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Abstract. We use the Atiyah-Bott-Berline-Vergne localization formula to

calculate the Hirzebruch χy genus χy(S[n]), where S[n] is the Hilbert schemes
of points of length n of a surface S. Combinatorial interpretation of the weights

of the fixed points of the natural torus action on (C2)[n] is used.

1. Introduction

1.1. Genera of complex manifolds. Let Ω = ΩU ⊗ Q be the complex bordism
ring with coefficients in Q. Given a ring R, a complex genera with values in R is a
ring homomorphism

φ : Ω → R.

Recall that according to Milnor [11] and Novikov, two complex manifolds are com-
plex cobordant if and only if they have the same Chern numbers. For a closed
complex manifold M , Hirzebruch [10] defined its χy genus by

χy(M) =
∑

p,q≥0

yp(−1)q dim Hq(M,ΛpT ∗M) =
∑
p≥0

ypχ(M,ΛpT ∗M).

Recall that for any holomorphic vector bundle V → M ,

χ(M,V ) =
∑
q≥0

(−1)q dim Hq(M,V ).

This can be extended to Ω to obtain a complex genus with values in C[y]. Dijkgraaf,
Moore, Verlinde and Verlinde [4] introduced a complex genus as follows. For any
vector bundle V over M , define the formal sums

ΛqV =
⊕
k≥0

qkΛkV, SqV =
⊕
k≥0

qkSkV,

where Λk and Sk denote the k-th exterior and symmetric product respectively. Let
dimC M = d, set

Eq,y = y−
d
2

⊗
n≥1

(
Λ−yqn−1TM ⊗ Λ−y−1qnT ∗M ⊗ SqnTM ⊗ SqnT ∗M

)
.

One can write
Eq,y =

⊕
m,l

qmylEm,l.

It is easy to see that Em,l is a holomorphic vector bundle of finite rank. Define

χ(M ; q, y) =
∑
m,l

qmylχ(M,Em,l).

1
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By Hirzebruch-Riemann-Roch theorem,

χ(M ; q, y) =
∫

M

ch(Eq,y)τ(M),

where τ(M) is the Todd class of M . Hence χ(M ; q, y) can be expressed in term of
Chern numbers of M , therefore it is a complex cobordism invariant. By multiplica-
tive properties of Λq and Sq, it is easy to see that χ(M ; q, y) is indeed a genus. It
is easy to see that

χ(M ; 0, y) = y−
d
2 χ−y(M).

1.2. A conjecture on Hilbert schemes of surfaces. Let S be a smooth al-
gebraic surface over C, denote by S[n] the Holbert scheme of zero dimensional
subscheme of length n. By a well-known result of Fogarty [7], S[n] is smooth and
projective of dimension 2n. Closely related to S[n] is the n-th symmetric product
S(n) which is the quotient of the Cartesian product Sn by the natural action of
permutation group on n objects. There is a morphism π : S[n] → S(n) which gives
a crepant resolution of S(n). String theory on orbifolds motivates a definition of
χ(S(n); q, y). By physical arguments, Dijkgraaf et al [4] showed that∑

n≥0

pnχ(M (n); q, y) =
∏

n>0,m≥0,l

1
(1− pnqmyl)c(nm,l)

where c(m, l) are given by

χ(M ; q, y) =
∑

m≥0,l

c(m, l)qmyl.

They conjecture that for a K3 surface or an abelian surface S, χ(S(n), q, y) =
χ(S[n]; q, y). Therefore, one is led to the following conjectured formula for algebraic
surfaces: ∑

n≥0

pnχ(S[n]; q, y) =
∏

n>0,m≥0,l

1
(1− pnqmyl)c(nm,l)

(1)

with c(m, l) given by

χ(M ; q, y) =
∑

m≥0,l

c(m, l)qmyl.

1.3. Reduction to CP2 and CP1 ×CP1. Following a recent paper by Ellingsrud,
Göttsche and Lehn [5], write

H(S) =
∑
n≥0

[S[n]]pn.

They have shown that the cobordism class [H(S)] ∈ Ω depends only on the complex
cobordism class of S ∈ Ω. They also have shown that if [S] = a1[S1] + a2[S2] for
some smooth algebraic surfaces S, S1, S2 and rational numbers aa and a2, then we
have

H(S) = H(S1)a1H(S2)a2 .

