
REMARKS ON NONABELIAN LOCALIZATION
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0. In this short note, we derive some nonabelian localization for-
mulas in a very simple way. The method is to use Witten’s idea of
multiplying the integral by a Gaussian and then to complete square.
The localization procedure we use is different from Witten’s in that we
do not need the Bismut localizing factor e−tDλ as in [W], at the same
time we avoid the use of Fourier transform in [JK]. Along the way we
will also derive Martin’s formula which relates nonabelian symplectic
reduction to the abelian case. The method is rather elementary and
applicable to other situations which we hope to discuss on a later oc-
casion.

We remark that all of the basic results in this note, which grows out of
my trying to understand this circle of ideas, are due to Jeffrey-Kirwan,
Martin and Witten. Our sole contribution is pointing out a different
way to derive them. Other quite different approaches to such type
results have also been obtained by Guillemin-Kalkman [GK], Martin
[M] and Vergne [V]. The interested reader may compare these different
methods and formulas.

I would like to thank A. Astashkevich, S. Martin especially S. Wu for
some helpful discussions and the referee for useful comments. I have
also benefited a lot from the MIT symplectic geometry seminar.

1. Let M be a compact symplectic manifolds with the Hamiltonian
action of a compact Lie group K. Let k denote the Lie algebra of K
and k∗ its dual. Let

µK : M → k∗

be the corresponding moment map and assume 0 is a regular value
of µK . Denote by MK = µ−1(0)/K the corresponding symplectic quo-
tient. Although our method applies to a more general situation such as
orbifolds, for simplicity we will assume the K-action on µ−1(0) is free.
All of the following cohomology groups have coefficients in complex
numbers.

Let H∗
K(M) be the equivariant cohomology group, that is the coho-

mology group of the complex (Ω∗
K(M), D) where

Ω∗
K(M) = (S(k∗)⊗ Ω∗(M))K , and,
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D(α⊗ f)(φ) = f(φ)(dα−
√
−1iφ̄α).

Here α ⊗ f ∈ Ω∗
K(M), φ ∈ K, φ̄ is the vector field on M generated

by φ and iφ̄ is the contraction operator. Choose a basis {ej} of k, let
{ej} be the dual basis in k∗. Then φ =

∑
j φ

jej and µK can be written

as
∑

j µje
j. Let ω be the symplectic form on M and ω̄ = ω + iµK ∈

H∗
K(M) with i =

√
−1 be its equivariant extension.

Let ρK be the composite of the following maps in equivariant coho-
mology:

H∗
K(M) → H∗

K(µ−1(0)) w H∗(MK)

where the first map is induced by the inclusion map j : µ−1(0)) ↪→M
and the second is the canonical isomorphism.

2. Let η =
∑

I ηIe
I where I = (i1, · · · , il) with l the dimension of

K is multi-index be an equivariant differential form. Here all of the
ij’s are nonnegative integers. Following Witten [W], we consider the
following integral

I(ε) =

∫
k

e−ε|φ|
2

∫
M

η(φ)eω+iµK(φ)dφ

where dφ is the volume form of the Killing form on k.
Note that

|φ|2 =
∑
j

(φj)2, η(φ) =
∑
I

ηIφ
I , and µK(φ) =

∑
j

µjφ
j.

Completing square, we get

I(ε) =

∫
k

∫
M

e−ε|φ−iµK/2ε|2e−|µK |2/4εη(φ)eωdφ

where

|φ− iµK/2ε|2 =
∑
j

(φj − iµj/2ε)
2, |µK |2 =

∑
j

µ2
j .

Considering k as Rl and changing variable φj → φj/
√
ε+ iµj/2ε and

x→ x where x denotes the variable in M , we get

I(ε) = ε−l/2
∫
M

∫
k

e−|φ|
2

e−|µK |2/4εη′(φ)eωdφ

where

η′(φ) =
∑
I

ηI(φ/
√
ε+ iµK/2ε)

I .
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Obviously when ε→ 0, the above integral is dominated by the term
e−|µK |2/4ε and localizes to a neighborhood of µ−1

K (0). In fact it is easy
to see that for a small ball Bδ of radius δ around 0 ∈ k∗,

ε−l/2
∫
k

∫
M−µ−1

K (Bδ)

e−|φ|
2

e−|µK |2/4εη′(φ)eωdφ = O(e−δ
2/4ε).

