
On Elliptic Genera and Theta-Functions

Kefeng Liu
Department of Mathematics

Harvard University

Introduction

The main purpose of this paper is to give a simple and unified new proof of the
Witten rigidity theorems, which were conjectured by Witten and first proved
by Taubes [T], Bott-Taubes [BT], Hirzebruch [H] and Krichever [Kr]. Our
proof shows that the modular invariance, which is the intrinsic symmetry of
elliptic genera, actually implies their rigidity. Some new properties of elliptic
genera and their relationships with theta-functions are also discussed.

We remark that our proof makes essential uses of the new feature of loop
groups and loop spaces, the modular invariance. We note that, with the help
of the modular group, we can catch the topological information on loop space
by simply working on finite dimensional manifold. By developing this idea
further, in [Liu1] we have proved the rigidity of the Dirac operator on loop
space twisted by higher level loop group representations, while the Witten
rigidity theorems are the special cases of level 1. Many topological vanishing
theorems are also derived in [Liu1] by refining the argument in this paper,
especially an Â-vanishing theorem for loop space. In [Liu2] modular invari-
ance is used again to establish a general miraculous cancellation formula,
relating the Hirzebruch L-form to certain twisted Â-forms, which has many
interesting topological results as consequences. These results were anounced
in [Liu3].

Let X be a smooth compact spin manifold admitting a circle action and
P be an elliptic operator on X commuting with the action. Then both the
kernal and the cokernal of P are S1-modules. The Lefschetz number, or the

1



character-valued index of P at g ∈ S1, is defined to be

FP (g) = tr|gKerP − tr|gCokerP ∈ R(S1)

where R(S1) is the character ring of the S1-modules. We say that P is rigid
with respect to this S1-action, if FP (g) is independent of g.

Example 0.1: the signature operator, denoted by ds, is rigid. The
reason is that both of its kernal and cokernal are subspaces of the deRham
cohomology group H∗(X,R) on which S1 aways induces a trivial action.

Example 0.2: the Dirac operator D is rigid. This is a theorem of Atiyah
and Hirzebruch [AH]. To help the reader gain some flavor of rigidity, we give
the sketch of their proof. For simplicity let us restrict to the isolated fixed
point case.

Let g = e2πit ∈ S1 be a generator of the action group and {p} ⊂ X be
the set of fixed points. Let

TX|p = E1 ⊕ · · · ⊕ Ek, k =
1

2
dimX

be the decomposition of the tangent bundle into sum of the S1-invariant
2-planes when restricted to the fixed points. Assume that g acts on Ej by
e2πimjt. We call {mj} ⊂ Z the exponents of TX at the fixed point p. Choose
the orientations of Ej’s compatibly with the orientation of X. Then a simple
application of the Lefschetz fixed point formula in [AB] and [AS] gives us

FD(g) =
∑
{p}

k∏
j=1

1

z
mj
2 − z−

mj
2

,

where z = e2πit. On the other hand we know that FD(g) is the character of
a finite dimensional virtual S1-module, so

FD(g) =
N∑

n=−N

anz
n.

Comparing the two expressions of FD(g), we easily see that FD(g) can be
extended to a holomorphic function on C ∪∞, therefore is a constant. 2

Around 1982, motivated by physics, Witten proved the rigidity of the
twisted Dirac operator D ⊗ TX for compact homogeneous spin manifolds.
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Using equivariant cobordism, Landweber and Stong were able to obtain a
series of rigidity theorems for odd type semi-free circle actions. Their work,
together with those of Ochanine and Chudnovskys, directly lead to the dis-
covery of elliptic genus.

In [W], Witten introduced a series of elements in K(X)[[q
1
2 ]] where q =

e2πiτ , with τ in the upper half plane, is a parameter. Indices of the Dirac
operator twisted by these elements are the signature, Â-genus or the Eu-
ler characteristic of the loop space of X. Surprisingly the elliptic genus of
Landweber-Stong happens to be the index of one of these elliptic operators.
Motivated by physics, Witten conjectured that these elliptic operators should
be rigid. More precisely let

Θ′
q(TX) = ⊗∞

n=1Λqn(TX)⊗∞
m=1 Sqm(TX),

Θq(TX) = ⊗∞
n=1Λ−qn− 1

2
(TX)⊗∞

m=1 Sqm(TX),

Θ−q(TX) = ⊗∞
n=1Λqn− 1

2
(TX)⊗∞

m=1 Sqm(TX).

Here for a vector bundle E,

St(E) = 1 + tE + t2S2E + · · · ,
Λt(E) = 1 + tE + t2Λ2E + · · ·

are respectively the symmetric and wedge operations in K(X)[[t]]. Note that

Θ−q is obtained from Θq by replacing q
1
2 with −q

1
2 .

Furthermore let V be a real vector bundle on X with structure group
Spin(2l) and

Θ′
q(TX|V ) = ⊗∞

n=1Λqn(V )⊗∞
m=1 Sqm(TX),

Θq(TX|V ) = ⊗∞
n=1Λ−qn− 1

2
(V )⊗∞

m=1 Sqm(TX),

Θ−q(TX|V ) = ⊗∞
n=1Λqn− 1

2
(V )⊗∞

m=1 Sqm(TX),

Θ∗
q(TX|V ) = ⊗∞

n=1Λ−qn(V )⊗∞
m=1 Sqm(TX).

These Θ’s are called the Witten elements. Let p1(·)S1 denote the first
S1-equivariant Pontrjagin class and 4(V ) = 4−(V )⊕4+(V ) be the spinor
bundle of V , then we have the

Witten rigidity theorem for spin manifolds:
a) For a spin manifold X, ds⊗Θ′

q(TX), D⊗Θq(TX) and D⊗Θ−q(TX)
are rigid.
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b) If the action lifts to V and p1(V )S1 = p1(X)S1, then D ⊗ 4(V ) ⊗
Θ′

q(TX|V ), D ⊗ (4+(V )−4−(V ))⊗Θ∗
q(TX|V ), D ⊗Θq(TX|V ) and D ⊗

Θ−q(TX|V ) are rigid. 2

Witten also made conjectures for almost complex manifolds. Let X be
a smooth compact almost complex manifold of complex dimension k with
an S1-action. Let W be a complex vector bundle, i.e. a real vector bundle
with complex structure, of complex dimension l, on X. Let y = e2πiα be a
complex number and

Θα
q (TX) = ⊗∞

n=0Λ−y−1qnT ′′X ⊗∞
n=1 Λ−yqnT ′X ⊗∞

n=1 SqnT ′X ⊗∞
n=1 SqnT ′′X,

Θα
q (TX|W ) = ⊗∞

n=0Λ−y−1qnW ′′ ⊗∞
n=1 Λ−yqnW ′ ⊗∞

n=1 SqnT ′X ⊗∞
n=1 SqnT ′′X

where
TX ⊗C = T ′X ⊕ T ′′X, W ⊗C = W ′ ⊕W ′′

are the decompositions of the complexified bundles. Here T ′X is the holo-
morphic part and T ′′X denotes its complex dual. Also let K = detT ′X and
L = detW ′.

Assume that the S1-action lifts to W and preserves the complex structures
of X and W . Let ∂̄ denote the anti-holomorphic differential operator and N
be a positive integer, then we have the

Witten rigidity theorem for almost complex manifolds:
a) For an almost complex manifold X with c1(X) ≡ 0(modN), the opreator

∂̄ ⊗Θα
q (TX) is rigid for y = e2πiα an N-th root of unity. If c1(X) = 0, then

∂̄ ⊗Θα
q (TX) is rigid for any complex number y.

b) If p1(X)S1 = p1(W )S1, w2(X) = w2(W ) and c1(W ) ≡ 0(modN), then

∂̄⊗ (K−1⊗L)
1
2 ⊗Θα

q (TX|W ) is rigid for y = e2πiα an N-th root of unity. If

c1(W ) = 0, ∂̄ ⊗ (K−1 ⊗ L)
1
2 ⊗ Θα

q (TX|W ) is rigid for any complex number
y. 2

We actually have more rigidity theorems in this case, see the discussions
in Section 2, especially Proposition 2.1.

