
Home Page

Title Page

JJ II

J I

Page 1 of 41

Go Back

Full Screen

Close

Quit

Hyperbolic Geometric Flow

Kefeng Liu
Zhejiang University

UCLA

http://www.scut.edu.cn


Home Page

Title Page

JJ II

J I

Page 2 of 41

Go Back

Full Screen

Close

Quit

Outline
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♦ Dissipative hyperbolic geometric flow

♦ Open problems
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1. Introduction

- Ricci flow

- Structure of manifolds

- Singularities in manifold and space-time

- Einstein equations and Penrose conjecture

- Wave character of metrics and curvatures

- Applications of hyperbolic PDEs to differential geometry

J. Hong, D. Christodoulou, S. Klainerman, M. Dafermos,

I. Rodnianski, H. Lindblad, N. Ziper · · · · · ·

Kong et al (Comm. Math. Phys.; J. Math. Phys. 2006)

http://www.scut.edu.cn
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2. Hyperbolic Geometric Flow

Let (M , gij) be n-dimensional complete Riemannian manifold.

The Levi-Civita connection

Γk
ij =

1

2
gkl

{
∂gil

∂xi
+
∂gil

∂xj
−
∂gij

∂xl

}
The Riemannian curvature tensors

Rk
ijl =

∂Γk
jl

∂xi
−
∂Γk

il

∂xj
+ Γk

ipΓ
p
jl − Γk

jpΓ
p
il, Rijkl = gkpR

p
ijl

The Ricci tensor

Rik = gjlRijkl

The scalar curvature

R = gijRij

http://www.scut.edu.cn
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Hyperbolic geometric flow (HGF)

∂2gij

∂t2
= −2Rij (1)

for a family of Riemannian metrics gij(t) on M .

General version of HGF

∂2gij

∂t2
+ 2Rij + Fij

(
g,
∂g

∂t

)
= 0 (2)

-De-Xing Kong and Kefeng Liu:
Wave Character of Metrics and Hyperbolic Geometric
Flow, 2006

http://www.scut.edu.cn
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Physical background

• Relation between Einstein equations and HGF

Consider the Lorentzian metric

ds2 = −dt2 + gij(x, t)dx
idxj

Einstein equations in vacuum, ie., Gij = 0 become

∂2gij

∂t2
+ 2Rij +

1

2
gpq
∂gij

∂t

∂gpq

∂t
− gpq

∂gip

∂t

∂gkq

∂t
= 0 (3)

This is a special example of general version (2) of HGF.
Neglecting the terms of first order gives the HGF (1).

(3) is named as Einstein’s hyperbolic geometric flow

• Applications to cosmology: singularity of universe

http://www.scut.edu.cn
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Geometric background

- Structure of manifolds

- Singularities in manifolds

- Wave character of metrics and curvatures

- Long-time behavior and stability of manifolds

http://www.scut.edu.cn
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Laplace equation, heat equation and wave equation

- Laplace equation (elliptic equations)

4u = 0

- Heat equation (parabolic equations)

ut − 4u = 0

- Wave equation (hyperbolic equations)

utt − 4u = 0

http://www.scut.edu.cn
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Einstein manifold, Ricci flow, hyperbolic geometric flow

- Einstein manifold (elliptic equations)

Rij = λgij

- Ricci flow (parabolic equations)

∂gij

∂t
= −2Rij

- Hyperbolic geometric flow (hyperbolic equations)

∂2gij

∂t2
= −2Rij

Laplace equation, heat equation and wave equation on
manifolds in the Ricci sense

http://www.scut.edu.cn
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Geometric flows

αij
∂2gij

∂t2
+ βij

∂gij

∂t
+ γijgij + 2Rij = 0,

where αij, βij, γij are certain smooth functions on M

which may depend on t.

In particular,

αij = 1, βij = γij = 0: hyperbolic geometric flow

αij = 0, βij = 1, γij = 0: Ricci flow

αij = 0, βij = 0, γij = const.: Einstein manifold

http://www.scut.edu.cn
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Birkhoff Theorem holds for geometric flows

- Fu-Wen Shu and You-Gen Shen:
Geometric flows and black holes, arXiv: gr-qc/0610030

All of the known explicit solutions of the Einstein solu-
tions, such as the Schwartzchild solution, Kerr solution,
satisfy HGF.

