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In this note we describe some new topological results derived from the
modular invariance of certain elliptic operators on loop spaces under the
action of SL2(Z). The results include very general rigidity, divisibility and
vanishing theorems in topology.

1 Loop Groups and Rigidity Theorems

Let M be a smooth compact spin manifold with an S1-action and P be an
elliptic operator onM commuting with the action. Then both the kernal and
the cokernal of P are S1-modules. The Lefschetz number, or the character-
valued index of P at g ∈ S1 is defined to be

FP (g) = trgKerP − trgCokerP ∈ R(S1)

where R(S1) is the character ring of the S1-modules. We say that P is rigid
with respect to this S1-action, if FP (g) is independent of g.

Two well-known examples of rigid elliptic operators are the signature
operator ds and the Dirac operator D [AH].

Now let L̃Spin(2l) denote the central extension of the loop group LSpin(2l)
and E be a positive energy representation of it. Then under the rotation
action of the loop, E has decomposition ⊕∞n≥0En where En’s are finite dimen-
sional representations of Spin(2l). Given a real rank 2l spin vector bundle
V on M , let P be its frame bundle and Ẽn be the bundle associated to P
and En. We define

ψ(E, V ) =
∞∑

n≥0

Ẽnq
n ∈ K(M)[[q]]
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where q = e2πiτ with τ in the upper half plane is a parameter.
Assume that there exists an S1-action on M which lifts to V . Let p(·)S1

denote the first equivariant Pontrjagin class. Then we have the following:

Theorem 1 For every positive energy representation E of L̃Spin(2l) of
highest weight of level m, if p1(M)S1 = mp1(V )S1, then

D ⊗⊗∞n=1Sqn(TM)⊗ ψ(E, V )

is rigid.

Here St(·) is the symmetric operation in K(M)[[t]]. Theorem 1 actually
holds for any simply connected Lie group, instead of Spin(2l).

2 Jacobi Forms and Vanishing Theorems

We consider the equivariant cohomology group of M , H∗
S1(M,Z). We know

that H∗
S1(M,Z) is a module over H∗(BS1,Z) induced by the projection

π : M ×S1 ES1 → BS1.

We are interested in the situation when p1(V )S1−p1(M)S1 ∈ H∗
S1(M,Z)

is equal to the pull-back of an element in H∗(BS1,Z). Since H∗(BS1,Z) =
Z[[u]] with u a generator of degree 2, we know that this is equivalent to

p1(V )S1 − p1(M)S1 = n · π∗u2

with n an integer. We call n the anomaly to rigidity.
Let M and V be as above. Let Λt(·) be the wedge operation in K(M)[[t]]

and

Θ′
q(TM |V )v = ⊗∞n=1Λqn(V − dimV )⊗∞m=1 Sqm(TM − dimM),

Θq(TM |V )v = ⊗∞n=1Λ−qn− 1
2
(V − dimV )⊗∞m=1 Sqm(TM − dimM),

Θ−q(TM |V )v = ⊗∞n=1Λqn− 1
2
(V − dimV )⊗∞m=1 Sqm(TM − dimM),

Θ∗
q(TM |V )v = ⊗∞n=1Λ−qn(V − dimV )⊗∞m=1 Sqm(TM − dimM).

Denote the spinor bundles of V by 4(V ) = 4+(V )⊕4−(V ). We then have

Theorem 2 Assume

p1(V )S1 − p1(M)S1 = n · π∗u2,

2



then the Lefschetz numbers of D ⊗4(V ) ⊗ Θ′
q(TM |V )v, D ⊗ Θq(TM |V )v,

D⊗Θ−q(TM |V )v and D⊗(4+(V )−4−(V ))⊗Θ∗
q(TM |V )v are holomorphic

Jacobi forms of index n
2 and weight k = 1

2dimM over (2Z)2 oΓ with Γ equal
to Γ0(2), Γ0(2), Γθ and SL2(Z) respectively.

Here by Lefschetz number we actually mean its extension from unit circle to
complex plane. See [Sh] for definitions of the modular subgroups appeared
above.

The following elliptic operator

D ⊗⊗∞m=1Sqm(TM − dimM)

corresponds to the Dirac operator on LM . we have the following Â-vanishing
theorem for loop space.

Theorem 3 If p1(M)S1 = n · π∗u2 for some integer n, then the Lefschetz
number, especially the index of

D ⊗⊗∞m=1Sqm(TM − dimM)

is zero.

We note that p1(M)S1 = n · π∗u2 is the equivariant spin condition on LM .
If M is 2-connected, this condition is equivalent to p1(M) = 0. Theorem 2
can be generalized to higher level case.