These theorems can be viewed as the loop space analogues of the rigidity
of the signature operator, the ∂̄-operator and the Euler characteristic opera-
tor on finite dimensional manifolds. They were first proved by Taubes, then
by Bott-Taubes [BT] for spin manifolds, by Hirzebruch [H] for almost com-
plex manifolds with c1 ≡ 0(modN) and by Krichever [Kr] for almost comlex
manifolds with c1 = 0. The proof for D ⊗ (4+(V ) −4−(V )) ⊗ Θ∗

q(TX|V )
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and ∂̄ ⊗ (K−1⊗L)
1
2 ⊗Θα

q (TX|W ) is only sketched by Witten and not given
by the above authors. The rigidity of those elliptic operators in Proposition
2.1 is first discussed here.

This paper is organized as follows. In Section 1 we prove the rigidity
theorems for spin manifolds. In Section 2 we prove the rigidity theorems for
almost complex manifolds. In Section 3 we discuss the virtual versions of
the above elliptic genera. Technically the virtual versions allow us to unify
the arguments in a very clean way and to degenerate elliptic genera to the
singular fibers of some elliptic modular surfaces. In these sections a key role
is played by the classical Jacobi theta-functions.

We construct elliptic genera of level 1 in Section 4, for both spin man-
ifolds and almost complex manifolds with c1 ≡ 0(modN). This is a try to
solve a problem of Landweber in [La1]. But these genera are not multi-
plicative. Some generalizations of the rigidity theorems and some general
remarks about elliptic genera are also given in this section. Then in Section
5 we extend the arguments to the general fixed point case by verifying the
transformation formulas needed in the above sections. In Section 6 we collect
some results relating the universal elliptic genera considered by Landweber-
Stong, Ochanine and Witten to some classical elliptic functions. We find
that the characteristic series of these universal elliptic genera have been very
well studied in pure elliptic function theory. Especially interesting is that
the characteristic series of the three universal elliptic genera are exactly the
three root functions in [DV]. We note that Bott-Taubes [BT] and Hirzebruch
[HBT] have also briefly discussed this point from slightly different point of
view. One can see from our discussion that the rigidity, the functional equa-
tions and many other properties of the three universal elliptic genera are
actually the consequences of their theta-function expressions.

As in [BT] and [H], we also use the Atiyah-Bott-Segal-Singer Lefschetz
fixed point formula, but replace the technical transfer argument by consid-
ering modular transformations. It is interesting to note that in our proof
we do not need to consider any local behavior of the exponents of the fixed
points which is essential to the argument in [BT], [H] and [Kr]. The topo-
logical conditions in the rigidity theorems are used to show that the elliptic
operators in there all satisfy some modular properties under the actions of
SL2(Z), which are much easier to verify. These modular properties are the
essential reasons for the rigidity. This observation makes it possible for us to
prove that, under some natural condition, the Dirac operator on loop space
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twisted by higher level loop group representations are also rigid. Note that
all of the elliptic operators discussed here, except those generalizations in
Section 5 which are some special higher level cases, are of level 1 (see [Liu1]).
This brings the characters of affine Lie algebras into play. In some sense our
proof gives some flavor of infinite dimensional geometry. More precisely we
can say that the geometry of loop space should be some kind of ‘modular
geometry’. We expect an explanation of our proof from physics, especially
from conformal field theory.

The author would like to thank Professors R. Bott, P. S. Landweber, H.
Miller, Y. Namikawa, J-P. Serre, K. Ueno, N. Warner and S. T. Yau for
their encouragement and help. Thanks are also due to the Johns Hopkins
University and JAMI for their hospitality during the preparation of this
paper. This work has been partially supported by DOE grant DE-FG02-
88ER-25065.

§1. The proof of the rigidity theorem for spin manifold
§2. Almost complex manifolds
§3 Virtual elliptic genera
§4 Generalizations of rigidity
§5 The general fixed point case
§6 Elliptic genera and elliptic functions
Appendix: The modular transformation of theta-functions

1 The Proof of the Rigidity Theorem for Spin

Manifolds

In this section, X is a compact smooth spin manifold of dimension 2k with
an S1-action and V is an equivariant spin bundle of rank 2l on it. We first
consider the isolated fixed point case. Let

θ3(v, τ) = c ·
∞∏

n=1

(1 + qn− 1
2 e2πiv)

∞∏
n=1

(1 + qn− 1
2 e−2πiv)

θ2(v, τ) = c ·
∞∏

n=1

(1− qn− 1
2 e2πiv)

∞∏
n=1

(1− qn− 1
2 e−2πiv)
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θ1(v, τ) = c · q
1
8 eπiv

∞∏
n=1

(1 + qne2πiv)
∞∏

n=0

(1 + qne−2πiv)

θ(v, τ) = c · q
1
8 2sinπv

∞∏
n=1

(1− qne2πiv)
∞∏

n=1

(1− qne−2πiv)

be the classical Jacobi theta-functions (see [Ch]), where c =
∏∞

n=1(1−qn) and
q = e2πiτ with τ ∈ H, the upper half plane. Let {mj}, as in the introduction,
be the exponents of TX and

Fds(t, τ) = i−k
∑

p

k∏
j=1

θ1(mjt, τ)

θ(mjt, τ)
,

FD(t, τ) = i−k
∑

p

k∏
j=1

θ2(mjt, τ)

θ(mjt, τ)
,

F−D(t, τ) = i−k
∑

p

k∏
j=1

θ3(mjt, τ)

θ(mjt, τ)
.

Then the Lefschetz fixed point formula of Atiyah-Bott-Segal-Singer tells
us that

Fds(t, τ) = the Lefschetz number of ds ⊗Θ′
q(TX),

FD(t, τ) = q−
k
8 · the Lefschetz number of D ⊗Θq(TX),

F−D(t, τ) = q−
k
8 · the Lefschetz number of D ⊗Θ−q(TX).

Let
V |p = L1 ⊕ · · · ⊕ Ll

be the corresponding equivariant decomposition of V restricted to p. We
denote the exponents of V at p by {nν}, i.e. g acts on Lν by e2πinνt. Let
us write the Lefschetz numbers of D ⊗4(V )⊗Θ′

q(TX|V ), D ⊗Θq(TX|V ),

D ⊗ Θ−q(TX|V ) and D ⊗ (4+(V ) −4−(V ))⊗ Θ∗
q(TX|V ) as q

k−l
8 F V

ds
(t, τ),

q
k
8 · F V

D (t, τ), q
k
8 · F V

−D(t, τ) and q
k−l
8 · F V

D∗(t, τ) respectively. Then we have

F V
ds

(t, τ) = i−k
∑

p

∏l
ν=1 θ1(nνt, τ)∏k
m=1 θ(mjt, τ)

,
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F V
D (t, τ) = i−k

∑
p

∏l
ν=1 θ2(nνt, τ)∏k
j=1 θ(mjt, τ)

,

F V
−D(t, τ) = i−k

∑
p

∏l
nu=1 θ3(nνt, τ)∏k
j=1 θ(mjt, τ)

,

F V
D∗(t, τ) = il−k

∑
p

∏l
ν=1 θ(nνt, τ)∏k
j=1 θ(mjt, τ)

.

Considered as functions of (t, τ), we can obviously extend these F ’s and
F V ’s to meromorphic functions on C×H. The Witten rigidity theorems are
equivalent to that these F ’s and F V ’s are independent of t. First we have
the following lemma,

Lemma 1.1: a) Fds(t, τ), FD(t, τ) and F−D(t, τ) are invariant under the
action

U : t → t + aτ + b

for a, b ∈ 2Z.
b) If p1(V )S1 = p1(X)S1, then F V

ds
(t, τ), F V

D (t, τ), F V
−D(t, τ) and F V

D∗(t, τ)
are invariant under U .

Proof: We have the following transformation formulas of theta-functions
( see [Ch] )

θ(t + 1, τ) = −θ(t, τ), θ(t + τ, τ) = −q−
1
2 e−2πitθ(t, τ);

θ1(t + 1, τ) = −θ1(t, τ), θ1(t + τ, τ) = q−
1
2 e−2πitθ1(t, τ);

θ2(t + 1, τ) = θ2(t, τ), θ2(t + τ, τ) = −q−
1
2 e−2πitθ2(t, τ);

θ3(t + 1, τ) = θ3(t, τ), θ3(t + τ, τ) = q−
1
2 e−2πitθ3(t, τ).