At least for short time solutions, there should be a 1 − 1

correspondence between solutions of HGF and the Ein-
stein equation.

http://www.scut.edu.cn
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Complex geometric flows

If the underlying manifold M is a complex manifold and
the metric is Kähler,

aij
∂2gij

∂t2
+ bij

∂gij

∂t
+ cijgij + 2Rij = 0,

where aij, bij, cij are certain smooth functions on M

which may also depend on t.

http://www.scut.edu.cn
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3. Local Existence and Nonlinear Stability

Local existence theorem (Dai, Kong and Liu, 2006)

Let (M , g0
ij(x)) be a compact Riemannian manifold. Then there

exists a constant h > 0 such that the initial value problem
∂2gij

∂t2
(x, t) = −2Rij(x, t),

gij(x, 0) = g0
ij(x),

∂gij

∂t
(x, 0) = k0

ij(x),

has a unique smooth solution gij(x, t) on M × [0, h], where

k0
ij(x) is a symmetric tensor on M .

W. Dai, D. Kong and K. Liu: Hyperbolic geometric flow (I): short-

time existence and nonlinear stability

http://www.scut.edu.cn
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Method of proof

• Strict hyperbolicity

Suppose ĝij(x, t) is a solution of the hyperbolic geometric flow

(1), and ψt : M → M is a family of diffeomorphisms of M . Let

gij(x, t) = ψ∗
t ĝij(x, t)

be the pull-back metrics. The evolution equations for the metrics

gij(x, t) are strictly hyperbolic.

http://www.scut.edu.cn
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• Symmetrization of hyperbolic geometric flow

Introducing the new unknowns

gij, hij =
∂gij

∂t
, gij,k =

∂gij

∂xk
,

we have 

∂gij

∂t
= hij,

gkl
∂gij,k

∂t
= gkl

∂hij

∂xk
,

∂hij

∂t
= gkl

∂gij,k

∂xl
+ H̃ij.

Rewrite it as

A0(u)
∂u

∂t
= Aj(u)

∂u

∂xj
+B(u),

where the matrices A0, Aj are symmetric.

http://www.scut.edu.cn
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Nonlinear stability

Let M be a n-dimensional complete Riemannian manifold.

Given symmetric tensors g0
ij and g1

ij on M , we consider
∂2gij

∂t2
(t, x) = −2Rij(t, x)

gij(x, 0) = gij(x) + εg0
ij(x),

∂gij

∂t
(x, 0) = εg1

ij(x),

where ε > 0 is a small parameter.

Definition The Ricci flat Riemannian metric gij(x) possesses

the (locally) nonlinear stability with respect to (g0
ij, g

1
ij), if there

exists a positive constant ε0 = ε0(g
0
ij, g

1
ij) such that, for any

ε ∈ (0, ε0], the above initial value problem has a unique (local)

smooth solution gij(t, x);

gij(x) is said to be (locally) nonlinear stable, if it possesses the

(locally) nonlinear stability with respect to arbitrary symmetric

tensors g0
ij(x) and g1

ij(x) with compact support.

http://www.scut.edu.cn
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Nonlinear stability theorem (Dai, Kong and Liu, 2006)

The flat metric gij = δij of the Euclidean space Rn with n ≥ 5

is nonlinearly stable.

Remark The above theorem gives the nonlinear stability of the

hyperbolic geometric flow on the Euclidean space with dimen-

sion larger than 4. The situation for the 3-, 4-dimensional Eu-

clidean spaces is very different. This is a little similar to the

proof of the Poincaré conjecture: the proof for the three dimen-

sional case and n ≥ 5 dimensional case are very different, while

the four dimensional smooth case is still open.

http://www.scut.edu.cn
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Method of proof

Define a 2-tensor h

gij(x, t) = δij + hij(x, t).

Choose the elliptic coordinates {xi} around the origin in Rn.