Theorem 4 Let M , V and E be as in Theorem 1. If

mp1(V )S1 − p1(M)S1 = n · π∗u2,

then
qmΛD ⊗⊗∞n=1Sqn(TM − dimM)⊗ ψ(E, V )

is a holomorphic Jacobi form of index nm
2 and weight k over (2Z)2oΓ(N(m)).

Here N(m) is a positive integer, mΛ is a rational number depending on the
level and the weight of E. There are similar theorems for almost complex
manifolds.
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3 Corollaries and Examples

In this section we give several corollaries of our theorems. We will see that
Theorem 1 actually holds in much more general situations. Let M and V be
as in Theorem 1. Consider the case of level m = 1. Then L̃Spin(2l) has four
irreducible positive energy representations which we denote by S+, S−, S′+
and S′−. Then take E to be S = S+ + S−, T = S+ − S−, S′ = S′+ + S′− or
T ′ = S′+ − S′−, one gets the rigidity of the following four elliptic operators

D ⊗4(V )⊗∞n=1 Λqn(V )⊗∞m=1 Sqm(TM),

D ⊗ (4+(V )−4−(V ))⊗∞n=1 Λ−qn(V )⊗∞m=1 Sqm(TM),

D ⊗⊗∞n=1Λ−qn− 1
2
(V )⊗∞m=1 Sqm(TM),

D ⊗⊗∞n=1Λqn− 1
2
(V )⊗∞m=1 Sqm(TM).

Corollary 1 (Witten Rigidity Theorem) The above four elliptic oper-
ators are rigid under the conditions p1(V )S1 = p1(M)S1 and w2(V ) =
w2(M) = 0.

Take four non-negative integers a, b, c, d and consider the representation

Qa,b,c,d = S⊗a ⊗ S′
⊗b ⊗ T⊗c ⊗ T ′

⊗d
.

¿From Theorem 1 we have

Corollary 2 If p1(M)S1 = (a+b+c+d)p1(V )S1 and w2(M) = w2(V ) = 0,
then

D ⊗⊗∞m=1Sqm(TM)⊗ ψ(Qa,b,c,d, V )

is rigid.

So {S, S′, T, T ′} generate a graded ring by tensor product, each homogeneous
term of degree m gives a rigid elliptic operator, if the Spin(2l)-bundle V
satisfies p1(M)S1 = mp1(V )S1 .

If we have another Spin(2n)-vector bundle W such that

ap1(V )S1 + bp1(W )S1 = p1(M)S1

for some non-negative integers a, b, then we have that, for two highest weight
positive energy representations E and F of level a and b of L̃Spin(2l) and
L̃Spin(2n) respectively, the operator

D ⊗⊗∞m=1Sqm(TM)⊗ ψ(E, V )⊗ ψ(F,W )
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is rigid. One can get much more examples in this way.
One corollary of Theorem 2 is the following

Corollary 3 Let M , V and n be as in Theorem 2. If n = 0, the Lefschetz
numbers of the elliptic operators in Theorem 2 are independent of the gen-
erators of S1. If n < 0 or n = 2 and k=1

2dimM is odd, then their Lefschetz
numbers are identically zero, especially their indices are zero.

¿From Theorem 4 we can get similar results. If n < 0, the Lefschetz number
of the elliptic operator in Theorem 4 must be zero, so is its index. Especially
this includs the generalization of Corollary 2 to the non-zero anomaly case.
If n = 0, Theorem 4 reduces to Theorem 1.

One can draw more corollaries from our theorems. For example we have
that, if p1(M)S1 −mp1(V )S1 = n · π∗u2 with the integer n ≤ 0, then D⊗ V
and D ⊗4(V )⊗ V are rigid; if n < 0, then their indices vanish.

Under certain condition all of our results have analogues for almost com-
plex manifolds. For example let X be a compact almost complex manifold
of complex dimension k and W be a complex vector bundle of rank l on
X. Here by complex bundle we mean a real bundle with complex structure.
One has the decompositions

TX ⊗C = T ′X ⊕ T ′′X, W ⊗C = W ′ ⊕W ′′.

Assume that there exists an S1-action on X which lifts to W and preserves
the complex structures of X and W . Let L = detW ′, K = detT ′X and

Θα
q (TX|W ) = ⊗∞n=0Λ−y−1qnW ′′⊗∞n=1 Λ−yqnW ′⊗∞n=1 SqnT ′X ⊗∞n=1 SqnT ′′X.

