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1. Introduction and Notations

In this paper we describe a proof of the formulas of Witten [W1], [W2]
about the symplectic volumes and the intersection numbers of the moduli
spaces of principal bundles on a compact Riemann surface. It is known that
these formulas give all the information needed for the Verlinde formula.
The main idea of the proof is to use the heat kernel on compact Lie groups,
in a way very similar to the heat kernel proof of the Atiyah-Singer index
formula and the Atiyah-Bott fixed point formula. The Reidemeister torsion
comes into the picture, through a beautiful observation of Witten, as the
symplectic volume of the moduli space. It plays the role similar to that
played by the Ray-Singer torsion in the path-integral computations on the
space of connections.

The basic idea is as follows. Consider a smooth map between two compact
smooth manifolds f : M → N . Let H(t, x, x0) be the heat kernel of the
Laplace-Beltrami operator on N with x0 a fixed regular value of f . Because
of the basic properties of the heat kernel, we know that for any continuous
function a(y) on M , when t goes to zero,∫

M
a(y)H(t, f(y), x0)dy =

∫
f−1(Bδ(x0))

a(y)H(t, f(y), x0)dy + O(e−δ/t)

where Bδ is a ball of radius δ around x0, that is, the integral is localized to
the neighborhood of f−1(x0).

On the other hand let {φj(x)} be the orthonormal basis of the eigenvectors
of the Laplace-Beltrami operator on N , then H(t, x, x0) has an expression

H(t, x, x0) =
∑

j

e−λjtφj(x)φj(x0)

where −λj is the eigenvalue of φj(x). So we have∫
f−1(Bδ(x0))

a(y)H(t, f(y), x0)dy+O(e−δ/t) =
∑

j

e−λjtφj(x0)
∫

M
a(y)φj(f(y))dy (0)

This simple formula about heat kernel, which is just a general Poisson
summation formula, can be viewed as a generalized version of the modular
transformation formula for the classical theta-functions. The method in this
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paper to prove the formulas of Witten about moduli spaces will be based on
this simple fact. We believe that such method should have more applications.
For example, when N is noncompact, we can easily derive a similar formula
to (0), which, applied to the moment map, gives the nonabelian localization
formula in symplectic geometry.

Now we fix some notations to be used in this paper. Let G be a semi-
simple simply connected compact Lie group, G be its Lie algebra. Let T be
a maximal torus in G and T be its Lie algebra. Let ∆ ∈ T ∗ be the root
system of the complexification of the Lie algebra of G, GC , with respect to
T . Fix a Weyl chamber C ⊂ T and let 4+ be the set of positive roots. Let
Π = {α1, · · · , αl}, l = dim T be a fundamental system of ∆. The Killing
form induces a biinvariant metric < ·, · > on G, this will be the biinvariant
metric to be used in this paper. We identify T with T ∗ under which for any
λ ∈ T ∗, there is a unique element Hλ ∈ T such that < Hλ,H >= λ(H) for
any H ∈ T .

Introduce
λv =

2
< λ, λ >

λ, Hv
λ =

2
< λ, λ >

Hλ,

ant let

Γ = 2π

l∑
j=1

ZHv
αj

= {H ∈ T ; expH = e}

and

I = {λ ∈ T ∗; λ(Γ) ∈ 2πZ}.
Put

P+ = {λ ∈ I; < λ,αj >≥ 0, 1 ≤ j ≤ l}
as the dominant integral weights.

Define λi ∈ T ∗ by < λi, α
v
j >= δij , 1 ≤ i, j ≤ l, then

I =
l∑

j=1

Zλj , and P+ = {
l∑

j=1

mjλj ; mj ≥ 0,mj ∈ Z}.

There is a one-one correspondence between P+ and the equivalence classes
of irreducible representations of G. For λ ∈ P+, we let χλ and respectively
dλ be the character and dimension of the irreducible representation corre-
sponding to λ. Let e be the identity element in G, then one has

χλ(e) = dλ =
∏

α∈∆+

< λ + ρ, α >

< ρ, α >

where ρ = 1
2

∑
α∈∆+ α.

Next let us recall some basic facts about the biinvariant differential oper-
ators on G. Let U denote the universal enveloping algebra of G, and Z(U)
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be its center. Then any element D in Z(U) gives us a biinvariant differntial
operator on G. Given any irreducible representation V of G, by Schur’s
lemma, we know that the induced action of D on V , commuting with the
action of G, is a multiplication by a scalar, that is

Dv = pD(λ)v, v ∈ V

where pD is a polynomial. We record the following lemma ([Fe], Theorem
10.4) for reference.