Milnor [11] showed that Ω is a polynomial algebra freely generated by the cobordism
classes [CPn] for positive integers n. Hence for any surface S,

[S] = a[CP2] + b[CP1 × CP1]
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for some rational number a and b. As a result, for any genus φ : Ω → R, we have

φ(H(S)) = φ(H(CP2))aφ(H(CP1 × CP1))b.(2)

In particular, to prove (1), it suffices to prove it for CP2 and CP1 × CP1. As
explained in Zhou [12], when q = 0, (1) reduces to

χ−y(H(S)) = exp

∑
m≥0

χ−ym(S)
1− (yp)m

pm

m

 .(3)

This formula has been proved by Göttsche-Soeregel [8] and Cheah [3] by different
methods from algebraic geometry. Ellinsgrud et al gave a new proof using (2).
They made use of a result of Carrell-Lieberman [2] on the Hodge numbers of Kähler
manifolds which admit C∗-action with isolated fixed points.

1.4. Localization formula and combinatorics. The motivation of this paper is
to find a method to prove (3) which can be generalized to prove (1). The first named
author proposed to use the Atiyah-Bott-Berline-Vergne localization theorem, this
paper contains the details for the case of χy genera. The general case will appear
in a separate publication.

Haiman [9] has used localization theorem for the natural torus action on the
Hilbert schemes of CP2 to give a geometric interpreation of t, q-Catalan numbers.
Our calculations in this paper shares some similar feature with his. The interpreta-
tion of the weights in terms of Young diagrams greatly simplies the notations used
in the original version. A new feature is the use of limits which should correspond
to the geometric limits under the torus action.

2. Preliminaries

2.1. Localization of χy genus. For a closed complex manifold M ,

χ−y(M) =
∫

M

chΛ−y(T ∗M)T (M) =
∫

M

d∏
j=1

(1− ye−xj )
xj

1− e−xj
,

where T (M) denotes the Todd class of M , {x1, · · · , xd} denote the formal Chern
roots of TM . Assume that M admits a torus action with isolated fixed points
{F1, · · · , Fm}, and at Fi, the weights of the action are {wi,1, · · · , wi,d}. Then by
Atiyah-Bott-Berline-Vergne localization theorem [1], we have

χ−y(M) =
m∑

i=1

∏d
j=1(1− ye−wi,j ) wi,j

1−e−wi,j∏d
j=1 wi,j

=
m∑

i=1

d∏
j=1

1− ye−wi,j

1− e−wi,j
.(4)

Denote by χ−y(M)Fi
the contribution from Fi.

2.2. Partitions. For any natural number n, recall the set of partions of n is

P(n) = {(b0, b1, · · · , br) : b0 ≥ · · · ≥ br−1 > br = 0,
r∑

j=0

bj = n}.

Extend the definition to

P(0) = {(0)}.
For a partition P = (b0, b1, · · · , br) ∈ P(n), n > 0, set

r(P ) = r.
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Also set
r((0)) = 0.

There is a one-to-one correspondence between P(n) and the following set:

{(N1, N2, · · · ) ∈ Z∞ : Nm ≥ 0,
∑
m

mNm = n},

given by setting Nm(P ) to be the number of m’s in P ∈ P(n). Clearly,

r(P ) =
∑

n

Nm.

There is also a one-to-one correspondence between P(n) and the set of Young
diagrams with n boxes. Since there is no danger of confusion, the Young diagram
of a partion P will also be denoted by P . Denote by B(P ) the set of boxes in a
Young diagram P . Notice that the transpose of a Young diagram is also a Young
diagram, so one obtains an involution t : P(n) → P(n). Clearly r(P ) is the number
of rows of the Young diagram of P , and b0 = r(P t).

Given an box e in a Young diagram P , the number of boxes on the right of it is
called its arm, while the number of boxes below it is called its leg. Denote by a(e)
and l(e) the arm and the leg of e respectively. Notice that

card{e ∈ B(P ) : a(e) = 0} = r(P ).(5)

Introduce the following notation: for P ∈ P(n),

I(P ) = {(i, j, s)|1 ≤ i ≤ j, bj ≤ s ≤ bj−1 − 1}.