We then have

Theorem 5 Assume w2(W ) = w2(X), c1(W ) ≡ 0(modN) and p1(W )S1 =
p1(X)S1, then the elliptic operator ∂̄ ⊗ (K−1 ⊗ L)

1
2 ⊗Θα

q (TX|W ) is rigid.

Take W = TX, we get the rigidity theorem of Hirzebruch [H]. If p1(W )S1 −
p1(X)S1 = n · π∗u2, we get a holomorphic Jacobi form. If n < 0, we have
vanishing theorem.

Fix two positive integers m, ν with ν < 2m. Let {lj} be integers such
that mjν = 2mlj + kj with kj ≥ 0 [BT]. Similarly let {pj} be given by
njν = 2mpj + qj with qj ≥ 0. Let {M i

2m} be the fixed submanifolds of
the subgroup Z2m of S1 and Di

m be the Dirac operator on M i
2m. Let V i

m

denote the Z2m invariant part of V restricted to M i
2m and e(·) denote Euler
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number. Combining with the rigidity theorems, we study the behaviors of
F V

ds
(t, τ) and F V

D∗(t, τ) around the singular fibers of some elliptic modular
surfaces and get the following localization formulas:

Theorem 6

Ind(D ⊗4(V )) =
∑
M i

2m

(−1)
∑

j lj Ind(Di
m ⊗4(V i

m)),

e(V ) =
∑
M i

2m

(−1)
∑

j lj−
∑

j pje(V i
m).

We have similar results for almost complex manifolds. The study also reveals
the connection between the transfer argument of [BT], [H] and [Kr] and the
singular fibers of certain elliptic modular surfaces.

4 Ideas of Proofs

We first sketch the proof of Theorem 1. To display our idea clearly, we
restrict our attention to the isolated fixed point case. First since L̃Spin(2l)
is simply connected, we can assume that E is a level m integrable highest
weight module L(Λ) of the affine Lie algebra L̂so(2l).

Let {p} ⊂M be the fixed points of a generator g = e2πit ∈ S1. Let {mj}
and {nν} be the exponents of TM and V respectively, at the fixed point p.
That is, we have orientation-compatible decompositions

TM |p = E1 ⊕ · · · ⊕ Ek, k =
1
2
dimM,

V |p = L1 ⊕ · · · ⊕ Ll, l =
1
2
dimV

where {Ej}, {Lν} are complex line bundles and g acts on Ej and Lν by
e2πimjt and e2πinνt respectively.

Let θ(v, τ), θ1(v, τ), θ2(v, τ), θ3(v, τ) be the four Jacobi theta-functions
[Ch]. Consider the following functions

H(t, τ) = (2πi)−k
k∏

j=1

θ′(0, τ)
θ(mjt, τ)

,

cE(t, τ) = χE(T, τ)
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where T = (n1t, · · · , nlt) and χE(z, τ) = qmΛchE(z, τ) is the normalized
Kac-Weyl character of the representation E = L(Λ) of L̃Spin(2l) [Ka].

First we find that

FE(t, τ) =
∑

p

H(t, τ)cE(t, τ)

is the Lefschetz number of

qmΛ ·D ⊗⊗∞n=1Sqn(TM − dimM)⊗ ψ(E, V ).

Obviously we can extend FE(t, τ) to a meromorphic function on C×H.
The rigidity theorem is therefore equivalent to the proof that FE(t, τ) is
independent of t. Together with a trick about modular transformations, the
proof consists of the following three lemmas.

Lemma 1 If p1(M)S1 = mp1(V )S1, then FE(t, τ) =
∑

pH(t, τ)cE(t, τ) is
invariant under the action

t→ t+ aτ + b

for a, b ∈ 2Z.

Recall that the modular transformation of g =
(
a b
c d

)
∈ SL2(Z) on

(t, τ) ∈ C×H is given by

g(t, τ) = (
t

cτ + d
,
aτ + b

cτ + d
).

Lemma 2 For any g =
(
a b
c d

)
∈ SL2(Z), we have

FE(g(t, τ)) = (cτ + d)kFgE(t, τ)

where gE =
∑

µ aµEµ is a finite C-linear combination of positive energy
representations of L̃Spin(2l) of highest weight of level m.

These two lemmas are proved by using the transformation formulas of theta-
functions, the theorem of Kac-Peterson about the modularity of the char-
acters of the integrable highest weight modules of affine Lie algebras. The
condition on Pontrjagin classes is used very crucially, but there is no need
to consider any parity of the exponents.

By generalizing an observation of [BT] we have
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Lemma 3 For any g ∈ SL2(Z), the function FgE(t, τ) is holomorphic in
(t, τ) for t ∈ R and τ ∈ H.