Using these formulas one can easily check that for (a, b) ∈ (2Z)2,

θν(mj(t + aτ + b), τ) = e−πim2
j (a2τ+2at)θν(mjt, τ)

for θν = θ, θ1, θ2, θ3 which implies a) of the lemma. For b) one only needs to
note that the condition p1(X)S1 = p1(V )S1 implies that∑

j

m2
j =

∑
ν

n2
ν

8



for every fixed point. In fact when localized at one fixed point p, p1(X)S1

and p1(V )S1 have expressions
∑

j m2
j · u2 and

∑
ν n2

ν · u2 respectively. Here u
is the generator of the equivariant cohomology of p, H∗

S1(p,Z). 2

This lemma tells us that for fixed τ these F ’s and F V ’s are meromorphic
functions on the torus C/2Z × 2Zτ . Therefore to get the rigidity we only
need to prove that they are holomorphic in t. We will actually prove that
they are holomorphic in (t, τ) on C×H.

Given

g =

(
a b
c d

)
∈ SL2(Z),

Define its modular transformation on C×H by

g(t, τ) = (
t

cτ + d
,
aτ + b

cτ + d
).

This defines a group action. Obviously two generators of SL2(Z),

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
act by

S(t, τ) = (
t

τ
,−1

τ
), T (t, τ) = (t, τ + 1).

Lemma 1.2: a) Under the actions of S and T , we have, up to certaim
multiples of 8-th root of unity,

Fds(
t
τ
,− 1

τ
) = FD(t, τ), Fds(t, τ + 1) = Fds(t, τ);

F−D( t
τ
,− 1

τ
) = F−D(t, τ), FD(t, τ + 1) = F−D(t, τ).

b) If p1(X)S1 = p1(V )S1,

F V
ds

( t
τ
,− 1

τ
) = τ

(l−k)
2 F V

D (t, τ), F V
ds

(t, τ + 1) = F V
D (t, τ);

F V
−D( t

τ
,− 1

τ
) = τ

l−k
2 F V

−D(t, τ), F V
D (t, τ + 1) = F V

−D(t, τ);

F V
D∗( t

τ
,− 1

τ
) = τ

(l−k)
2 F V

D∗(t, τ), F V
D∗(t, τ + 1) = F V

D∗(t, τ).
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Proof: We have the following transformation formulas of the Jacobi
theta-functions

θ(
t

τ
,−1

τ
) =

1

i

√
τ

i
e

πit2

τ θ(t, τ), θ(t, τ + 1) = e
πi
4 θ(t, τ);

θ1(
t

τ
,−1

τ
) =

√
τ

i
e

πit2

τ θ2(t, τ), θ1(t, τ + 1) = e
πi
4 θ1(t, τ);

θ2(
t

τ
,−1

τ
) =

√
τ

i
e

πit2

τ θ1(t, τ), θ2(t, τ + 1) = θ3(t, τ);

θ3(
t

τ
,−1

τ
) =

√
τ

i
e

πit2

τ θ3(t, τ), θ3(t, τ + 1) = θ2(t, τ).

See [Ch].
The lemma easily follows from these formulas. Note that for b) one needs

the condition
∑

j m2
j =

∑
ν n2

ν for each fixed point which is a consequence of
p1(V )S1 = p1(X)S1 as discussed above. 2

This lemma tells us that modulo some constants the two complex vector
spaces spanned by the F ’s and by the F V ’s are stable under the actions of
SL2(Z). These give rise to projective representations of SL2(Z).

The following lemma is actually Proposition 6.1 in [BT] and is proved by
an argument similar to the discussion of Example 2.

Lemma 1.3: If X and V are spin, then all of the F ’s and F V ’s above
are holomorphic in (t, τ) for t ∈ R and τ ∈ H. 2

Proof: Let z = e2πit. In the following we view these F ’s and F V ’s
as meromorphic functions of two complex variables (z, q). Note that their
possible poles on |z| = 1 are all independent of q.

By looking at each term in the summations of the fixed point formulas,
one can easily see that, in the domain

DN : |q|
1
N < |z| < |q|−

1
N , 0 < |q| < 1

where N = maxp,j|mj|, these F ’s and F V ’s have expansions of the form

q−
a
8

∞∑
n≥0

bn(z)qn

where a is an integer and {bn(z)} are rational functions of z which can only
have poles on the unit circle |z| = 1 ⊂ DN . On the other hand one can
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expand the Θ’s in the introduction into formal power series of the form∑
n≥0

Rnq
n

with Rn ∈ K(X). Apply Lefschetz fixed point formula to each Rn, we get
that, for |z| = 1, each bn(z) is the Lefschetz number of an elliptic operator.
This implies that

bn(z) =

N(n)∑
m=−N(n)

amnz
m,

for N(n) some positive integer depending on n. Since both sides are analytic
functions of z, this equality holds for any z ∈ C.

On the other hand, multiply these F ’s and F V ’s by

f(z) =
∏

p

k∏
j=1

(1− zmj),

we get holomorphic functions, therefore convergent power series expansions
of the form

q−
a
8

∞∑
n≥0

cn(z)qn

with {cn(z)} polynomial functions, in DN . Compare the above two expan-
sions, one gets that for each n the equality

cn(z) = f(z) · bn(z)

holds. So by the weierstrass preparation theorem or the weak Hilbert Null-
stellensatz (see Chapter 1 of [GH]), we deduce that

q−
a
8

∞∑
n≥0

bn(z)qn = q−
a
8

∞∑
n≥0

(
cn(z)

f(z)
)qn

is holomorphic in DN . Obviously the domain in Lemma 1.3 is contained in
DN . 2

For a different proof of this lemma, see [HBT], Appendix III. Also H.
Miller informed me of a proof by M. Ando. Recently S. Ochanine told me
that he has a different argument.
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For the rigidity of the F ’s, this lemma is the only essential place where
we need the spin condition on X, which ensures the existence of the Dirac
operator D, therefore the existence of D ⊗ Θq(TX) and D ⊗ Θ−q(TX), to
prove that these F ’s do not have poles for t ∈ R. While for the F V ’s, the
condition p1(V )S1 = p1(X)S1 is crucially needed in Lemmas 1.1 and 1.2. But
the spin condition on V is only essentially needed in Lemma 1.3.

Now we are ready to prove the Witten rigidity theorem for spin manifolds:
As easily seen from their expressions, the general polar divisors of the

F ’s and F V ’s in C×H are of the form t = n(cτ+d)
l

with n, c, d, l integers and
(c, d) = 1. We can always find integers a, b such that ad− bc = 1. Then take

g =

(
d −b
−c a

)
∈ SL2(Z) which induces the action:

F (g(t, τ)) = F (
t

−cτ + a
,

dτ − b

−cτ + a
),

where F is one of the F ’s or F V ’s. It is easy to see that, if t = n(cτ+d)
l

is the
polar divisor of F (t, τ), one polar divisor of F (g(t, τ)) is given by

t

−cτ + a
=

n

l
(c

dτ − b

−cτ + a
+ d)

which exactly gives t = n
l
. This contradicts Lemma 1.2 and Lemma 1.3.

Since by Lemma 1.2, up to some constant, F (g(t, τ)) is still one of the F ’s
or F V ’s, and by Lemma 1.3 all of them are holomorphic for t ∈ R.

This, together with the transformation formulas for general fixed point
case in Section 5, proves the Witten rigidity theorem for spin manifolds. 2

We remark that for the definition of D⊗4(V )⊗Θ′
q(TX|V ) we only need

w2(X) = w2(V ), but for its rigidity we need the condition w2(X) = w2(V ) =
0. The reason is that one needs this stronger condition to define its modular
transformations D ⊗ Θq(TX|V ) and D ⊗ Θ−q(TX|V ). For D ⊗ (4+(V ) −
4−(V )) ⊗ Θ∗

q(TX|V ), the condition w2(X) = w2(V ) is enough, since it is
invariant under the action of SL2(Z).

2 Almost Complex Manifolds

Let X be a compact smooth almost complex manifold with an S1-action and
W be a complex vector bundle on it with w2(X) = w2(W ). Note that this
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is equivalent to the condition c1(W ) ≡ c1(X)(mod2). Assume that the S1-
action lifts to W and preserves the complex structures of X and W . Let us
consider the isolated fixed point case first.

Let {mj} be the exponents of T ′X and {nν} be the exponents of W ′. Here
T ′X and W ′ are as in the introduction. For convenience we take α = 1

N
and

denote the Lefschetz numbers of ∂̄⊗Θα
q (TX) and ∂̄⊗(K−1⊗L)

1
2⊗Θα

q (TX|W )

by Fα(t, τ) and q
k−l
8 Fα

W (t, τ) respectively, then

Fα(t, τ) = y−
k
2

∑
p

k∏
j=1

θ(mjt + α, τ)

θ(mjt, τ)
,

Fα
W (t, τ) = y−

l
2

∑
p

∏l
ν=1 θ(nνt + α, τ)∏k

j=1 θ(mjt, τ)
.