It suffices to prove that the following Cauchy problem has a

unique global smooth solution
∂2hij

∂t2
(x, t) =

n∑
k=1

∂2hij

∂xk∂xk
+ H̄ij

(
hkl,

∂hkl

∂xp
,
∂2hkl

∂xp∂xq

)
,

hij(x, 0) = εg0
ij(x),

∂hij

∂t
(x, 0) = εg1

ij(x).

http://www.scut.edu.cn
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Einstein’s hyperbolic geometric flow

∂2gij

∂t2
+ 2Rij +

1

2
gpq∂gij

∂t

∂gpq

∂t
− gpq∂gip

∂t

∂gkq

∂t
= 0

satisfy the null condition

Global existence and nonlinear stability for small initial
data (Dai, Kong and Liu)

http://www.scut.edu.cn
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4. Wave Nature of Curvatures

Under the hyperbolic geometric flow (1), the curvature tensors

satisfy the following nonlinear wave equations

∂2Rijkl

∂t2
= ∆Rijkl + (lower order terms),

∂2Rij

∂t2
= ∆Rij + (lower order terms),

∂2R

∂t2
= ∆R+ (lower order terms),

where ∆ is the Laplacian with respect to the evolving metric,

the lower order terms only contain lower order derivatives of

the curvatures.

http://www.scut.edu.cn
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Evolution equation for Riemannian curvature tensor

Under the hyperbolic geometric flow (1), the Riemannian curva-

ture tensor Rijkl satisfies the evolution equation

∂2

∂t2
Rijkl = 4Rijkl + 2 (Bijkl −Bijlk −Biljk +Bikjl)

−gpq (RpjklRqi +RipklRqj +RijplRqk +RijkpRql)

+2gpq

(
∂

∂t
Γp

il

∂

∂t
Γq

jk −
∂

∂t
Γp

jl

∂

∂t
Γq

ik

)
,

where Bijkl = gprgqsRpiqjRrksl and 4 is the Laplacian with

respect to the evolving metric.

http://www.scut.edu.cn
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Evolution equation for Ricci curvature tensor

Under the hyperbolic geometric flow (1), the Ricci curvature ten-

sor satisfies

∂2

∂t2
Rik = 4Rik + 2gprgqsRpiqkRrs − 2gpqRpiRqk

+2gjlgpq

(
∂

∂t
Γp

il

∂

∂t
Γq

jk −
∂

∂t
Γp

jl

∂

∂t
Γq

ik

)
−2gjpglq

∂gpq

∂t

∂

∂t
Rijkl + 2gjpgrqgsl

∂gpq

∂t

∂grs

∂t
Rijkl

http://www.scut.edu.cn
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Evolution equation for scalar curvature

Under the hyperbolic geometric flow (1), the scalar curvature

satisfies

∂2

∂t2
R = 4R+ 2|Ric|2

+2gikgjlgpq

(
∂

∂t
Γp

il

∂

∂t
Γq

jk −
∂

∂t
Γp

jl

∂

∂t
Γq

ik

)
−2gikgjpglq

∂gpq

∂t

∂

∂t
Rijkl

−2gipgkq
∂gpq

∂t

∂Rik

∂t
+ 4Rikg

ipgrqgsk
∂gpq

∂t

∂grs

∂t

http://www.scut.edu.cn
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5. Exact Solutions and Birkhoff theorem

5.1 Exact solutions with the Einstein initial metrics

Definition (Einstein metric and manifold) A Riemannian metric gij

is called Einstein if Rij = λgij for some constant λ. A smooth
manifold M with an Einstein metric is called an Einstein mani-
fold.