Lemma 1. If CW (T ) is the space of Weyl group invariant polynomials
on the Lie algebra T and CG(G) the AdG invariant polynomials on G, then
these two spaces are isomorphic and

pD : Z(U) → CW (T ) ' CG(G)
is an isomorphism. 2

In fact pD is a polynomial in λ + ρ. For example, if X1, · · · , Xn is an
orthonormal basis for G, then C = X2

1 + · · · + X2
n ∈ Z(U) is the Casimir

element. The polynomial pc(λ) is given by

pc(λ) = ||λ + ρ||2 − ||ρ||2

where the norm is induced by the Killing form.

2. Witten’s Formulas

Let S̄ be a compact Riemann surface of genus g > 1 and o ∈ S̄ be a fixed
point. Let S = S̄ −D where D is a small disc with center o. Let ∂S be the
boundary of S. We take an element c ∈ T , let Zc be the centralizer of c in
G and

Θc = {xcx−1; x ∈ G} ' G/Zc

be the conjugacy class containing c. Let Ω1(S, adP ) be the space of smooth
G-valued one forms on S which vanish on ∂S. Define a two form on Ω1(S, adP )
by ([AB], [Ch1], [J], [W])

ω(a, b) =
1

4π2

∫
S

< a, b > (1)

where a, b ∈ Ω1(S, adP ).
Consider the following map

f : G2g = G×G · · · ×G → G

f(y1, z1, · · · , yg, zg) =
g∏

j=1

yjzjy
−1
j z−1

j .
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For c = u ∈ Z(G), the center of G, let Mu = f−1(u)/G which is the moduli
space of flat principal G-bundles on S with fixed holonomy u ∈ G around
∂S. Here G acts on f−1(u) as follows. Let γ be the action of G on G2g

given by

γ(x)(y1, z1, · · · , yg, zg) = (xy1x
−1, · · · , xzgx

−1).
Then γ induces an action on f−1(u). Note that Z(G) acts trivially on G2g.

Let ωu be the natural symplectic form on Mu induced by (1). From now
on we will assume that u is a regular value of f , that is Mu is a smooth
compact manifold. Then the first formula we are about to prove is

Formula 1.∫
Mu

eωu = #Z(G)[
Vol(G)

(2π)dimG
]2g−2

∑
λ∈P+

χλ(u−1)
d2g−1

λ

Where #Z(G) denotes the number of elements in Z(G). 2

Witten used the notation

Λλ(u−1) =
χλ(u−1)

dλ
.

More generally let us take a generic element c ∈ T , then Zc = T and
Θc ' G/T . LetMc = f−1(c)/Zc be the moduli space of principal G-bundles
with fixed holonomy in Θc around ∂S. Let ωc be the natural symplectic form
onMc induced by (1). Still we assume that c is a regular value of f , therefore
Mc is a smooth compact manifold. Let C ∈ T be such that exp C = c, then
we have

Formula 2.∫
Mc

eωc = |j(c)|#Z(G)Vol(G)2g−1

(2π)dimMcVol(T )

∑
λ∈P+

χλ(c−1)

d2g−1
λ

where |j(c)| is the absolute value of

j(c) =
∏

α∈∆+

(e
√
−1α(C)/2 − e−

√
−1α(C)/2). 2

The next formula gives us the intersection number of certain characteristic
classes on Mu = f−1(u)/G with u ∈ Z(G). Note that for suitably chosen
u, Mu is a smooth compact manifold of dimension dim G(2g − 2).

Let f−1(u) → Mu be the principal G/Z(G) bundle. The G-equivariant
cohomology of f−1(u) is isomorphic to the ordinary cohomology of Mu.
Here we take cohomology with rational coefficient.

Given any Ad-invariant homogeneous polynomial p ∈ CW (T ) ' CG(G) ⊂
H∗(BG) of degree 2m. Let 2πΩ ∈ Ω2(f−1(u)) ⊗ G be the curvature of the
principal bundle f−1(u) → Mu. Then p(

√
−1Ω) ∈ H∗(Mu) is one of the
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generators in H∗(Mu). Let |∆+| be the number of elements on ∆+, then
we have

Formula 3. If 2m < |∆+|(2g − 2), then∫
Mu

p(
√
−1Ω)eωu = #Z(G)[

Vol(G)

(2π)dimG
]2g−2

∑
λ∈P+

χλ(u−1)

d2g−1
λ

p(λ + ρ). 2

The condition on the degree of p is for the convergence of the infinite sum.
In fact, given any polynomial p ∈ CW (T ), let us write

A = #Z(G)[
Vol(G)

(2π)dimG
]2g−2.

Then we have the following formula:

∫
Mu

p(
√
−1Ω)eωu = A limc→ulimt→0+

∑
λ∈P+

χλ(c−1)

d2g−1
λ

p(λ + ρ)e−pc(λ)t.