Recall that dimX = k, dimW = l and y = e2πiα.
First note that, as in the spin case, p1(W )S1 = p1(X)S1 implies the equal-

ity
∑

ν n2
ν =

∑
j m2

j for each fixed point.
Lemma 2.1: Fα(t, τ) and, if p1(X)S1 = p1(W )S1 also Fα

W (t, τ) are in-
variant under the action of

t → t + aτ + b

for a, b ∈ NZ.
Proof: Using the transformation formulas of the Jacobi theta-functions

and the equality
∑

j m2
j =

∑
ν n2

ν for each fixed point, it is easy to prove that∏l
ν=1 θ(nν(t + τ) + α, τ)∏k

j=1 θ(mj(t + τ), τ)
= y−

∑
ν nν

∏l
ν=1 θ(nνt + α, τ)∏k

j=1 θ(mjt, τ)
.

Since by the assumption, yN = 1, one has Fα(t + Nτ, τ) = F (t, τ) and
Fα

W (t + Nτ, τ) = Fα
W (t, τ).

The proofs of Fα(t + 1, τ) = Fα(t, τ) and Fα
W (t + 1, τ) = Fα

W (t, τ) are
very simple. 2

Let us introduce two elements Θ
α(cτ+d)
q (TX) and Θ

α(cτ+d)
q (TX|W ) which

are the same as Θα
q (TX) and Θα

q (TX|W ), but replacing the parameter α by

13



α(cτ + d). Let

Fα(t, τ)c = the Lefschetz number of ∂̄ ⊗Kcα ⊗Θα(cτ+d)
q (TX);

Fα
W (t, τ)c = q

l−k
8 · the Lefschetz number of

∂̄ ⊗Lcα ⊗ (K−1 ⊗ L)
1
2 ⊗Θα(cτ+d)

q (TX|W ).

Recall that K = detT ′X, L = detW ′. It is easy to show that

Fα(t, τ)c = y−
k
2

∑
p

e2πicα
∑

j mjt

k∏
j=1

θ(mjt + α(cτ + d), τ)

θ(mjt, τ)
,

Fα
W (t, τ)c = y−

l
2

∑
p

e2πicα
∑

ν nνt

∏l
ν=1 θ(nνt + α(cτ + d), τ)∏k

j=1 θ(mjt, τ)
.

Lemma 2.2: Under the action of g =

(
a b
c d

)
∈ SL2(Z), we have

a)

Fα(g(t, τ)) = ekπic(cτ+d)α2 · Fα(t, τ)c;

b) if p1(X)S1 = p1(W )S1,

Fα
W (g(t, τ)) = elπic(cτ+d)α2 · Fα

W (t, τ)c.

Proof: Again by the transformation formulas of the theta-functions, we
have

θ(
mjt

cτ+d
+ α, aτ+b

cτ+d
)

θ(
mjt

cτ+d
, aτ+b

cτ+d
)

= e2mjπicαt+πic(cτ+d)α2 θ(mjt + α(cτ + d), τ)

θ(mjt, τ)
,

θ(t + τ, τ) = q−
1
2 e−2πitθ(t, τ),

θ(t + 1, τ) = −θ(t, τ).

This obviously gives a) of the lemma.
With the condition

∑
j m2

j =
∑

ν n2
ν for each fixed point, the case for

Fα
W (t, τ) is completely the same. 2

Since Fα(t, τ)c and Fα
W (t, τ)c are the Lefschetz numbers of some elliptic

operators, the same proof as that of Lemma 1.3 gives the following:

14



Lemma 2.3: a) If c1(X) ≡ 0(modN), then Fα(t, τ)c is holomorphic in
(t, τ) for t ∈ R and τ ∈ H.

b) If c1(W ) ≡ 0(modN) and w2(X) = w2(W ), then Fα
W (t, τ)c is holomor-

phic in the same domain. 2

For the rigidity of Fα(t, τ) this is the only essential place where we need
the topological condition c1(X) ≡ 0(modN) which insures the existence of
Kcα, therefore the holomorphicity of Fα(t, τ)c for t ∈ R. While for Fα

W (t, τ)
the condition on equivariant Pontrjagin classes are used in Lemmas 2.1 and
2.2. But the conditions on c1 and w2 are only essentially needed in Lemma
2.3.

It is easy to see that the factor enπic(cτ+d)α2
, where n = l or k, does not

affect the argument of the proof of the rigidity theorems for spin manifolds,
by the same method as in Section 1 we can prove the Witten rigidity theorems
for almost complex manifolds from the above lemmas.

The first terms of the formal power series expansions of Fα(t, τ)c and

Fα
W (t, τ)c in q are of the forms ∂̄⊗K

s
N and ∂̄⊗ (K−1⊗L)

1
2 ⊗L

s
N respectively

with −N < s < 1. So under the topological condition in the rigidity theorem,
we have the rigidity of

∂̄ ⊗K
s
N , ∂̄ ⊗ (K−1 ⊗ L)

1
2 ⊗ L

s
N

for −N < s < 1. The rigidity of ∂̄ ⊗K
s
N for −N < s < 1 was first proved

by Hattori ([Ha]).
Now let X and W be as above. Let us consider the following elements in

K(X)[[q
1
2 ]]⊗C:

Pα
q (TX) = ⊗∞

n=0Λy−1qnT ′′X ⊗∞
n=1 ΛyqnT ′X ⊗∞

n=1 SqnT ′X ⊗∞
n=1 SqnT ′′X,

Qα
q (TX) = ⊗∞

n=1Λ−y−1qn− 1
2
T ′′X ⊗∞

n=1 Λ
−yqn− 1

2
T ′X ⊗∞

n=1 SqnT ′X ⊗∞
n=1 SqnT ′′X,

Rα
q (TX) = ⊗∞

n=1Λy−1qn− 1
2
T ′′X ⊗∞

n=1 Λ
yqn− 1

2
T ′X ⊗∞

n=1 SqnT ′X ⊗∞
n=1 SqnT ′′X;

and more generally let

Pα
q (TX|W ) = ⊗∞

n=0Λy−1qnW ′′ ⊗∞
n=1 ΛyqnW ′ ⊗∞

n=1 SqnT ′X ⊗∞
n=1 SqnT ′′X,

Qα
q (TX|W ) = ⊗∞

n=1Λ−y−1qn− 1
2
W ′′ ⊗∞

n=1 Λ
−yqn− 1

2
W ′ ⊗∞

n=1 SqnT ′X ⊗∞
n=1 SqnT ′′X,

Rα
q (TX|W ) = ⊗∞

n=1Λy−1qn− 1
2
W ′′ ⊗∞

n=1 Λ
yqn− 1

2
W ′ ⊗∞

n=1 SqnT ′X ⊗∞
n=1 SqnT ′′X.
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Here still y = e2πiα is a complex number.
The following proposition can be viewed as a combination of the rigidity

theorems for spin manifolds and for almost complex manifolds.
Proposition 2.1: a) If w2(X) = 0 and c1(X) ≡ 0(modN), let D be the

Dirac operator on X, then ∂̄ ⊗ Pα
q (TX), D ⊗ Qα

q (TX) and D ⊗ Rα
q (TX)

are rigid for y an N-th root of unity. If c1(X) = 0, they are rigid for any
complex number y.

b) If w2(X) = w2(W ) = 0, c1(W ) ≡ 0(modN) and p1(W )S1 = p1(X)S1,

then ∂̄ ⊗ (K−1 ⊗ L)
1
2 ⊗ Pα

q (TX|W ), D ⊗ Qα
q (TX|W ) and D ⊗ Rα

q (TX|W )
are rigid for y an N-th root of unity. If c1(W ) = 0, they are rigid for any
complex number y.

Proof: We only sketch the proof of a). For convenience we still take
α = 1

N
. Let Pα(t, τ), Qα(t, τ) and Rα(t, τ) be the Lefschetz numbers of

∂̄ ⊗ Pα
q (TX), q

k
8 D ⊗Qα

q (TX) and q
k
8 D ⊗Rα

q (TX) respectively, then

Pα(t, τ) = y−
k
2

∑
p

k∏
j=1

θ1(mjt + α, τ)

θ(mjt, τ)
,

Qα(t, τ) =
∑

p

k∏
j=1

θ2(mjt + α, τ)

θ(mjt, τ)
,

Rα(t, τ) =
∑

p

k∏
j=1

θ3(mjt + α, τ)

θ(mjt, τ)
.