If the initial metric gij(0, x) is Ricci flat, i.e., Rij(0, x) = 0,

then gij(t, x) = gij(0, x) is obviously a solution to the evolution

equation (1). Therefore, any Ricci flat metric is a steady solution

of the hyperbolic geometric flow (1).

http://www.scut.edu.cn
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If the initial metric is Einstein, that is, for some constant λ it

holds

Rij(0, x) = λgij(0, x), ∀ x ∈ M ,

then the evolving metric under the hyperbolic geometric flow (1)

will be steady state, or will expand homothetically for all time, or

will shrink in a finite time.

http://www.scut.edu.cn


Home Page

Title Page

JJ II

J I

Page 26 of 41

Go Back

Full Screen

Close

Quit

Let

gij(t, x) = ρ(t)gij(0, x)

By the defintion of the Ricci tensor, one obtains

Rij(t, x) = Rij(0, x) = λgij(0, x)

Equation (1) becomes

∂2(ρ(t)gij(0, x))

∂t2
= −2λgij(0, x)

This gives an ODE of second order

d2ρ(t)

dt2
= −2λ

One of the initial conditions is ρ(0) = 1, another one is assumed

as ρ′(0) = v. The solution is given by

ρ(t) = −λt2 + vt+ 1

http://www.scut.edu.cn
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General solution formula is

gij(t, x) = (−λt2 + vt+ c)gij(0, x)

Remark This is different with the Ricci flow!

Case I The initial metric is Ricci flat, i.e., λ = 0.

In this case,

ρ(t) = vt+ 1. (4)

If v = 0, then gij(t, x) = gij(0, x). This shows that gij(t, x) =

gij(0, x) is stationary.

http://www.scut.edu.cn
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If v > 0, then gij(t, x) = (1 + vt)gij(0, x). This means that

the evolving metric gij(t, x) = ρ(t)gij(0, x) exists and expands

homothetically for all time, and the curvature will fall back to

zero like −1
t
.

Notice that the evolving metric gij(t, x) only goes back in time

to −v−1, when the metric explodes out of a single point in a “big

bang”.

If v < 0, then gij(t, x) = (1 + vt)gij(0, x). Thus, the evolving

metric gij(t, x) shrinks homothetically to a point as t ↗ T0 =

−1
v

. Note that, when t ↗ T0, the scalar curvature is asymptotic

to 1
T0−t

. This phenomenon corresponds to the “black hole” in

physics.

http://www.scut.edu.cn
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Conclusion: For the Ricci flat initial metric, if the initial velocity is zero,

then the evolving metric gij is stationary; if the initial velocity is positive,

then the evolving metric gij exists and expands homothetically for all time;

if the intial velocity is negative, then the evolving metric gij shrinks homo-

thetically to a point in a finite time.

http://www.scut.edu.cn
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Case II The initial metric has positive scalar curvature, i.e., λ >

0.

In this case, the evolving metric will shrink (if v < 0) or first

expands then shrink (if v > 0) under the hyperbolic flow by a

time-dependent factor.

http://www.scut.edu.cn
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Case III The initial metric has a negative scalar curvature, i.e.,

λ < 0.

In this case, we devide into three cases to discuss:

Case 1 v2 + 4λ > 0.

(a) v < 0: the evolving metric will shrink in a finite time under

the hyperbolic flow by a time-dependent factor;

(b) v > 0: the evolving metric gij(t, x) = ρ(t)gij(0, x) exists

and expands homothetically for all time, and the curvature

will fall back to zero like − 1
t2 .
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Case 2 v2 + 4λ < 0.

In this case, the evolving metric gij(t, x) = ρ(t)gij(0, x) exists

and expands homothetically (if v > 0) or first shrinks then ex-

pands homothetically (if v < 0) for all time.

The scalar curvature will fall back to zero like − 1
t2 .

Case 3 v2 + 4λ = 0.

If v > 0, then evolving metric gij(t, x) = ρ(t)gij(0, x) exists

and expands homothetically for all time. In this case the scalar

curvature will fall back to zero like 1
t2 . If v < 0, then the evolving

metric gij(t, x) shrinks homothetically to a point as t ↗ T∗ =
v
2λ
> 0 and the scalar curvature is asymptotic to 1

T∗−t
.

http://www.scut.edu.cn
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Remark A typical example of the Einstein metric is

ds2 =
1

1 − κr2
dr2 + r2dθ2 + r2 sin2 θdϕ2,

where κ is a constant taking its value −1, 0 or 1. We can prove

that

ds2 = R2(t)

{
1

1 − κr2
dr2 + r2dθ2 + r2 sin2 θdϕ2

}
is a solution of the hyperbolic geometric flow (1), where

R2(t) = −2κt2 + c1t+ c2

in which c1 and c2 are two constants. This metric plays an im-

portant role in cosmology.

http://www.scut.edu.cn
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5.2 Exact solutions with axial symmetry

Consider

ds2 = f(t, z)dz2 −
t

g(t, z)

[
(dx− µ(t, z)dy)2 + g2(t, z))dy2

]
,

where f, g are smooth functions with respect to variables.