In a standard way we can identify a small neighborhood of µ−1
K (0) with

µ−1
K (0)×Bδ, This gives us the following
Lemma 1:

I(ε) = a

∫
k

e−ε|φ|
2

∫
µ−1

K (0)×Bδ

η(φ)eω+iµK(φ)dφ+O(e−δ
2/4ε)

where a = ±1 is determined by the compatibility of the orientation of
µ−1
K (0)× k∗ with that of M .
Another method to prove the above localization to µ−1

K (0) is to use
stationary phase approximation with respect to φ. More precisely
change variable φ→ φ/

√
ε, we get

I(ε) = ε−l/2
∫
k

∫
M

e
i√
ε
µK(φ)

e−|φ|
2

η(φ/
√
ε)eωdφ

which when ε goes to zero obviously localizes to µK = 0.
3. To compute I(ε) in a small neighborhood of µ−1

K (0), it is standard
to use the local symplectic model µ−1

K (0) × k∗ where K acts on k∗

by coadjoint action with symplectic form ω = π∗ω0 + d(α, θ). Here
π : µ−1

K (0) → MK is the projection, ω0 is the reduced symplectic
form on MK , α is the coordinate function on k∗ and θ is the k-valued
connection 1-form of the principal bundle π : µ−1

K (0) → MK . Also
(α, θ) denotes the obvious pairing. The corresponding moment map is
given by µ(p, α) = α.

Let < , > denote the Killing form on K and F = dθ − θΛθ be the
curvature of the connection θ. Write F =

∑l
j=1 F

jej and < F,F >=∑l
j=1 F

jΛF j. Then standard computation gives us
Lemma 2:

∫
k

e−ε|φ|
2

∫
µ−1

K (0)×Bδ

η(φ)eω+iµK(φ)dφ = (2π)lV (K)

∫
MK

ρK(η)eε<F,F>eω0+O(e−δ
2/4ε)

where V (K) denotes the volume of K.
In fact from the above local model, we have
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∫
k

e−ε|φ|
2

∫
µ−1

K (0)×Bδ

η(φ)eω+iµK(φ)dφ

=

∫
k

e−ε|φ|
2

∫
µ−1

K (0)×Bδ

η(φ)eπ
∗ω0+d(α,θ)ei(α,φ)dφ.

Since d(α, θ) = (dα, θ) + (α, dθ), we get∫
k

e−ε|φ|
2

∫
µ−1

K (0)×Bδ

η(φ)eπ
∗ω0+(α,dθ)e(dα,θ)ei(α,φ)dφ

in which the term e(dα,θ) gives Λθdα where θ =
∑

j θ
jej, Λθ = θ1Λ · · ·Λθl

with l = dim K, and dα is the volume form on k∗. Inserting the term
θΛθ which does not affect the integral, because of the term Λθ, we then
have ∫

µ−1
K (0)

∫
k

∫
Bδ

e−ε|φ|
2

η(φ)eπ
∗ω0+(α,F )ei(α,φ)Λθdαdφ.

Write η(φ) = π∗ρK(η), then the above integral becomes∫
µ−1

K (0)

π∗(ρK(η))eπ
∗ω0Λθ

∫
Bδ

∫
k

e−ε|φ|
2

e(α,F )ei(α,φ)dφdα.

Note that∫
Bδ

∫
k

e−ε|φ|
2

e(α,F )ei(α,φ)dφdα =

∫
k∗

∫
k

e−ε|φ|
2

e(α,F )ei(α,φ)dφdα+O(e−δ
2/4ε).