By using the transformation formulas of the theta-functions, one can easily
check that, under the assumptions of the proposition, the action of g =(

a b
c d

)
∈ SL2(Z), upto a complex constant, has the following effect:

Pα(g(t, τ)) = ekπic(cτ+d)α2 · Sα(t, τ)c

where Sα(t, τ)c is the Lefschetz number of one of the following three elliptic

operators: ∂̄⊗Kcα⊗P
α(cτ+d)
q (TX), D⊗Kcα⊗Q

α(cτ+d)
q (TX) and D⊗Kcα⊗

R
α(cτ+d)
q (TX). Similarly for Qα(t, τ) and Rα(t, τ). With this one can use the

same arguments as in the spin case to get the rigidity. 2

If c1 = 0, then K and L are trivial. Lemmas 2.1, 2.2 and 2.3 hold for any
positive integer N . So ∂̄ ⊗Θα

q (TX) and ∂̄ ⊗ (K−1 ⊗ L)
1
2 ⊗Θα

q (TX|W ) and
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their modular transformations are rigid for c1 = 0 manifolds or bundles and
any positive integer N , or equivalently for any root of unity y. Since roots of
unity are dense in the unit circle, we get that the rigidity theorem holds for
any complex number y in the unit circle, therefore for any complex number,
since Fα and Fα

W are analytic functions of y. We omit the discussion of the
c1 = 0 cases in Proposition 2.1.

3 Virtual Elliptic Genera

In this section we consider the virtual versions of the elliptic operators in
the Witten rigidity theorems. We will see that all of the Lefschetz numbers
in this section satisfy transformation formulas of the same type. Also note
that in Sections 1 and 2 we have to multiply the Lefschetz numbers by some
‘anomaly factors’, i.e. some rational powers of q, to get modularity. All these
anomaly factors will disappear here. From the point of view of modularity,
virtual elliptic genera are much more natural than their originals. But we
can not see how to derive them directly from the geometry of loop spaces.
A natural derivation may not need the regularization proceedure by zeta-
function.

Let X and V be as before, i.e. X is a spin manifold with an S1-action
and V is an equivariant vector bundle with structure group Spin(2l). Assume
p1(V )S1 = p1(X)S1 . Let

Θ′
q(TX)v = ⊗∞

n=1Λqn(TX − dimX)⊗∞
m=1 Sqm(TX − dimX),

Θq(TX)v = ⊗∞
n=1Λ−qn− 1

2
(TX − dimX)⊗∞

m=1 Sqm(TX − dimX),

Θ−q(TX)v = ⊗∞
n=1Λqn− 1

2
(TX − dimX)⊗∞

m=1 Sqm(TX − dimX);

and more generally let

Θ′
q(TX|V )v = ⊗∞

n=1Λqn(V − dimV )⊗∞
m=1 Sqm(TX − dimX),

Θq(TX|V )v = ⊗∞
n=1Λ−qn− 1

2
(V − dimV )⊗∞

m=1 Sqm(TX − dimX),

Θ−q(TX|V )v = ⊗∞
n=1Λqn− 1

2
(V − dimV )⊗∞

m=1 Sqm(TX − dimX),

Θ∗
q(TX|V )v = ⊗∞

n=1Λ−qn(V − dimV )⊗∞
m=1 Sqm(TX − dimX).

These elements are obtained by simply replacing TX and V in the Witten
elements in the introduction by their virtual versions (TX − dimX) and
(V − dimV ) respectively.
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Let us denote the Lefsctetz numbers of 2−kds ⊗Θ′
q(TX)v, D ⊗Θq(TX)v

and D ⊗Θ−q(TX)v by Fds(t, τ)v, FD(t, τ)v and F−D(t, τ)v respectively.
Similarly let us denote the Lefschetz numbers of 2−lD⊗4(V )⊗Θ′

q(TX|V )v,
D⊗Θq(TX|V )v, D⊗Θ−q(TX|V )v and 2−lD⊗(4+(V )−4−(V ))⊗Θ∗

q(TX|V )v

by F V
ds

(t, τ)v, F V
D (t, τ)v, F V

−D(t, τ)v and F V
D∗(t, τ)v respectively. Then we have

Fds(t, τ)v = (2πi)−k
∑

p

θ′(0, τ)k

θ1(0, τ)k

k∏
j=1

θ1(mjt, τ)

θ(mjt, τ)
,

FD(t, τ)v = (2πi)−k
∑

p

θ′(0, τ)k

θ2(0, τ)k

k∏
j=1

θ2(mjt, τ)

θ(mjt, τ)
,

F−D(t, τ)v = (2πi)−k
∑

p

θ′(0, τ)k

θ3(0, τ)k

k∏
j=1

θ3(mjt, τ)

θ(mjt, τ)

where

θ′(0, τ) =
∂

∂t
θ(t, τ)|t=0, θµ(0, τ) = θµ(t, τ)|t=0;

and

F V
ds

(t, τ)v = (2πi)−k
∑

p

θ′(0, τ)k

θ1(0, τ)l

∏l
ν=1 θ1(nνt, τ)∏k
j=1 θ(mjt, τ)

,

F V
D (t, τ)v = (2πi)−k

∑
p

θ′(0, τ)k

θ2(0, τ)l

∏l
ν=1 θ2(nνt, τ)∏k
j=1 θ(mjt, τ)

,

F V
−D(t, τ)v = (2πi)−k

∑
p

θ′(0, τ)k

θ3(0, τ)l

∏l
ν=1 θ3(nνt, τ)∏k
j=1 θ(mjt, τ)

,

F V
D∗(t, τ)v = (2πi)l−k

∑
p

θ′(0, τ)k−l

∏l
ν=1 θ(nνt, τ)∏k
j=1 θ(mjt, τ)

.

As can be easily seen, the Fv’s and F V
v ’s are exactly the normalizations at

t = 0 of the corresponding F ’s and F V ’s.
The following lemma is a simple corollary of the transformation formulas

of the theta-functions.
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Lemma 3.1: a) Under the actions of S and T , we have

Fds(
t
τ
,− 1

τ
)v = τ kFD(t, τ)v, Fds(t, τ + 1)v = Fds(t, τ)v;

F−D( t
τ
,− 1

τ
)v = τ kF−D(t, τ)v, FD(t, τ + 1)v = F−D(t, τ)v.

b) If p1(X)S1 = p1(V )S1, then

F V
ds

( t
τ
,− 1

τ
)v = τ kF V

D (t, τ)v, F V
ds

(t, τ + 1)v = F V
ds

(t, τ)v;

F V
−D( t

τ
,− 1

τ
)v = τ kF V

−D(t, τ)v, F V
D (t, τ + 1) = F V

−D(t, τ);

F V
D∗( t

τ
,− 1

τ
)v = τ k−lF V

D∗(t, τ)v, F V
D∗(τ, τ + 1)v = F V

D∗(t, τ)v.

2

Now we discuss the almost complex case. Let W and X be as in Section
2 and

Θα
q (TX)v = ⊗∞

n=0Λ−y−1qn(T ′′X − dimX)⊗∞
n=1 Λ−yqn(T ′X − dimX)

⊗∞
n=1 Sqn(T ′X − dimX)⊗∞

n=1 Sqn(T ′′X − dimX);

Θα
q (TX|W )v = ⊗∞

n=0Λ−y−1qn(W ′′ − dimW )⊗∞
n=1 Λ−yqn(W ′ − dimW )

⊗∞
n=1 Sqn(T ′X − dimX)⊗∞

n=1 Sqn(T ′′X − dimX).

These two elements are obtained by simply replacing T ′X, T ′′X and W ′,
W ′′ by their virtual versions in Θα(TX) and Θα(TX|W ). Let Fα(t, τ)v

and Fα
W (t, τ)v be the corresponding Lefschetz numbers of ∂̄ ⊗Θα

q (TX)v and

∂̄ ⊗ (K−1 ⊗ L)
1
2 ⊗Θα

q (TX|W )v respectively. Then we have

Fα(t, τ)v = (2πi)−k
∑

p

θ′(0, τ)k

θ(α, τ)k

k∏
j=1

θ(mjt + α, τ)

θ(mjt, τ)
,

Fα
W (t, τ)v = (πi)−k

∑
p

θ′(0, τ)k

θ(α, τ)l

∏l
ν=1 θ(nνt + α, τ)∏

j θ(mjt, τ)
.