Now we can prove Theorem 1. By Lemma 1, we know that FE(t, τ) is
a doubly periodic meromorphic function in t, therefore to get the rigidity
theorem, we only need to prove that FE(t, τ) is holomorphic on C×H.

First note that, as a meromorphic function on C×H, all of the possible
polar divisors of FE(t, τ) can be expressed in the form t = n(cτ+d)

A with
A,n, c, d integers, A 6= 0 and c, d prime to each other. We find integers a, b

such that ad− bc = 1 and consider the matrix g =
(

d −b
−c a

)
∈ SL2(Z).

Since
FgE(t, τ) = (−cτ + a)−kFE(

t

−cτ + a
,
dτ − b

−cτ + a
),

it is easy to see that, if t = n(cτ+d)
A is the polar divisor of FE(t, τ), then a

polar divisor of FgE(t, τ) is given by

t

−cτ + a
=
n(c dτ+b

−cτ+a + d)
A

which exactly gives t = n
A . This is a contradiction to Lemmas 2 and 3. So

FE(t, τ) is holomorphic on C ×H. This proves Theorem 1 for the isolated
fixed point case. The general fixed point case can be discussed in the same
manner. See [Liu4] for the details.

For the proof of Theorem 2, let us denote the Lefschetz numbers of
2−l · D ⊗ 4(V ) ⊗ Θ′

q(TM |V )v, D ⊗ Θq(TM |V )v, D ⊗ Θ−q(TM |V )v and
D⊗ (4+(V )−4−(V ))⊗Θ∗

q(TM |V )v by F V
ds

(t, τ), F V
D (t, τ), F V

−D(t, τ) and
F V

D∗(t, τ) respectively. Apply the Lefschetz fixed point formula, we have

F V
ds

(t, τ) = (2πi)−k
∑

p

θ′(0, τ)k

θ1(0, τ)l

∏l
ν=1 θ1(nνt, τ)∏k
j=1 θ(mjt, τ)

,

F V
D (t, τ) = (2πi)−k

∑
p

θ′(0, τ)k

θ2(0, τ)l

∏l
ν=1 θ2(nνt, τ)∏k
j=1 θ(mjt, τ)

,

F V
−D(t, τ) = (2πi)−k

∑
p

θ′(0, τ)k

θ3(0, τ)l

∏l
ν=1 θ3(nνt, τ)∏k
j=1 θ(mjt, τ)

,

F V
D∗(t, τ) = (2πi)−k

∑
p

θ′(0, τ)k−l

∏l
ν=1 θ(nνt, τ)∏k
j=1 θ(mjt, τ)

.
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Similarly the Lefschetz number H(t, τ) of

D ⊗⊗∞m=1Sqm(TM − dimM)

is given by

H(t, τ) = (2πi)−k
∑

p

k∏
j=1

θ′(0, τ)
θ(mjt, τ)

.

We can similarly extend these F V ’s and H to well-defined meromorphic
functions on (t, τ) ∈ C ×H. The key point is to prove that they are holo-
morphic which is accomplished by using the basic transformation formulas
of theta-functions. The proof of the vanishing theorems uses the rather el-
ementary fact that there is no holomorphic Jacobi form of negative index
except 0. We refer the reader to [Liu4] for the detail.

5 Elliptic Genera and Elliptic Functions

Theta-function gives the best way to characterize the three universal elliptic
genera. For convenience we change variable u = πv in the Jacobi theta-
functions and still write them as θ(u, τ), θ1(u, τ), θ2(u, τ) and θ3(u, τ).

Let Ω be the lattice generated by (π, πτ), Ω1 by (π, 2πτ), Ω2 by (2π, πτ)
and Ω3 by (π−πτ, π+πτ). Let P(u) be the Weirstrass P-function associated
to the lattice 2Ω. We start from the Weirstrass parametrization of the elliptic
curve

P′(u)2 = 4(P(u)− e1)(P(u)− e2)(P(u)− e3).

By looking at their poles and zeroes, one finds that P(u)− ej for j = 1, 2, 3
have well-defined square roots on the whole u-plane. Define fj(u) such that

fj(u)2 = P(u)− ej.

Then each fj(u) is an elliptic function with period lattice 2Ωj . We call
f1(u), f2(u), f3(u) the root functions.