The set I(P ) is in one-to-one correspondence with the set of the boxes of the
transpose of Y (P ). Indeed, (i, j, s) ∈ I(P ) corresponds to the box at (s + 1, i). It
is easy to see that j − i is the arm of this box, while bi−1 − s− 1 is the leg.

2.3. Fixed points and weights of the Hilbert schemes of C2. There is a
natural T 2-action on C2:

(λ, µ) · (x, y) = (λx, µy),

for λ, µ ∈ C∗, (x, y) ∈ C2. The only fixed point of this action is (0, 0). There is
an induced action on (C2)[n]. According to Ellingsrud and Strømme [6], the fixed
points are in one-to-one correspondence with partitions P = (b0, b1, · · · , br) of n.
Furthermore, in the representation ring of (C∗)2,

T =
∑

(i,j,s)∈I(Pl)

(λi−j−1µbi−1−s−1 + λj−iµs−bi−1),(6)

Here we have abused the notation: λmµn means the one-dimensional representation
on which (λ, µ) acts as multiplication by λmµn. With the notation in §2.2, we
rewrite (6) as

T =
∑

e∈B(P t)

(λ−a(e)−1µl(e) + λa(e)µ−l(e)−1)).(7)

Note that such combinatorial interpretation of the weights has appeared in Haiman
[9]. Clearly, the above results still hold if λ and µ are two linearly independent
weights on T 2.
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3. Hirzebruch χy genera of Hilbert schemes of surfaces

3.1. Weights of the torus action on the Hilbert schemes of CP2. Consider
the T 2-action on CP2 given by

(t1, t2) · [z0 : z1 : z2] = [z0 : t1z1 : t2z2],(8)

where t1, t2 ∈ S1, [z0 : z1 : z2] ∈ CP2. Clearly the fixed points are x0 = [1 : 0 : 0],
x1 = [0 : 1 : 0] and x2 = [0 : 0 : 1]. For i = 0, 1, 2, let

Ui = {[z0 : z1 : z2] ∈ CP2 : zi 6= 0}.

Then Ui
∼= C2. Indeed, on U0, the isomorphism is given by x = z1

z0
, y = z2

z0
. The

action (8) corresponds on to the following action on C2:

(t1, t2) ·0 (x, y) = (t1x, t2y).(9)

Similarly, near x1 and x2, we get the following actions:

(t1, t2) ·1 (x, y) = (
1
t1

x,
t2
t1

y),(10)

(t1, t2) ·2 (x, y) = (
1
t2

x,
t1
t2

y).(11)

There is an induced T 2-action on the Hilbert scheme CP[n]
2 . We now recall the

description of its fixed point set by Ellingsrud and Strømme [6]. If Z ∈ CP[n]
2 is a

fixed point of this action, then the support of Z is contained in {x0, x1, x2}. Hence
we may write Z = Z0 ∪Z1 ∪Z2, where Zi is supported in Pi. Let ni be the length
of OZi

, then Zi can be regarded as a fixed point in U
[ni

i , hence it corresponds to a
partition Pi ∈ P(ni) by §2.3. Therefore the fixed point set on CP[n]

2 is in one-to-one
correspondence with the following set:

F(n) = {(P0, P1, P2) ∈ P(n0)× P(n1)× P(n2) : n0 + n1 + n2 = n}.

For each (P0, P1, P2) ∈ Fn, denote by FP0,P1,P2 the corresponding fixed point. It is
clear that a neighborhood of FP0,P1,P2 in CP[n]

2 can be identified with the product
of some neighborhoods of FPi in U

[ni]
i . Hence we have a decomposition

TFP0,P1,P2
CP[n]

2 =
2⊕

l=0

TFP0
U [nl]

nl
.