It is easy to carry out the last integral which is equal to (2π)leε<F,F>.
Note that Λθ is the volume form for the fiber of the principal bundle
µ−1
K (0) →MK .
We remark that an explicit estimate of the δ in Lemma 2, in terms

of the geometry of the moment map, has been given in [JK] and [V].
4. On the other hand, let t ⊂ k be the Lie algebra of a maximal

torus T of K. As an easy corollary of the Weyl integral formula and
the fact that the Jacobian of the exponential map exp : k → K is

J(φ) = |det
1− e−ad(φ)

ad(φ)
|,

we have the following formula for an integrable adjoint invariant func-
tion f(φ) on k: ∫

k

f(φ)dφ = C

∫
t

ν(ψ)2f(ψ)dψ.
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Here φ ∈ k, ψ ∈ t, and ν(ψ) =
∏

α∈4+ α(ψ) is the product of the

positive roots with respect to t and C = (2π)l−sV (K)/|W |V (T ) where
s = dimT , |W |, V (·) denote the order of the Weyl group and the
volume with respect to the metric induced from the Killing form re-
spectively. This formula can also be proved easily in a similar way to
the derivation of the Weyl integral formula. By using the identification

Ad : K/T ×W t ≡ k,

we get ∫
k

f(φ)dφ =

∫
k/Ad

f(ψ)σ(ψ)dψ =

∫
t/W

f(ψ)σ(ψ)dψ

where k/Ad w t/W is the Weyl chamber and

σ(ψ) = V (K/T ) · the Jacobian of i(ψ)

with i(ψ) : K/T → k(ψ) the map to the adjoint orbit passing through
ψ. This Jacobian is easy to compute which is equal to |det ad(ψ)| =
(2π)l−sν(ψ)2 as required [JK]. Using this formula, we get

I(ε) = C

∫
t

e−ε|ψ|
2

ν(ψ)2

∫
M

η(ψ)eω+iµT (ψ)dψ.

Let µT denote the moment map of the maximal torus T acting on M ,
and MT be the symplectic quotient µ−1

T (0)/T . For simplicity we also
assume the T -action on µ−1

T (0) is free. Let ρT be the corresponding map
fromH∗

T (M) toH∗(MT ), ω0 the corresponding reduced symplectic form
on MT . Take η ∈ H∗

K(M) ⊂ H∗
T (M) and apply the same arguments as

the proofs of Lemmas 1 and 2 we get

I(ε) = b · (2π)sC · V (T )

∫
MT

ρT (ν2η)eε<F
0,F 0>eω

0

+O(e−δ
2/4ε)

where F 0 is the curvature of the principal T -bundle µ−1
T (0) → MT

and b = ±1 is determined by the compatibility of the orientation of
µ−1
T (0)× t∗ with that of M .
Compare the two expressions of I(ε) for k and for t, we obtain the

following formula of Martin which, as pointed out in [GK] and the
referee, also follows from [JK], Theorem 8.1:

Lemma 3:

c

|W |

∫
MT

ρT (ν2η)eω
0

=

∫
MK

ρK(η)eω0 .
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Here c = ±1 = a·b is determined by the compatibility of the orientation
of µ−1

T (0)× t∗ with that of µ−1
K (0)× k∗.

Before we go further, let us first use a theorem in [BC] to derive a
formula in [JK], Proposition 7.1. Let f(x) be an L1-integrable function
in the Euclidean space Rk with inner product < , > and

φ(y) =

∫
Rk

f(x)ei<x,y>dx

be its Fourier transform. Note that the definition of Fourier transform
in [BC], which we use, is slightly different from the one in [JK], Sect.
3. We then have the following theorem from [BC] (Theorem 37 in pp.
65):

Lemma 4.

limε→0

∫
Rk

φ(y)e−i<y,x>e−ε<y,y>dy = (2π)kf(x)

almost everywhere.
If f(x) is continuous, then the above limit is equal to f(x) every-

where. This exactly fits our purposes. In fact from our localization
proccess we know that

∫
MK

ρK(η)eω0 = limε→0

∫
k

e−ε|φ|
2

g(φ)dφ = limε→0

∫
t

e−ε|ψ|
2

h(ψ)dψ

where

g(φ) = a/[(2π)lV (K)]

∫
M

η(φ)eω+iµK(φ), h(ψ) = b/[(2π)s|W |V (T )]

∫
M

η(ψ)ν(ψ)2eω+iµT (ψ)

are smooth functions on k and t respectively. Let G(x), H(y) be the
functions whose Fourier transforms are g(φ) and h(ψ) respectively.
From Lemma 6 below, it is easy to see that they are L1-integrable.
Our localization method and Lemma 4 immediately give us the follow-
ing formula of [JK], Proposition 7.1:

Lemma 5 ∫
MK

ρK(η)eω0 = (2π)lG(0) = (2π)sH(0).