We denote the characteristic series of ds⊗Θ′
q(TM |TM)v,D⊗Θq(TM |TM)v

and D⊗Θ−q(TM |TM)v by fds(x), fD(x) and f−D(x) respectively. See Sec-
tion 2. The indices of these operators are the so-called universal elliptic
genera. We have

fds(u) =
1
2i
θ1(u, τ)θ′(0, τ)
θ(u, τ)θ1(0, τ)

,
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fD(u) =
1
2i
θ2(u, τ)θ′(0, τ)
θ(u, τ)θ2(0, τ)

,

f−D(u) =
1
2i
θ3(u, τ)θ′(0, τ)
θ(u, τ)θ3(0, τ)

.

We also have

f1(u) = 2ifds(u), f2(u) = 2ifD(u), f3(u) = 2if−D(u).

¿From these we can easily derive all of the basic properties of elliptic genera.
For example we have their functonal equations:

f ′ds
(u)2 = (fds(u)

2 − 1
4
θ4
3)(fds(u)

2 − 1
4
θ4
2),

f ′D(u)2 = (fD(u)2 +
1
4
θ4
3)(fD(u)2 +

1
4
θ4
1),

f ′−D(u)2 = (f−D(u)2 +
1
4
θ4
2)(f−D(u)2 − 1

4
θ4
1).

Here we use the notation θj = θj(0, τ). Compare with the standard equation
of elliptic genus

y2 = 1− 2δx2 + εx4

we get the following formulas:

For ds ⊗Θ′
q(TM |TM)v : δ′ =

1
8
(θ4

2 + θ4
3), ε

′ =
1
16
θ4
2θ

4
3;

For D ⊗Θq(TM |TM)v : δ = −1
8
(θ4

1 + θ4
3), ε =

1
16
θ4
1θ

4
3;

For D ⊗Θ−q(TM |TM)v : δ− =
1
8
(θ4

1 − θ4
2), ε− = − 1

16
θ4
1θ

4
2.

There are more formulas relating the universal elliptic genera to elliptic
functions. See [Liu4].

6 Divisibility and Miraculous Cancellations

In the non-equivariant situation, we can also get some results by using
SL2(Z).

10



Theorem 7 Let Mbe a dimension 8k + 4 compact smooth spin manifold
and V be a rank 2l real spin vector bundle.

a) If p1(V ) = 0, then Ind ds ⊗4(V ) ≡ 0(mod2l+3).
b) If p1(V ) = p1(M) and l ≥ 4k + 2, then IndD ⊗4(V ) ≡ 0(mod16).

Take V to be a trivial bundle in a) or V = TM in b), one recovers the result
of Ochanine: sign(M) ≡ 0(mod16). We can also generalize this theorem to
the higher level case.

We only describe the idea of the proof of b), which we owe to Hirzebruch.
Consider the modular transformation between the two elliptic operators

D ⊗4(V )⊗Θ′
q(TM |V )v and D ⊗Θq(TM |V )v.

First using theta-functions we show that their indices are modular forms of
weight 4k+2 over Γ0(2) and Γ0(2) respectively. We also know that 4δ′, 16ε′

are generators of the ring of modular forms of intergral Fourier coefficients
over Γ0(2); similarly 8δ, ε are the generators over Γ0(2). The weight of δ, δ′

is 2 and the weight of ε, ε′ is 4. Therefore we can write

IndD ⊗Θq(TM |V ) = a0(8δ)2k+1 + a1(8δ)2k−1ε+ · · ·+ ak(8δ)εk

where the aj ’s are integral linear combinations of the indices of the Dirac
operator twisted by the Fourier coefficients of Θq(TM |V ). For example

a0 = −IndD;
a1 = IndD ⊗ V + (24(2k + 1)− 2l)IndD.

Apply the modular transformation S : τ → − 1
τ , we get

IndD ⊗4(V )⊗Θ′
q(TM |V )v = 2l[a0(8δ′)2k+1 + a1(8δ′)2k−1ε′ + · · ·+ ak(8δ′)ε′k]

≡ 0(mod16).

Let V be as in b) of Theorem 7. One easy consequence of the proof
is the following formula which was considered to involve the miraculous
cancellation of [AW].

Corollary 4 Ind D ⊗4(V ) = 2l+2k+1 ·
∑k

j=0 2−6jaj.

One can get similar type of results for the operator in a) and for complex
manifolds with c1 ≡ 0(modN).

It is also interesting to use modular forms to study the Dirac operator
on LM , from which, if p1(M) = 0, we get a modular form of weight 1

2dimM
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over SL2(Z). This gives us some strong estimates on IndD⊗Sm(TM) when
m→∞.

I would like to thank Professors R. Bott, H. Miller, C. Taubes, S. T. Yau and
many others for their encouragement and help.
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