This formula is very similar to the one in [Liu], Lemma 6.
When the degree of p is big, the following fomula tells us that the above

integral vanishes.

Formula 4. Assume c−1 = expHc is such that Hc ∈ T does not lie in the
lattice 1

2πΓ. Then for any homogegeous polynomial p ∈ CW (T ) with p = 0
for λ + ρ singular, we have

limt→0+

∑
λ∈P+

χλ(c−1)p(λ + ρ)e−pc(λ)t = 0. 2

In particular, Formula 4 tells us that, if the degree of the polynomial p in
Formula 3 satifies 2m ≥ |∆+|(2g − 2), and u is as in Formula 4, then∫

Mu

p(
√
−1Ω)eωu = 0.

All of the above formulas can be generalized to the case when the group
G is not simply connected. This will be discussed in the last section of this
paper.

Note that Formulas 3 and 4 give us a lot of information about the inter-
section numbers on Mu. In particular, Formula 3 contains the information
needed for the Verlinde formula. In fact, let Â(TMu) be the Â-calss of
TMu, then

Â(TMu) = 1 + p1(
√
−1Ω) + p2(

√
−1Ω) + · · ·

where pj ∈ CW (T ) is a homogeneous polynomial of dgree 2j. It is easy to
see that, for any integer k, Formulas 3 and 4 contain all the information of
the integral
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∫
Mu

Â(TMu)ekωu .

Combine with the Atiyah-Singer index formula, this gives the dimension of
the nonabelian theta-functions on Mu. We refer to [Sz], (see also [Mo]), for
the discussion about the equivalence of this formula to the Verlinde formula
for G = SU(n).

3. Heat Kernel and the Proof of Formula 4

Let 4 be the Laplace-Beltrami operator with respect to the biinvariant
metric < ·, · > on G. One knows that 4 = −C. Consider, for x, y ∈ G,

H(t, x, y) =
∑

λ∈P+

dλχλ(xy−1)e−pc(λ)t.

Then H(t, x, y) satisfies the following [U]
a)

∂

∂t
H(t, x, y) = 4xH(t, x, y);

b)

limt→0+

∫
G

H(t, x, y)f(y)dy = Vol(G)f(x)

where dy is the volume element corresponding to the biinvariant metric,
and f is any continuous function on G. Therefore 1

vol(G)
H(t, x, y) is the

standard heat kernel on G. Recall that for y = u ∈ Z(G), one has

dλ χλ(xu−1) = χλ(x)χλ(u−1),

so we have, for u ∈ Z(G),

H(t, x, u) =
∑

λ∈P+

χλ(x)χλ(u−1)e−pc(λ)t.

Before the start of the proofs of the formulas in §2, we first compute the
integral of the pull-back of the heat kernel on G by f :∫

G2g

H(t, f(h), x)dvol

where h = (y1, z1, · · · , yg, zg) ∈ G2g and dvol is the product volume element
on G2g. Obviously we only need to compute the 2g-iterated integrals like∫

G
· · ·

∫
G

χλ(x−1
g∏

j=1

yjzjy
−1
j z−1

j )
g∏

j=1

dyjdzj

where dyj , dzj denote the volume element on G induced by the Killing form.
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Recall the standard formulas in the representation theory of compact Lie
groups which follow from the orthogonal relations ([BD], pp 84):∫

G
χλ(wyzy−1z−1)dz =

Vol(G)
dλ

χλ(wy)χλ(y−1)

and ∫
G

χλ(wy)χλ(y−1)dy =
Vol(G)

dλ
χλ(w)

from which we get∫
G2g

χλ(x−1
g∏

j=1

yjzjy
−1
j z−1

j )
g∏

j=1

dyjdzj =
Vol(G)2g

d2g−1
λ

χλ(x−1).

We summarize this as a lemma.

Lemma 2. The following formula holds∫
G2g

H(t, f(h), x)dvol = Vol(G)2g
∑

λ∈P+

χλ(x−1)

d2g−1
λ

e−pc(λ)t. 2

Next we want to prove Formula 4, the vanishing theorem. This is just a
simple application of the Poisson summation formula. Let c be such that
c−1 = expHc with Hc not in the lattice 1

2πΓ =
∑l

j=1 ZHv
αj

. Consider the
series

Z(t, Hc) =
∑

λ∈P+

p(λ + ρ)χλ(c−1)e−pc(λ)t

where p ∈ CW (T ) is a homogeneous polynomial.
By using the Weyl character formula we can rewrite Z(t, Hc) as

Z(t, Hc) =
e||ρ||

2t

j(c−1)

∑
λ∈P+

∑
w∈W

ε(w)p(λ + ρ)e−||λ+ρ||2te
√
−1w(λ+ρ)(Hc).

