)dv(w)dv(z) ≥ 0

where the last inequality follows from the fact that the Green’s
function G positive.
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Application

As corollaries of goodness and the positivity or negativity of the
metrics, first we directly obtain:

Theorem

The Chern classes of the log cotangent bundle of the moduli
spaces of Riemann surfaces are positive.

We have several corollaries about cohomology groups of the moduli
spaces:

Theorem

The Dolbeault cohomology of the log tangent bundle
TMg

(− log D) on Mg computed via the singular WP metric g is

isomorphic to the ordinary cohomology (or Cech cohomology) of
the sheaf TMg

(− log D).
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Here we need the goodness of the metric g induced from the WP
metric in a substantial way.

Saper proved that the L2-cohomology of Mg of the WP metric h
(with trivial bundle C) is the same as the ordinary cohomology of
Mg . Parallel to his result, we have

Theorem

H∗
(2)

(
(Mg , ωτ ), (TMg , ωWP)

) ∼= H∗(Mg ,F ).

An important and direct application of the goodness of the WP
metric and its dual Nakano negativity is the vanishing theorem of
L2-cohomology group.
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Theorem

The L2-cohomology groups

H0,q
(2)

(
(Mg , ωτ ) ,

(
TMg

(− log D), ωWP

))
= 0

unless q = n. Here ωτ is the Ricci metric.

We put the Ricci metric on the base manifold to avoid the
incompleteness of the WP metric. This implies a result of Hacking

Hq(Mg ,TMg
(− log D)) = 0, q 6= n.

To prove this, we first consider the Kodaira-Nakano identity

�∂ = �∇ +
√
−1
[
∇2,Λ

]
.

We then apply the dual Nakano negativity of the WP metric to get
the vanishing theorem by using the goodness to deal with
integration by part. There is no boundary term.
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Remark

As corollaries, we also have: the moduli space of Riemann
surfaces is rigid: no holomorphic deformation.

We are proving that the KE and Bergman metric are also
good metrics and other applications to algebraic geometry
and topology.
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Idea of Proving Goodness

The proof of the goodness of the WP, Ricci and perturbed Ricci
metrics requires very sharp estimates on the curvature and local
connection forms of these metrics. We need:

Different lifts of tangent vectors of Mg near the boundary
divisor which are not harmonic.

Balance between the use of the rs-coordinates and plumbing
coordinates on pinching collars.

Trace the dependence of error terms.

These give us control on the local connection forms.

Sharp estimates on the full curvature tensor.

These estimates give us control on the curvature forms.
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