It is easy to see that Fα(t, τ)v and Fα
W (t, τ)v are also the normalizations

of Fα(t, τ) and Fα
W (t, τ) at t = 0.

Let Fα(t, τ)c
v and Fα

W (t, τ)c
v be the corresponding virtual versions of Fα(t, τ)c

and Fα
W (t, τ)c in last section, then it is not difficult to see that
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Fα(t, τ)c
v = (2πi)−k

∑
p

e2πicα
∑

mjt θ′(0, τ)k

θ(α(cτ + d), τ)k

k∏
j=1

θ(mjt + α(cτ + d), τ)

θ(mjt, τ)
,

Fα
W (t, τ)c

v = (2πi)−k
∑

p

e2πicα
∑

nνt θ′(0, τ)k

θ(α(cτ + d), τ)l

∏l
ν=1 θ(nνt + α(cτ + d), τ)∏k

j=1 θ(mjt, τ)
.

Lemma 3.2: Under the action of g =

(
a b
c d

)
∈ SL2(Z), we have

a)
Fα(g(t, τ))v = (cτ + d)k · Fα(t, τ)c

v;

b) if p1(X)S1 = p1(W )S1, then

Fα
W (g(t, τ))v = (cτ + d)k · Fα

W (t, τ)c
v.

Proof: One only needs to note that

θ(α,
aτ + b

cτ + d
) = χ(g)

1√
cτ + d

eπicα2(cτ+d)θ(α(cτ + d), τ),

θ′(0,
aτ + b

cτ + d
) = χ(g)(cτ + d)

3
2 θ′(0, τ).

Here χ(g) is a root of unity. The unwanted factors exactly cancel each other.
2

It is interesting to note that here we do not need anomaly factors for the
modularity. Lemmas 3.1 and 3.2 tell us that all of the functions considered
here satisfy transformation formulas of the same type. All of them are ac-
tually Jacobi forms of weight k and index 0 over some modular groups. See
[EZ].

Obviously Lemmas 1.3 and 2.3 still hold for the virtual versions. There-
fore the method in Section 1 tells us that Lemmas 1.3 and 3.1 imply the
rigidity theorems for spin manifolds; Lemmas 2.3 and 3.2 imply the rigid-
ity theorems for almost complex manifolds. The virtual versions for the
c1(X) = 0 case are contained in the almost complex case as we have seen in
last section. we leave the discussions of the virtual versions of Proposition
2.1 to the reader.

20



4 Generalizations of Rigidity

In this section we first give two examples of elliptic genera of level 1. Here
by level 1, without confusing with the level of loop group representations, we
mean their invariance under the full modular group SL2(Z). Then we give
some more general rigidity theorems by using theta-functions.

Example 4.1: This is an elliptic genus of level 1 for spin manifolds. Let
X be a compact smooth spin manifold of dimension 2k. Consider

D ⊗ (4(X)⊗Θ′
q(TX)v + 2kΘq(TX)v + 2kΘ−q(TX)v).

Its index can be computed by Atiyah-Singer index formula and is the integral
over X of the following cohomology class:

(
k∏

j=1

2xj)(
θ′(0, τ)k

θ1(0, τ)k

k∏
j=1

θ1(xj, τ)

θ(xj, τ)
+

θ′(0, τ)k

θ2(0, τ)k

k∏
j=1

θ2(xj, τ)

θ(xj, τ)
+

θ′(0, τ)k

θ3(0, τ)k

k∏
j=1

θ3(xj, τ)

θ(xj, τ)
)

where {±2πixj} are the formal Chern roots of TX ⊗C. The transformation
formulas of theta-functions immediately give its modular property under the
action of SL2(Z).

Example 4.2: This is an elliptic genus of level 1 for almost complex
manifold with c1 ≡ 0(modN). Let X be a compact almost complex manifold
with c1(X) ≡ 0(modN). Let α = 1

N
and consider

∂̄ ⊗ (
∑

g

Kcα ⊗Θα(cτ+d)
q (TX)v)

where the summation is for g =

(
a b
c d

)
∈ SL2(Z)/Γ1(N). Let {2πixj} be

the formal Chern roots of TX ′. Then the index of this operator is given by
the integral of the following cohomology class over X:

(
k∏

j=1

2ixj)(
∑

g

e2cαπi
∑

xj
θ′(0, τ)k

θ(α(cτ + d), τ)k

k∏
j=1

θ(xj + α(cτ + d), τ)

θ(xj, τ)
).

One can also check the invariance of this elliptic genus under the action of
SL2(Z) by using the transformation formulas of theta-functions. In fact for
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both examples one only needs to verify their transformations under S and
T . This is easy. Example 4.2 is more interesting for SU -manifolds.

An interesting problem is to study the elliptic cohomology associated to
these two elliptic genera. Also we would like to know their characteristic
series.

Our method actually gives more general rigidity theorems. Roughly
speaking we can prove that, under a natural assumption, the Dirac oper-
ator on loop spaces twisted by higher level loop group representations of
positive energy is rigid. The Witten rigidity theorems are the special cases
of level 1 representations. We only sketch two generalizations of the Wit-
ten rigidity theorems here. These can be viewed as special cases of higher
level rigidity theorems. The detailed proofs and other generalizations are
discussed in [Liu1].

Let us first consider spin manifold case. Let X be a compact smooth
spin manifold of dimension 2k with an S1-action and V be an equivariant
spin vector bundle of dimension 2l on it. We define the following elements
in K(X)[[q

1
2 ]]:

Aq(V ) = 4(V )⊗⊗∞
n=1Λqn(V − dimV ),

Bq(V ) = ⊗∞
n=1Λ−qn− 1

2
(V − dimV ),

Cq(V ) = ⊗∞
n=1Λqn− 1

2
(V − dimV ).

These three elements are the ‘twisting’ parts of Θ′
q(TX|V )v, Θq(TX|V )v and

Θ−q(TX|V )v respectively.
Generalization of the Witten rigidity theorem for spin mani-

folds: For three non-negative integers a, b, c, assume that the S1-action lifts
to V and (a + b + c)p1(V )S1 = p1(X)S1, then

D ⊗⊗∞
m=1Sqm(TX − dimX)⊗ Aq(V )⊗a ⊗Bq(V )⊗b ⊗ Cq(V )⊗c

is rigid. 2

In fact one can write down the Lefschetz number of this operator which
we denote by F V

abc(t, τ) in terms of the theta-functions:

F V
abc(t, τ) = 2al(2πi)−k

∑
p

(
k∏

j=1

θ′(0, τ)

θ(mjt, τ)
)·(

l∏
ν=1

θ1(nνt, τ)aθ2(nνt, τ)bθ3(nνt, τ)c

θ1(0, τ)aθ2(0, τ)bθ3(0, τ)c
).
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Using the condition (a + b + c)p1(V )S1 = p1(X)S1 which implies the equality
(a + b + c)

∑
ν n2

ν =
∑

j m2
j for each fixed point, one can prove that, under

the action of S and T , we have

S : F V
abc(t, τ) → τ kF V

bac(t, τ),

T : F V
abc(t, τ) → F V

acb(t, τ).

By our proof of the Witten rigidity theorems in Section 1, one knows that
this is actually enough for the rigidity.

It is interesting to note that, when two of the three integers a, b, c are
zero, the above generalization follows from the Witten rigidity theorem in
Section 1. In fact

Aq(⊕aV ) = Aq(V )⊗a, p1(X)S1 = a · p1(V )S1 = p1(⊕aV )S1 .

Similarly for Bq(V ), Cq(V ). As an interesting corollary we get the following:
Corollary 5.1: Assume that p1(X)S1 = a·p1(V )S1 for some non-negative

integer a, then D ⊗4(V )⊗r is rigid for any non-negative integer r ≤ a. 2

If p1(X) = 0, we can get another level 1 elliptic genus which is the index of

D ⊗⊗∞
m=1Sqm(TX − dimX)⊗ Aq(TX)⊗Bq(TX)⊗ Cq(TX).