By §2.3 and (9) - (11), we have

TFP0
U [nl]

nl
=

∑
e∈E(P t

l )

(λ−a(e)−1
l µ

l(e)
l + λ

a(e)
l µ

−l(e)−1)
l ).(12)

where

λ0 = t1, µ0 = t2,(13)

λ1 = 1/t1, µ1 = t2/t1,(14)

λ2 = 1/t2, µ2 = t1/t2.(15)
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3.2. Application of the localization formula. By (4) and (7), we have

χ−y(CP[n]
2 )FP0,P1,P2

= χ
(0)
−y(P0)χ

(1)
−y(P1)χ

(2)
−y(P2),

where

χ
(l)
−y(Pl) =

∏
e∈B(P t

l )

1− yλ
a(e)+1
l µ

−l(e)
l

1− λ
a(e)+1
l µ

−l(e)
l

·
1− yλ

−a(e)
l µ

l(e)+1
l

1− λ
−a(e)
l µ

l(e)+1
l

.(16)

Now we have∑
n≥0

χ−y(CP[n]
2 )qn =

∑
n≥0

∑
(P0,P1,P2)∈F(n)

χ−y(CP[n]
2 )FP0,P1,P2

qn

=
∑
n≥0

∑
(P0,P1,P2)∈F(n)

χ
(0)
−y(P0)χ

(1)
−y(P1)χ

(2)
−y(P2)qn

=
2∏

l=0

∑
nl≥0

∑
Pl∈P(nl)

χ
(l)
−y(Pl)qnl

 .

I.e.,

∑
n≥0

χ−y(CP[n]
2 )qn =

2∏
l=0

∑
nl≥0

∑
Pl∈P(nl)

χ
(l)
−y(Pl)qnl

 .(17)

Notice that the left hand side does not depend on t1 and t2. As we will show below,
on the right hand side we can take the limits for t1 → 0 then t2 → 0, or we can
first let t1 →∞ then t2 →∞. So we have

∑
n≥0

χ−y(CP[n]
2 )pn =

2∏
l=0

∑
nl≥0

∑
Pl∈P(nl)

lim
t2→0

lim
t1→0

χ
(l)
−y(Pl)pnl


=

2∏
l=0

∑
nl≥0

∑
Pl∈P(nl)

lim
t2→∞

lim
t1→∞

χ
(l)
−y(Pl)pnl

 .

3.3. The l = 0 case. ¿From (16) and (13), for any P ∈ P(n) we have

χ
(0)
−y(P ) =

∏
e∈E(P t)

1− yt
a(e)+1
1 t

−l(e)
2

1− t
a(e)+1
1 t

−l(e)
2

· 1− yt
−a(e)
1 t

l(e)+1
2

1− t
−a(e)
1 t

l(e)+1
2

.

Since a(e) ≥ 0, it is straightforward to see that

lim
t1→0

1− yt
a(e)+1
1 t

−l(e)
2

1− t
a(e)+1
1 t

−l(e)
2

= 1,

lim
t1→∞

1− yt
a(e)+1
1 t

−l(e)
2

1− t
a(e)+1
1 t

−l(e)
2

= y.
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When a(e) > 0,

lim
t1→0

1− yt
−a(e)
1 t

l(e)+1
2

1− t
−a(e)
1 t

l(e)+1
2

= y;

lim
t1→∞

1− yt
−a(e)
1 t

l(e)+1
2

1− t
−a(e)
1 t

l(e)+1
2

= 1;

when a(e) = 0,

1− yt
−a(e)
1 t

l(e)+1
2

1− t
−a(e)
1 t

l(e)+1
2

=
1− yt

l(e)+1
2

1− t
l(e)+1
2

,

since l(e) ≥ 0, we have

lim
t2→0

lim
t1→0

1− yt
−a(e)
1 t

l(e)+1
2

1− t
−a(e)
1 t

l(e)+1
2

= 1;

lim
t2→∞

lim
t1→∞

1− yt
−a(e)
1 t

l(e)+1
2

1− t
−a(e)
1 t

l(e)+1
2

= y.

Counting terms with y as the double limits and use (5), we get

lim
t2→0

lim
t1→0

χ
(0)
−y(P ) = yn−r(P t),

lim
t2→∞

lim
t1→∞

χ
(0)
−y(P ) = yn+r(P t),

for all P ∈ P(n). To summarize, we get∑
P∈P(n)

lim
t1→0

lim
t0→0

χ
(1)
−y(P ) =

∑
P∈P(n)

yn−r(P t) =
∑

P∈P(n)

yn−r(P ),(18)

∑
P∈P(n)

lim
t1→∞

lim
t0→∞

χ
(1)
−y(P ) =

∑
P∈P(n)

yn+r(P t) =
∑

P∈P(n)

yn+r(P ).(19)

Remark 3.1. Furthermore, each term in the product which goes to 1 under the
double limit limt2→0 limt1→0 goes to y under the double limit limt2→∞ limt1→∞,
and vice versa. This still holds for l = 1 or 2.