Let #W denote the number of elements in the Weyl group W . We get

Z(t, Hc) =
e||ρ||

2t

#Wj(c−1)

∑
λ∈I

∑
w∈W

ε(w)p(λ + ρ)e−||λ+ρ||2te
√
−1w(λ+ρ)(Hc)

=
e||ρ||

2t

#Wj(c−1)

∑
λ∈I

∑
w∈W

ε(w)p(λ)e−||λ||
2te

√
−1λ(w(Hc))

where w acts on Hc ∈ T by adjoint action through the identification W '
N(T )/T . Here N(T ) denotes the normalizer of T .

Consider the Fourier transform F̂ (H) of
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F (λ) = P (λ)e−||λ||
2te

√
−1λ(w(Hc)).

Here by definition

F̂ (H) =
1

(2π)l/2

∫
T ∗

F (λ)e−
√
−1λ(H)dλ.

It is easy to carry out this integration which gives

F̂ (H) = R(t, H − w(Hc))e−
1
4t
||H−w(Hc)||2

where R(t, H−w(Hc)) is a polynomial in (H−w(Hc)) and 1√
t
. By applying

the Poisson summation formula, we get

Z(t, Hc) =
e||ρ||

2t

#Wj(c−1)

∑
H∈ 1

2π
Γ

∑
w∈W

ε(w)R(t, H − w(Hc))e−
1
4t
||H−w(Hc)||2 .

By our assumption, Hc does not belong to the lattice 1
2πΓ, so for H ∈

1
2πΓ, H − w(Hc) is never zero. Therefore when t → 0+, the left hand side
exponentially goes to zero. This proves Formula 4.

4. The Proofs of Formulas 1, 2 and 3

Now we start to prove Formula 1. We will assume that u ∈ Z(G) is a
regular value of f , therefore Mu is a smooth compact manifold.

¿From Sect. 1 we know that, when t → 0+,∫
G2g

H(t, f(h), u)dvol =
∫

f−1(Bδ)
H(t, f(h), u)dvol + O(e−δ/t)

where Bδ ⊂ G is a ball of radius δ around u.
The following local calculation is basically due to [Fo]. Given a point

a ∈ f−1(u), we can choose local coordinate around a by using

(a, b) ∈ f−1(u)×Na ' f−1(Bδ)
where Na is the fiber at a of the normal bundle in G2g to f−1(u). By using
exponential map, we will identify b to the tangent vector in Na. Then the
volume element dvol at (a, b) becomes

dvol = J(a, b)dvoladvolb
where dvola and dvolb are respectively the induced Riemannian volume ele-
ments of f−1(u) and N at (a, b), and J(a, b) with J(a, 0) = 1 is the Jacobian
of the coordinate change.

In this coordinate h = (a, b), and

||f(h)− u||2 = ||[df(a)](b)||2 + O(||b||3)



HEAT KERNEL AND MODULI SPACES 9

from which we get

H(t, f(h), u) =
Vol(G)

(4πt)dimG/2
e−(||[df(a)](b)||2+O(||b||3))/4t(1 + O(t)).

So the integral has the asymptotics

∫
a∈f−1(u)

dvola
∫

Na

Vol(G)

(4πt)dimG/2
e−(||[df(a)](b)||2+O(||b||3))/4t(1+O(t))J(a, b)dvolb.

By changing variable b →
√

tb, carrying out the standard Gaussian integral
and letting t go to zero, we get

∫
Na

Vol(G)

(4πt)dimG/2
e−(||[df(a)](b)||2O(||b||3))/4t(1 + O(t))J(a, b)dvolb

= Vol(G)det−
1
2 df∗(a)df(a)|Na .

Here let {t1, · · · , tn} be a basis for the orthogonal complement of the kernel
of df(a) : G2g → G, [Ker df(a)]⊥ ' G, then

det−
1
2 df∗(a)df(a)|Na =

|t1 ∧ · · · ∧ tn|
|[df(a)](t1) ∧ · · · ∧ [df(a)](tn)|

,

where |t1 ∧ · · · ∧ tn| denotes absolute value of the determinant | < ti, tj > |
and G2g is the direct sum of 2g copies of the Lie algebra G.

Therefore we have

limt→0+

∫
G2g

H(t, f(h), u)dvol = Vol(G)
∫

a∈f−1(u)
det−

1
2 df∗(a)df(a)|Nadvolu.