One can get similar generalization of the rigidity theorem for almost com-
plex manifolds by taking tensor product. Let X and W be as in Section 2
and define

Dα
q (W ) = ⊗∞

n=0Λ−y−1qnW ′′ ⊗∞
n=1 Λ−yqnW ′

with y = e2πiα. Assume c1(W ) ≡ 0(modN) for some positive integer N and
let αi = i

N
. Then we have

Generalization of the Witten rigidity theorem for almost com-
plex manifolds I: Assume c1(W ) ≡ 0(modN), w2(X) = w2(W ) = 0 and
p1(X)S1 = mp1(W )S1 for some integer m. Then

D ⊗ L
m
2 ⊗∞

n=1 SqnT ′X ⊗∞
n=1 SqnT ′′X ⊗D

αi1
q (W )⊗ · · · ⊗Dαim

q (W )

is rigid. 2

Here {ij} is a set of integers with 0 ≤ ij < N and D is the Dirac operator

on X which exists by the assumption w2(X) = 0. In fact D = ∂̄ ⊗K− 1
2 . If

m is even we do not need the condition w2(W ) = 0.
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For c, d two integers which are prime to each other, let

Ecα
q (W ) = ⊗∞

n=0Λ−y−1
c qnW ′′ ⊗∞

n=1 Λ−ycqnW ′

with yc = e2πiα(cτ+d) and α = 1
N

. Then
Generalization of the Witten rigidity theorem for almost com-

plex manifolds II: Under the same assumptions as in the generalization
I

D ⊗ L
m
2

+α
∑m

j=1 cj ⊗∞
n=1 SqnT ′X ⊗∞

n=1 SqnT ′′X ⊗ Ec1α
q (W )⊗ · · · ⊗ Ecmα

q (W )

is rigid. 2

Here {cj, dj} are integers which satisfy (cj, dj) = 1. Once one writes
down the Lefschetz numbers of the above elliptic operators, their rigidity
immediately follows from the transformation formulas of theta-functions and
the same arguments as in Section 1.

Let F (t, τ) be the Lefschetz number of one of the elliptic operators in the
above sections. Our proof of the rigidity theorems can be summarized into
the following two steps:

(1). F (t, τ) is doubly periodic. This needs the action group to be com-
pact such that the exponents are integers. Here also comes into play of the
condition on equivariant Pontrjagin classes.

(2). Up to some factors independent of t, any modular transformation of
F (t, τ) is still the Lefschetz number of some elliptic operators. This needs the
condition on equivariant Pontrjagin classes to cancel some unwanted factors
and the spin conditions on manifolds and vector bundles to get the elliptic
operators.

We call (2) the modular invariance. It naturally finds its home in the
representation theory of loop groups and affine Lie algebras.

An interesting example is the non-spin manifold CP 2 on which Fds(t, τ)
is perfectly well-defined as the Lefschetz number of an elliptic operator. But
FD(t, τ) can only be defined formally, since the Dirac operator does not exist.
It is easy to see that FD(t, τ) has a polar divisor t = 1. Since

FD(
t

τ
,−1

τ
) = Fds(t, τ),

our argument tells us that Fds(t, τ) should have t = τ as a polar divisor. This
is the case as one can directly verify [BT].
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Now we give some general remarks about elliptic genera. The indices of
the three elliptic operators ds⊗Θ′

q(TX)v, D⊗Θq(TX)v and D⊗Θ−q(TX)v

are called the universal elliptic genera for spin manifolds. There are some
equivalent characterizations of them by functional equations, by multiplica-
tivity for spin fibrations and by rigidity for S1-action in [Se] and [O]. See the
appendix for the discussions of their functional equations.

(1) From the appendix, we see that the modular invariance is implicit
in the functional equations of the three universal elliptic genera. So we can
say that their rigidity is intrinsically contained in their functional equations.
In fact once we write down the characteristic series of these three universal
elliptic genera, their rigidity, functional equations and other properties are
consequences.

(2) Since the characteristic series of the universal elliptic genera are ratios
of theta-functions of the form

θj(u, τ)

θ(u, τ)

θ′(0, τ)

θj(0, τ)

for j = 1, 2, 3. One would like to ask whether other ratios of these theta-
functions, for example

θ(u, τ)

θj(u, τ)

θj(0, τ)

θ′(0, τ)
,

also give characteristic series of some rigid elliptic genera. This is not true.
The trouble is that one can not define 4(X)−1 geometrically in KS1(X), the
equivariant K-group of X. Therefore one can not cancel poles on the unit
circle. We do not pursue this point here. One can also see the non-rigidity by
looking at the functional equations of these ‘new’ ratios. The logarithms of
their genera do not satisfy the standard functional equation of elliptic genera,

y2 = 1− 2δx2 + εx4

with δ, ε certain modular forms. But we note that they do satisfy some
quartic equations of the form

y2 = x4 − 2αx2 + β

with α, β some non-trivial modular forms. See the appendix.
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5 The General Fixed Point Case

In this section, we extend all of the above discussions to the general fixed
point case. Obviously we only need to verify those transformation formulas
used in the proofs of the rigidity theorems.

We only consider the spin case and the transformation formulas between
Fds(t, τ) and FD(t, τ). We leave the other cases, which are completely the
same, to the interested reader.

Let {Xα} be the fixed submanifolds of the circle action and

TX|Xα = E1 ⊕ · · · ⊕ Eh ⊕ TXα

be the equivariant decomposition with respect to the S1-action. We denote
the Chern root of Eγ by 2πixγ and the Chern roots of TXα⊗C by {±2πiyj}.
Assume that g acts on Eγ by e2πimγt. Then the Lefschetz number of ds ⊗
Θ′

q(TX) is

Fds(t, τ) =
∑
Xα

(
kα∏
j=1

(2πiyjF1(yj, τ))(
h∏

γ=1

F1(xγ + mγt, τ))[Xα]

where

F1(x, τ) = i−1 θ1(x, τ)

θ(x, τ)

and 2kα is the dimension of Xα. The Lefschetz number of q−
k
8 D ⊗ Θq(TX)

is

FD(t, τ) =
∑
Xα

(
kα∏
j=1

(2πiyjF2(yj, τ))(
h∏

γ=1

(F2(xγ + mγt, τ))[Xα]

where

F2(x, τ) = i−1 θ2(x, τ)

θ(x, τ)
.

For simplicity we only check the action of S, the general case is only
notationally more complicated. We have

Fds(
t

τ
,−1

τ
) =

∑
Xα

(
kα∏
j=1

(2πiyjF1(yj,−
1

τ
))(

h∏
γ=1

F1(xγ +
mγt

τ
,−1

τ
))[Xα]
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= (−i)k
∑
Xα

(
kα∏
j=1

(2πiyjF2(τyj, τ))(
h∏

γ=1

F2(τxγ + mγt, τ))[Xα].

But

(
kα∏
j=1

(yjF2(τyj, τ))(
h∏

γ=1

F2(τxγ + mγt, τ))[Xα]

= (
kα∏
j=1

(yjF2(yj, τ))(
h∏

γ=1

F2(xγ + mγt, τ))[Xα]

which can be easily verified by looking at the kα-th homogeneous terms of
the polynomials in x’s and y’s on both sides. Here note that, for the F V ’s,
one needs to use the condition on equivariant Pontrjagin classes to cancel
the unwanted factors. Therefore

Fds(
t

τ
,−1

τ
) = (−i)kFD(t, τ)

as in the isolated fixed point case. This transformation formula can also be
used to complete the argument in [BT] to prove the rigidity of D⊗Θq(TX)
from the rigidity of ds ⊗Θ′

q(TX) in general.

6 Elliptic Genera and Elliptic Modular Func-

tions

In this section we collect some formulas relating the universal elliptic genera
to classical elliptic functions. It is interesting to note that the characteristic
series of the three universal elliptic genera discussed by Witten in [W] are
exactly those ‘root functions’ discussed in detail in [DV].

The proofs of the formulas in this section can either be obtained by di-
rectly comparing polar divisors or be found in [DV]. We content ourselves
with only giving formulas.

Let θ(v, τ), θ1(v, τ), θ2(v, τ) and θ3(v, τ) be the Jacobi theta-functions as
in Section 1. For convenience we will use the variable u = πv and still write
them as θ(u, τ), θ1(u, τ), θ2(u, τ) and θ3(u, τ). The purpose of this change
is to simplify the notations below, so that we need not to keep track of the
factor π in the discussions.
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Let Ω be the lattice generated by (π, πτ), Ω1 by (π, 2πτ), Ω2 by (2π, πτ)
and Ω3 by (π − πτ, π + πτ). Let P(u), σ(u) and ζ(u) be the Weirstrass P-
function, sigma-function and zeta-function associated to the lattice 2Ω. We
start from the Weirstrass parametrization of the elliptic curve

P′(u)2 = 4P(u)3 − g1P− g3

= 4(P(u)− e1)(P(u)− e2)(P(u)− e3).