3.4. The l = 2 case. Similarly, we have

χ
(2)
−y(P ) =

∏
e∈B(P t)

1− y( 1
t2

)a(e)+1( t1
t2

)−l(e)

1− ( 1
t2

)a(e)+1( t1
t2

)−l(e)
·
1− y( 1

t2
)−a(e)( t1

t2
)l(e)+1

1− ( 1
t2

)−a(e)( t1
t2

)l(e)+1
.

We have

lim
t1→0

1− y( 1
t2

)a(e)+1( t1
t2

)−l(e)

1− ( 1
t2

)a(e)+1( t1
t2

)−l(e)
=

{
y, l(e) > 0,
t
a(e)+1
2 −y

t
a(e)+1
2 −1

, l(e) = 0,

hence

lim
t2→0

lim
t1→0

1− y( 1
t2

)a(e)+1( t1
t2

)−l(e)

1− ( 1
t2

)a(e)+1( t1
t2

)−l(e)
= y,

and

lim
t1→0

1− y( 1
t2

)−a(e)( t1
t2

)l(e)+1

1− ( 1
t2

)−a(e)( t1
t2

)l(e)+1
= 1.
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By (5) we have ∑
P∈P(n)

lim
t1→0

lim
t0→0

χ
(2)
−y(P ) =

∑
P∈P(n)

yn.(20)

Similarly we have ∑
P∈P(n)

lim
t1→∞

lim
t0→∞

χ
(2)
−y(P ) =

∑
P∈P(n)

yn.(21)

3.5. The l = 1 case. For any P ∈ P(n), by (16) and (14), we have

χ
(0)
−y(P ) =

∏
e∈B(P t)

1− y( 1
t1

)a(e)+1( t2
t1

)−l(e)

1− ( 1
t1

)a(e)+1( t2
t1

)−l(e)
·
1− y( 1

t1
)−a(e)( t2

t1
)l(e)+1

1− ( 1
t1

)a(e)( t2
t1

)l(e)+1

=
∏

e∈B(P t)

1− yt
l(e)−a(e)−1
1 t

−l(e)
2

1− t
l(e)−a(e)−1
1 t

−l(e)
2

· 1− yt
a(e)−l(e)−1
1 t

l(e)+1
2

1− t
a(e)−l(e)−1
1 t

l(e)+1
2

.

We have

lim
t1→0

1− yt
l(e)−a(e)−1
1 t

−l(e)
2

1− t
l(e)−a(e)−1
1 t

−l(e)
2

=


y, a(e) + 1 > l(e),
t
l(e)
2 −y

t
l(e)
2 −1

, a(e) + 1 = l(e)(> 0),

1, a(e) + 1 < l(e),

hence

lim
t2→0

lim
t1→0

1− yt
l(e)−a(e)−1
1 t

−l(e)
2

1− t
l(e)−a(e)−1
1 t

−l(e)
2

=
{

y, a(e) + 1 ≥ l(e),
1, a(e) + 1 < l(e).

Similarly,

lim
t1→0

1− yt
a(e)−l(e)−1
1 t

l(e)+1
2

1− t
a(e)−l(e)−1
1 t

l(e)+1
2

=


1, a(e) > l(e) + 1,
1−yt

l(e)+1
2

1−t
l(e)+1
2

, a(e) = l(e) + 1,

y, a(e) < l(e) + 1,

and so

lim
t1→0

lim
t0→0

1− y( t1
t0

)a(e)( t2
t0

)−l(e)−1

1− ( t1
t0

)a(e)( t2
t0

)−l(e)−1
=
{

1, a(e) ≥ l(e) + 1,
y, a(e) < l(e) + 1.

Set

s(P ) = card{e ∈ E(P t) : l(e)− 1 ≤ a(e) ≤ l(e)}
= card{e ∈ E(P t) : a(e) ≤ l(e) ≤ a(e) + 1},

then it is clear that

lim
t1→0

lim
t0→0

χ
(0)
−y(P ) = yn−s(P ).