On the other hand, since the volume of the orbit of γ, the induced con-
jugate action, through a ∈ f−1(u) is given by

Vol(G)
#Z(G)

det
1
2 [dγ∗(a)dγ(a)]

where, for a basis {s1, · · · , sn} of G,

det
1
2 [dγ∗(a)dγ(a)] =

|[dγ(a)](s1) ∧ · · · ∧ [dγ(a)](sn)|
|s1 ∧ · · · ∧ sn|

.

Note that the action of Z(G) on f−1(u) is trivial. Now it is easy to reduce
the integral over f−1(u) to Mu = f−1(u)/G. We get∫

a∈f−1(u)
det−

1
2 [df∗(a)df(a)]|Nadvola =

Vol(G)2

#Z(G)

∫
Mu

dνu

where dνu is the measure on Mu defined by the following property: for any
basis {r1, · · · , rN} of TaM,
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dνu(r1 ∧ · · · ∧ rN ) =

|r1 ∧ · · · ∧ rN ∧ [dγ(a)](s1) ∧ · · · ∧ [dγ(a)](sn) ∧ t1 ∧ · · · ∧ tn|
|s1 ∧ · · · ∧ sn||[df(a)](t1) ∧ · · · ∧ [df(a)](tn)|

.

We summarize the above calculations as

Lemma 3 We have the following integral formula

limt→0+

∫
G2g

H(t, f(h), u)dvol =
Vol(G)2

#Z(G)

∫
Mu

dνu

where dνu is defined as above. 2

Now let us understand dνu. At a ∈ f−1(u), we have the following chain
complex,

Ca : 0 → G dγ→ G2g df→ G → 0.

Here we have identified the tangent bundles of the G’s with their Lie algebras
by using left translations. Note that Ca is the deformation complex of the
flat principal G-bundle on S̄ with fixed holonomy u ∈ G around o. On
each term in Ca, there is the natural measure induced by < ·, · >. Note
that, H0(Ca) = H2(Ca) = 0 and H1(Ca) ' TaMu. Let us denote by τ(Ca)
the torsion of Ca. This is the Reidemeister torsion of the bundle ad P .
We consider τ(Ca) as a norm on det H1(Ca) ' det TaMu. On the other
hand, from its definition dνu can also be viewed as a norm on TaMu. The
following combinatorics lemma is due to Witten [W] and was first applied
in this situation in [Fo].

Lemma 4. Let 2N = dimMu, then

dνu = τ(Ca) = (2π)2N ωN
u

N !
. 2

Remark: Zhang outlined to me a very simple proof of Lemma 4. In fact
τ(Ca) is the Reidemeister metric on detH1(Ca) ([BZ], [Fa]) which is equal
to the L2-metric on any compact even dimensional manifold. In our case,
the L2-metric on det H1(Ca) ' det TaMu is the same as the symplectic
volume. Zhang used Ray-Singer metric, but by the Ray-Singer-Cheeger-
Muller theorem, we know that this is the same as the Reidemeister metric.
In fact both Lemma 4 and Lemma 4c below are simple consequences of the
duality result in [Mi].

For completeness, here we sketch the proof of Witten. The first equality is
basically the definition of the torsion for the complex Ca [Fo]. For the second
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equality, we consider the standard cell decomposition of S̄ given by the 4g-
sided polygons which gives the well-known description of the fundemental
group of S̄. It has one 0-cell, one 2-cell and 2g 1-cells. The complex Ca is
precisely the “lattice model” of the gauge theory of a flat principal G-bundle
on S̄ ([Fo], pp 41). Note that τ(Ca) is invariant under subdivision of the
cell decomposition. The dual cell decomposition gives us a dual complex
C′a to Ca. Poincare duality induces a natural skew-symmetric pairing on the
complex Da = Ca ⊕ C′a which is compatible with both the differentials and
the natural measures on each term in Da. Therefore, since H1(Ca) ' TaMu,
it induc! ! ! es a skew-symmetric pairing

TaMu × TaMu → R

which is precisely the natural symplectic form 4π2ωu on Mu ([W], (4.16) to
(4.28)). So one has ([W], (4.28))

√
τ(Da) = (2π)2N ωN

u

N !
.

Since τ(Da) = τ(Ca)τ(C′a) = τ(Ca)2, we get

τ(Ca) = (2π)2N ωN
u

N !
.

We thus have obtained the following equality which is exactly Formula 1,∫
Mu

eωu = #Z(G)[
VolG

(2π)dimG
]2g−2

∑
λ∈P+

χλ(u−1)

d2g−1
λ

.

Note that here we have assumed G is simply connected and u ∈ Z(G) is a
regular point of f .

Now let us prove Formula 2. Since c is a generic element, the centralizer
of c , Zc = T . The integral we will consider is∫

G2g

H(t, f(h), c)dvol.

Lemma 2 gives us its value as the infinite sum, we now consider its localiza-
tion to f−1(c) when t goes to zero.