By looking at their poles and zeroes, one finds that P(u)− ej for j = 1, 2, 3
have well-defined square roots on the whole u-plane. Define fj(u) such that

fj(u)2 = P(u)− ej.

Then each fj(u) is an elliptic function with period lattice 2Ωj. f1(u), f2(u), f3(u)
are called the root functions in [DV]. One obviously has

f 2
k (u)− f 2

j (u) = ej − ek.

Putting P(u) = fj(u)2 + ej into the Weirstrass equation we get

(2fl(u)f ′l (u))2 = 4f 2
1 (u)f 2

2 (u)f 2
3 (u)

or
f ′l (u) = −fj(u)fk(u)

with l, j, k = 1, 2, 3.
Let us write θj = θj(0, τ) for short. Then one has

e3 − e2 = θ4
1, e1 − e3 = θ4

2, e1 − e2 = θ4
3.

See [DV], p 176.
We denote the characteristic series of ds ⊗ Θ′

q(TX)v, D ⊗ Θq(TX)v and
D ⊗Θ−q(TX)v by fds(x), fD(x) and f−D(x) respectively. Recall the indices
of these operators are the so-called universal elliptic genera. We have

fds(u) =
1

2i

θ1(u, τ)θ′(0, τ)

θ(u, τ)θ1(0, τ)
,

fD(u) =
1

2i

θ2(u, τ)θ′(0, τ)

θ(u, τ)θ2(0, τ)
,
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f−D(u) =
1

2i

θ3(u, τ)θ′(0, τ)

θ(u, τ)θ3(0, τ)
.

The following are a series of relations between these three elliptic genera and
classical elliptic functions:

(1)The relation between elliptic genera and root functions:

f1(u) = 2ifds(u), f2(u) = 2ifD(u), f3(u) = 2if−D(u).

(2) The functonal equations of elliptic genera:

f ′ds
(u)

2
= (fds(u)2 − 1

4
θ4
3)(fds(u)2 − 1

4
θ4
2),

f ′D(u)
2

= (fD(u)2 +
1

4
θ4
3)(fD(u)2 +

1

4
θ4
1),

f ′−D(u)
2

= (f−D(u)2 +
1

4
θ4
2)(f−D(u)2 − 1

4
θ4
1).

These formulas can be easily obtained by using the above derivative formulas
of fj(u).

Let g∗(x), where * denotes ds, D or −D, be a function such that

g−1
∗ (u) =

1

f∗(u)
.

g∗(x) is called the logarithm of the elliptic genus associated to f∗(x). In fact
it is quite easy to show that

g∗(u) =
∞∑

n=0

ϕ∗(CP 2n+1)

2n + 1
u2n+1

where ϕ∗ is the genus associated to uf∗(u).
¿From (2) one finds that G∗(u) = g−1

∗ (u) satisfy the following functional
equations

G′
ds

(u)
2

= (1− 1

4
θ4
3Gds(u)2)(1− 1

4
θ4
2Gds(u)2),

G′
D(u)

2
= (1 +

1

4
θ4
3GD(u)2)(1 +

1

4
θ4
1GD(u)2),

G′
−D(u)

2
= (1 +

1

4
θ4
2G−D(u)2)(1− 1

4
θ4
1G−D(u)2).
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As a simple fact in elementary function theory, one has
(3) The logarithms of elliptic genera:

gds(x) =

∫ x

0

du√
(1− 1

4
θ4
3u

2)(1− 1
4
θ4
2u

2)
,

gD(x) =

∫ x

0

du√
(1 + 1

4
θ4
3u

2)(1 + 1
4
θ4
1u

2)
,

g−D(x) =

∫ x

0

du√
(1 + 1

4
θ4
2u

2)(1− 1
4
θ4
1u

2)
.

Note that the quartic equation in the square root inside the integral of g∗(x)
is exactly the functional equation of g−1

∗ (u) = 1
f∗(u)

. One can compare these
with the standard equation of elliptic genera

y2 = 1− 2δx2 + εx4

as given by Ochanine to get the following formulas:

For ds ⊗Θ′
q(TX)v : δ =

1

8
(θ4

2 + θ4
3), ε =

1

16
θ4
2θ

4
3;

For D ⊗Θq(TX)v : δ = −1

8
(θ4

1 + θ4
3), ε =

1

16
θ4
1θ

4
3;

For D ⊗Θ−q(TX)v : δ =
1

8
(θ4

1 − θ4
2), ε = − 1

16
θ4
1θ

4
2.

These expressions of δ’s and ε’s are used in [Liu2] to derive a general mirac-
ulous cancellation formula.

In the following equations we will just use fj(u) for convenience. One can
easily get the corresponding formulas for f∗(u) by plugging in the factor 2i.

(4) Formal group laws of elliptic genera:

fl(u + v) =
fl(u)fj(v)fk(v)− fl(v)fj(u)fk(u)

fl(v)2 − fl(u)2

=
fl(v)f ′l (u)− fl(u)f ′l (v)

fl(v)2 − fl(u)2
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where ljk is any permutation of 123. For the proof of this formula, see [DV],
p 65 where the above formulas are derived from the formula for P(u + v).

(5) Elliptic genera and the Jacobi elliptic modular functions:
Let z = θ2

3u, then

cs(z) = θ−2
3 f1(u), ns(z) = θ−2

3 f2(u), ds(z) = θ−2
3 f3(u)

are three of the Jacobi elliptic modular functions. One has the following
relations

sn(z) =
1

ns(z)
, cn(z) =

cs(z)

ns(z)
, dn(z) =

ds(z)

ns(z)
.

We refer the detailed discussions of the Jacobi elliptic modular functions to
[DV] or [Ch]. See [DV] p 64-69 for the functional equations of these functions.

(6) Elliptic genera and sigma-functions:

fj(u) =
σj(u)

σ(u)
for j = 1, 2, 3

where

σj(u) =
eηjuσ(u + ωj)

σ(ωj)

with
ω1 = π, ω2 = πτ, ω3 = π(1 + τ)

and
ηj = ζ(u + 2ωj)− ζ(u).

Actually the above ej, for j = 1, 2, 3, is equal to P(ωj).
There are more formulas relating the universal elliptic genera to elliptic

functions. We would like to discuss the details in a subsequent paper.
Appendix: The modular transformation of theta-functions
There are many diffrent proofs for the modular transformation formulas

of the four Jacobi theta-functions in literature. Most of them use Poisson
summation formula or the heat equation satisfied by the theta-functions.
Here we want derive these transformation formulas directly from the Fourier
transform. This proof can also be found in the text books about elliptic
functions.
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We first look at θ3(v, τ) which has the following infinite sum expression,

θ3(v, τ) =
∞∑

n=−∞

eπiτn2+2πinv.

We will prove

θ3(v,−1

τ
) =

√
τ

i

∞∑
n=−∞

eπiτ(n+v)2

which, from replacing v by v
τ
, gives

θ3(
v

τ
,−1

τ
) =

√
τ

i
e

πiv2

τ θ3(v, τ).

Assume v is real, τ is purely imaginary, we compute the Fourier expansion

∞∑
n=−∞

eπiτ(n+v)2 =
∞∑

k=−∞

cke
2πikv.

By definition, we have

ck =

∫ 1

0

∞∑
n=−∞

eπiτ(n+v)2−2πikvdv

=

∫ ∞

−∞
eπiτv2−2πikvdv

= e−
πik2

τ

∫ ∞

−∞
eπiτ(v− k

τ
)2dv.

Setting τ = iy with y > 0 and

s =

√
τ

i
(v − k

τ
)

=
√

y(v +
ik

y
).

Then

ck = e−
πk2

y

√
1

y

∫ ∞+ ik√
y

−∞+ ik√
y

e−πs2

ds

= e−
πk2

y
1
√

y
.
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Then anlytic continuation finishes the proof. For other theta-functions, we
use the relations

θ2(v, τ) = θ3(v +
1

2
, τ),

θ1(v, τ) = θ3(v +
τ

2
, τ)e

πiτ
4 eπiv,

θ(v, τ) = θ3(v +
1

2
+

τ

2
, τ)e

πiτ
4 eπiv(−i).
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