5. On the other hand if we note that ν(ψ)2η(ψ)eω+iµT (ψ) ∈ H∗
T (M),

and first localize the expression∫
M

ν(ψ)2η(ψ)eω+iµT (ψ)
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to the fixed point sets {F} of T on M by using the localization formula
in [AB], [BV], we get

I(ε) = C

∫
t

e−ε|ψ|
2

ν(ψ)2
∑
{F}

eiµT (F )(ψ)

∫
F

i∗F (η(ψ)eω)

eF (ψ)
dψ

where eF is the equivariant Euler class of the normal bundle of F in
M and iF is the corresponding inclusion.

Since the total sum in the ψ-integral is a polynomial in ψ, we can
deform the contour of integral, switch the order of integral and sum to
get

I(ε) = C
∑
{F}

∫
F

∫
t+iζ

e−ε|ψ|
2

ν(ψ)2eiµT (F )(ψ) i
∗
F (η(ψ)eω)

eF (ψ)
dψ

where ζ = (ζ1, · · · , ζs) ∈ t is a generic point such that there is no pole
in the integrand.

Compare this formula with Lemmas 1 and 2, we thus have obtained
Lemma 6:∫
MK

ρK(η)eω0 = a·(2π)−lC/V (K)
∑
{F}

limε→0

∫
t+iζ

e−ε|ψ|
2

ν(ψ)2eiµT (F )(ψ)

∫
F

i∗F (η(ψ)eω)

eF (ψ)
dψ.

Here recall that a = ±1 and (2π)−lC/V (K) = 1/[(2π)s|W |V (T )].
To compute the limit in Lemma 6, we only need to deal with terms

like

limε→0

∫
t+iζ

e−ε|ψ|
2+iµT (F )(ψ)[ψJ/βI(ψ)]dψ

where βI = βi1 · · · βiN are multiplication of certain linear functionals
on t. More precisely

µT (F )(ψ) =
∑
j

µj(F )ψj, |ψ|2 =
∑
j

(ψj)2, ψJ = (ψ1)j1 · · · (ψs)js , βj(ψ) =
s∑
i=1

aijψ
i

where the a′ijs are integers. Change variables and recollect terms, we
reduce the computation to

limε→0A(ε)

∫
t

[(ψ + iζ)J/βI(ψ + iζ)]e−i<ψ,α>e−ε|ψ|
2

dψ

where

A(ε) = eε|ζ|
2−<ζ,α>, α = (2εζ1 − b1, · · · , 2εζs − bs)

with b = (b1, · · · , bs) and bj = µj(F ) some real numbers. Here we have
used the notations
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< ζ, b >=
∑
j

ζjbj, < ψ, α >=
∑
j

ψj(2εζj − bj).

Assume the Fourier transform of a function h(x) is equal to (ψ +
iζ)J/βI(ψ + iζ), then a slight generalization of Lemma 4 following its
proof in [BC] compute the above limit which is equal to

(2π)se−(ζ,b)h(−b).

Note that such functions like h(x) are related to the Duistermaat-
Heckman measure and have been studied in detail in [GLS].

For example if s = 1, by iteration we only need to evaluate

limε→0

∫
R+iζ

x−ke−εx
2+ixbdx

which is obviously 0 for k ≤ 0. Here R denotes the real line. For k > 0,
assume ζ > 0. Since for Imz > 0

z−k =
(−i)k

(k − 1)!

∫ ∞

0

sk−1eizsds,

let z = y + iζ we know that the Fourier transform of

h(x) =

{
(−i)k

(k−1)!
xk−1e−xζ if x > 0

0 if x < 0

is (y + iζ)−k. So the above limit is

−2π
ik

(k − 1)!
bk−1, for b < 0

and 0 for b > 0.
Other ways to compute these integrals are to use residues as in [K]

or the method in [Wu]. The interested reader may try his own way for
the computation.
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