Similar to the proof of Formula 1, we can easily get

limt→0+

∫
G2g

H(t, f(h), c)dvol = Vol(G)
∫

a∈f−1(c)
det−

1
2 df∗(a)df(a)|Nadvola

where dvola is the induced Riemannian volume element on f−1(c).
Note that f−1(c) is only invariant under the action of Zc = T . Let γc be

the restriction of the conjugate action γ to Zc. Since the volume of the orbit
of γc through a is

Vol(T )
#Z(G)

det
1
2 [dγ∗c (a)dγc(a)]
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where, for a basis {s1, · · · sl} of Zc = T ,

det
1
2 [dγ∗c (a)dγc(a)] =

|[dγc(a)](s1) ∧ · · · ∧ [dγc(a)](sl)|
|s1 ∧ · · · ∧ sl|

.

So in the same way we can reduce the integral on the right hand side to∫
a∈f−1(c)

det−
1
2 df∗(a)df(a)|Nadvola = Vol(G)

Vol(T )
#Z(G)

∫
Mc

dνc

where dνc is a measure on Mc, such that for a basis {r1, · · · , rK} of TaMc,

dνc(r1 ∧ · · · ∧ rK)

=
|r1 ∧ · · · ∧ rK ∧ [dγc(a)](s1) ∧ · · · ∧ [dγc(a)](sl) ∧ t1 ∧ · · · ∧ tn|

|s1 ∧ · · · ∧ sl||[df(a)](t1) ∧ · · · ∧ [df(a)](tn)|
.

Here {t1, · · · , tn} still denote a basis of the orthogonal complement to Ker df(a).
From the above definition, we see that dνc can be considered as a norm on
det TaMc. Similar to Lemma 3, we can get

Lemma 5. We have

limt→0+

∫
G2g

H(t, f(h), c)dvol = Vol(G)
Vol(T )
#Z(G)

∫
Mc

dνc. 2

Now let us understand dνc which will be related to the symplectic volume
on Mc. Let Zc denote the Lie algebra of Zc. We consider the following
chain complex at a ∈ f−1(c),

Cc
a : 0 → Zc

dγc→ G2g df→ G → 0.

This complex is the “lattice model” associated to the cell decomposition
of the pair (S, ∂S). Here we still identify the tangent bundle of G with G
by using left translations. Note that by definition [Fo] we have similarly
τ(Cc

a) = dνc.
The complex associated to the Poincare dual complex of Cc

a is given ex-
plicitly by the following

Cc
a
′ : 0 → G dγ0→ G2g ⊕ TcΘc

df0→ G → 0

where TcΘc is the fiber at c of the tangent bundle of the orbit Θc ' G/T of
c in G under the conjugate action γ. It is identified with Z⊥c , the orthogonal
complement of Zc in G, through left translation by c−1. The γ0, an extension
of γ, is the conjugate action of G on G×Θc given by

γ0(x)(y1, · · · , zg; y) = (xy1x
−1, · · · , xzgx

−1;xyx−1)

and the f0 is the map from G2g ×Θc to G given by
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f0((y1, · · · , zg; y)) = y−1
g∏

j=1

yjzjy
−1
j z−1

j .

It is easy to see that Mc ' f−1
0 (e)/G.

Note that Cc
a
′ is the “lattice model” complex associated to the cell decom-

position of S which gives the standard description of the fundemental group
of S. It has one 0-cell, one 2-cell and 2g + 1 1-cells. One of the 1-cells is the
boundary circle ∂S. We need to associate Θc to ∂S (cf. [W], [Fo]).

We have the following exact sequence

0 → Cc
a → Cc

a
′ → Kc → 0

where Kc is the complex

0 → Z⊥c
dγc→ TcΘc → 0 → 0.

In fact Kc is precisely the chain complex associated to the boundary circle
∂S [W]. Note that our complexes are dual to those of Witten’s in [W], and
the same as those in [Fo].

As in the derivation of the Weyl integral formula ([BT], pp 162), we easily
find that the torsion of Kc is [W]

τ(Kc) = |det(Ad(c−1)− I)| = |j(c)|2.
So we get

τ(Cc
a
′) = τ(Cc

a)τ(Kc) = τ(Cc
a)|j(c)|2.

Note that

H0(Cc
a) = H2(Cc

a) = H0(Cc
a
′) = H2(Cc

a
′) = 0

and
H1(Cc

a) ' H1(Cc
a
′) ' TaMc.