Since the coordinates x and y do not appear in the preceding

metric formula, the coordinate vector fields ∂x and ∂y are Killing

vector fields. The flow ∂x (resp. ∂y) consists of the coordinate

translations that send x to x + ∆x (resp. y to y + ∆y), leaving

the other coordinates fixed. Roughly speaking, these isometries

express the x-invariance (resp. y-invariance) of the model. The

x-invariance and y-invariance show that the model possesses

the z-axial symmetry.
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HGF gives

gt = µt = 0

f =
1

2g2

[
g2

z + µ2
z

]
+

1

g4
µ2

z(c1t+ c2),

where gz and µz satisfy

gg2
z − ggzµzzµ

−1
z + g2

z + µ2
z = 0

Birkhoff Theorem holds for axial-symmetric solutions!

Angle speed µ is independent of t!

http://www.scut.edu.cn
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6. Dissipative hyperbolic geometric flow

Let M be an n-dimensional complete Riemannian manifold with

Riemannian metric gij. Consider the hyperbolic geometric flow

∂2gij

∂t2
= −2Rij + 2gpq

∂gip

∂t

∂gjq

∂t
+

(
d− 2gpq

∂gpq

∂t

)
∂gij

∂t
+(

c+
1

n− 1

(
gpq

∂gpq

∂t

)2

+
1

n− 1

∂gpq

∂t

∂gpq

∂t

)
gij

for a family of Riemannian metrics gij(t) on M , where c and d

are arbitrary constants.
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By calculations, we obtain the following evolution equation of

the scalar curvature R with respect to the metric gij(x, t)

∂2R

∂t2
= 4R+ 2|Ric|2 +

(
d− 2gpq

∂gpq

∂t

)
∂R

∂t
−(

c+
1

n− 1

(
gpq

∂gpq

∂t

)2

+
1

n− 1

∂gpq

∂t

∂gpq

∂t

)
R+

2gikgjlgpq

∂Γp
ij

∂t

∂Γq
kl

∂t
− 2gikgjlgpq

∂Γp
ik

∂t

∂Γq
jl

∂t
+

8gik
∂Γq

ip

∂t

∂Γp
kq

∂t
− 8gik

∂Γp
ip

∂t

∂Γq
kq

∂t
− 8gik

∂Γq
pq

∂t

∂Γp
ik

∂t

http://www.scut.edu.cn


Home Page

Title Page

JJ II

J I

Page 38 of 41

Go Back

Full Screen

Close

Quit

Introduce

y
4
= gpq∂gpq

∂t
= Tr

{
∂gpq

∂t

}
and

z
4
= gpqgrs∂gpr

∂t

∂gqs

∂t
=

∣∣∣∣∂gpq

∂t

∣∣∣∣2 .
By (1), we have

∂y

∂t
= −2R−

n− 2

n− 1
y2 + dy −

1

n− 1
z + cn

Global stability of Euclidean metric

- Dai, Kong and Liu, 2006
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7. Open Problems

� Yau has several conjectures about asymptotically flat mani-

folds with nonnegative scalar curvature. HGF supplies a promis-

ing way to approach these conjectures.

� Penrose cosmic censorship conjecture. Given initial metric

g0
ij and symmetric tensor kij, study the singularity of the HGF

with these initial data.

These problems are from general relativity and Einstein equa-

tion in which HGF has root.
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� Global existence and singularity; HGF has global solution for

small initial data.

� HGF flow and (minimal) hypersurface. Study HGF with initial

data given by initial metric and second fundamental form hij.

There was an approach of geometrization by using Einstein

equation which is too complicated to use. HGF may simplify

and even complete the approach.
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Thank you
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