We consider the complex Dc = Cc
a ⊕ Cc

a
′. The Poincare duality induces

a natural skew-symmetric pairing on Dc which is compatible with both
the differentials and the natural measures of Dc. Therefore it induces the
symplectic structure on Mc. Following Witten’s argument ([W], (4.105)),
in the same way as in the proof of Lemma 4, we get

√
τ(Dc) = (2π)2K ωK

c

K!
= τ(Cc

a)|j(c)|

where 2K denotes the dimension of Mc. Here we have used the equality
τ(Dc) = τ(Cc

a)τ(Cc
a
′). Let us summarize the above discussions as a lemma.

Lemma 4c. We have the following equalities:

dνc|j(c)| = τ(Cc
a)|j(c)| = (2π)2K ωK

c

K!
. 2
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Remark: As Zhang explained to me, his simple proof of Lemma 4 ap-
plies to this case, and Cc

a, Cc
a
′ correspond to the complexes with different

boundary, absolute and relative, conditions. The term τ(Kc) is precisely
the Reidemeister metric of the boundary ([Lu], Theorem 5.9). See also [Mi],
Theorem 2 and the discussion in [RS], Sect. 3.

By putting this together with the formula in Lemma 2, we get∫
Mc

eωc =
1

(2π)dimMc

∫
Mc

τ(Cc
a)|j(c)|

= |j(c)|#Z(G)Vol(G)2g−1

(2π)dimMcVol(T )

∑
λ∈P+

χλ(c−1)

d2g−1
λ

which is precisely Formula 2.
Now let us compare Formula 1 and Formula 2. Let C, H0

u ∈ T be such
that u expC = c and u = expH0

u, we assume C, H0
u lie in the closure of the

fixed Weyl chamber C ⊂ T . When c is very near u in T = Zc, one knows
that f−1(c) is diffeomorphic to f−1(u). Therefore Mc is a fiber bundle over
Mu with fiber G/T ' G/Zc. Let us write this as

π : Mc →Mu.

Then one has the standard relation of symplectic forms

ωc = π∗ωu + νc

where νc is a two form on Mc which, when restricted to the fiber G/Zc '
G/T , is the standard symplectic form. In fact, a simple application of the
local model theorem for symplectic manifold to the fibration f−1(u) →Mu

gives us ([Ch], [Ch1], [D], [J])

νc =< C, Ω > +θc

where, for X, Y ∈ G, θc is given by ([BGV], §7.5)

θc(X, Y ) = − 1
2π

< C, [X, Y ] > .

For the geometric meaning of νc in terms of loop group, see [Ch].
This gives us ∫

Mc

eωc =
∫
Mu

eωuπ∗e
νc

where π∗ is the integration along a generic fiber of π. By comparing Formula
1 and Formula 2, it is easy to see that one must have

Lemma 6.

limc→u
π∗e

νc

j(c)
= ± Vol(G/T )

(2π)dim (G/T )
. 2
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Here Vol(G/T ) = Vol(G)/Vol(T ) is the Riemannian volume of G/T . The
sign ± will be fixed later.

Let us briefly explain the geometric reason for Lemma 6. First we know
that the symplectic volume of G/Zc ' G/T with symplectic form θc is
([BGV], Lemma 7.32)∫

G/Zc

eθc = Vol(G/T )
∏

α∈∆+

√
−1α(C)

2π
.

It is easy to see that the leading term of the integral π∗e
νc is given by the

symplectic volume of the fiber, that is, we have

π∗e
νc = Vol(G/T )

∏
α∈∆+

√
−1α(C)

2π
+ · · ·

where the · · · are those terms involving higher order terms in α(C). From
Formula 2, we get the following identity:

Vol(G/T )
∏

α∈∆+

√
−1α(C)

2π

∫
Mu

eωu + · · ·

= |j(c)|#Z(G)Vol(G)2g−1

(2π)dimMcVol(T )

∑
λ∈P+

χλ(c−1)

d2g−1
λ

.

Let π(c) =
∏

α∈∆+

√
−1α(C). Since u ∈ Z(G), we know that, when c

goes to u, each α(C) should go to zero which implies that

limc→u
π(c)
j(c)

= ±1 (2)

which is equivalent to Lemma 6.
Now we are ready to prove Formula 3. We will actually show that in

fact Formula 3 follows from Formulas 1 and 2 in the same way as the
above discussion. First let 2πΩ be the curvature of the principal bundle
π : f−1(u) →Mu. The following formula which was first shown to me by
Chang [Ch] can be viewed as a family version of the Duistermaat-Heckman
integral formula, or more generally a family version of the equivariant local-
ization formula ([BGV], Theorem 7.33).

π∗e
νc =

∑
w∈W ε(w)e<wC , Ω>∏
α∈∆+(−

√
−1α(Ω))

. (3)

Here the Weyl group W acts on C ∈ T by the the adjoint action, through the
identification N(T )/T ' W . A similar formula is derived in [KS], Proposi-
tion 5.3.

Let {H1, · · · ,Hl} be an orthonormal basis of T , write C = x1H1 + · · ·+
xlHl ∈ T . We use (x1, · · · , xl) as the coordinate of C ∈ T . Given a W -
invariant homogeneous polynomial on T , p(x1, · · · , xl) ∈ CW (T ) ' CG(G)
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of degree 2m. Let the differential operator p( ∂
∂x1

, · · · , ∂
∂xl

) act on both sides
of Formula 2 with respect to C ∈ T . Note that

p(
∂

∂x1
, · · · ,

∂

∂xl
)π∗eνc = p(Ω)π∗eνc

which follows from the above formula (3) (or [V], Proposition 10). On the
other hand, from the Weyl character formula, we have

j(c)χλ(c−1) =
∑

w∈W

ε(w)e−
√
−1w(λ+ρ)(C+H0

u),

which gives

p(
∂

∂x1
, · · · ,

∂

∂xl
)[j(c)χλ(c−1)] = (−1)mp(λ + ρ)[j(c)χλ(c−1)].

Now let c → u again, from Formula 2 and Lemma 6 we get

∫
Mu

eωup(Ω) = ±(−1)m#Z(G)
Vol(G)2g−2

(2π)dimMu

∑
λ∈P+

χλ(u−1)

d2g−1
λ

p(λ + ρ).

The overall sign ± is fixed by taking p = 1 and noting that, as the limits of
the heat kernel, both sides should be positive. This proves Formula 3.

In the above discussion we did not pay attention to the convergence. But
it is easy to see that our proof actually gives the following formula:

∫
Mu

eωup(
√
−1Ω) = A limc→ulimt→0+

∑
λ∈P+

χλ(c−1)

d2g−1
λ

p(λ + ρ)e−pc(λ)t

where

A = #Z(G)
Vol(G)2g−2

(2π)dimMu

as defined in §2.

4. Nonsimply Connected Groups.

Finally we consider the case when G is compact and semisimple, but not
necessarily simply connected. For simplicity we only discuss the proof of
Formula 1, the other formulas can be proved in completely the same way.

Let π1(G) denote the fundemental group of G which, since G is semisim-
ple, is finite. Let G′ be the universal covering of G. Let H ′(t, y, x) be the
heat kernel of G′, then the heat kernel on G is given by

H(t, y, x) =
1

(#π1(G))2
∑

γ∈π1(G)

H ′(t, y, γx)
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where the x, y on the left hand side are correspondingly the lifts onto G′ of
x, y ∈ G. Here the reason that we divide by (#π1(G))2 is due to that fact
that H ′(t, y, x) is not normalized, it should be divided by the volume of G′.

Consider f : G2g → G and M′
u = f−1(u)/G where f is the same as

in the simply connected case and u ∈ Z(G) is a regular value of f . Let
f̃ : G′2g → G′ be a lift of f . Since Vol(G′) = #π1(G)Vol(G), by using
Lemma 2 we get

[#π1(G)]2g

∫
G2g

H(t, f(h), u)dvol

=
1

(#π1(G))2
∑

γ∈π1(G)

∫
G′2g

H ′(t, f̃(h), γu)dvol

=
Vol(G′)2g

(#π1(G))2
∑

γ∈π1(G)

∑
λ∈P+

χλ((γu)−1)
d2g−1

λ

e−pc(λ)t

=
Vol(G′)2g

#π1(G)

∑
λ∈P+

χλ(u−1)

d2g−1
λ

e−pc(λ)t.

Here we have used the fact that

dλχλ((γu)−1) = χλ(u−1)χλ(γ−1)

and that
1
dλ

∑
γ∈π1(G)

χλ(γ−1)

is zero except when χλ is trivial, in which case it is equal to #π1(G). On
the other hand when t → 0+, the same method as in the simply connected
case gives us

limt→0+

∫
G2g

H(t, f(h), u)dvol =
Vol(G)2

#Z(G)

∫
M′

u

τ(Ca)

= (2π)dimM′
u
Vol(G)2

#Z(G)

∫
M′

u

eω′u

where ω′u is the induced symplectic form on M′
u from the ω in (1), and Ca

is the the same complex as in Lemma 4. By putting the above two formulas
together, we get∫

M′
u

eω′u =
#Z(G)
#π1(G)

[
Vol(G)

(2π)dimG
]2g−2

∑
λ∈P+

χλ(u−1)

d2g−1
λ

.

The other formulas can be extended to the non-simply connected case in the
same way.
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We note that, for G = SU(2), a proof of Formula 3 was announced in [JK]. Their

method is completely different from the one used in this paper.
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