To summarize, we have∑
P∈P(N)

lim
t1→0

lim
t0→0

χ
(0)
−y(P ) =

∑
P∈P(n)

yn−s(P ).(22)

Similarly we have ∑
P∈P(n)

lim
t1→∞

lim
t0→∞

χ
(0)
−y(P ) =

∑
P∈P(N)

yn+s(P ).(23)
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3.6. Putting pieces together. Now we have∑
n≥0

pnχ−y(CP[n]
2 )

=

∑
n≥0

pn
∑

P∈P(n)

yn

 ·

∑
n≥0

pn
∑

P∈P(n)

yn+r(P )

 ·

∑
n≥0

pn
∑

P∈P(n)

yn−s(P )


=

∑
n≥0

pn
∑

P∈P(n)

yn

 ·

∑
n≥0

pn
∑

P∈P(n)

yn−r(P )

 ·

∑
n≥0

pn
∑

P∈P(n)

yn+s(P )

 .

Lemma 3.1. We have ∑
P∈P(n)

yr(P ) =
∑

P∈P(n)

ys(P ).

Proof. For n > 0, write

rn(y) =
∑

P∈P(n)

yr(P ), sn(y) =
∑

P∈P(n)

ys(P ).

Also write r0(y) = s0(y) = 1. Suppose that we have shown that rj(y) = sj(y) for
j = 1, · · · , n. ¿From the above formula we have∑

n≥0

(py)nrn(y) ·
∑
n≥0

(py)nsn(y−1) =
∑
n≥0

(py)nrn(y−1) ·
∑
n≥0

(py)nsn(y).

Comparing the coefficients of (py)n+1 one gets

rn+1(y) +
n∑

j=1

rj(y)sj(y−1) + sn+1(y−1) = rn+1(y−1) +
n∑

j=1

rj(y−1)sj(y) + sn+1(y).

By the induction hypothesis, one gets

rn+1(y) + sn+1(y−1) = rn+1(y−1) + sn+1(y).

Now rn+1(y) and sn+1 are polynomials in y, and rn+1 has no constant terms, so
we must have rn+1(y) = sn+1(y). The proof is complete. �

As a corallary, we have∑
n≥0

pnχ−y(CP[n]
2 )

=

∑
n≥0

pn
∑

P∈P(n)

yn

 ·

∑
n≥0

pn
∑

P∈P(n)

yn+r(P )

 ·

∑
n≥0

pn
∑

P∈P(n)

yn−r(P )


=

2∏
l=0

∑
n≥0

pn
∑

P∈P(n)

yn+(l−1)r(P )

 .
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On the other hand, we also have

exp

(∑
n>0

pn

n

χ−yn(CP2)
1− (yp)n

)
= exp

(∑
n>0

pn

n

1 + yn + y2n

1− (yp)n

)

= exp

∑
n>0

pn

n
(1 + yn + y2n)

∑
m≥0

(yp)nm


=

∏
m≥0

exp

(∑
n>0

1
n

((ympm+1)n + (ym+1pm+1)n + (ym+2pm+1)n)

)
=

∏
m≥0

exp
(
− ln(1− ympm+1)− ln(1− ym+1pm+1)− ln(1− ym+2pm+1)

)
=

∏
m≥0

1
(1− ympm+1)(1− ym+1pm+1)(1− ym+2pm+1)

=
∏
m≥1

1
(1− ym−1pm)(1− ymqm)(1− ym+1pm)

.

For l = 0, 1, 2,∏
m≥1

1
1− ym+l−1pm

=
∏
m≥1

∑
Nm≥0

(ym+l−1pm)Nm

=
∑
n≥0

∑
∑

mNm=n

y
∑

(mNm+(l−1)Nm)p
∑

mNm =
∑
n≥0

∑
∑

mNm=n

yn+(l−1)
∑

Nmpn

=
∑
n≥0

∑
P∈P(n)

yn+(l−1)r(P )pn,

and so ∑
n≥0

χ−y(CP[n]
2 )pn = exp

(∑
n>0

pn

n

χ−yn(CP2)
1− (yp)n

)
.

3.7. The case CP1 × CP1 case. Consider the following T 2-action on CP1 × CP1:

(t1, t2) · ([z0 : z1], [w0 : w1]) = ([z0 : t1z1], [w0 : t2w1]),

where t1, t2 ∈ C∗, [z0 : z1], [w0 : w1] ∈ CP1. It has four fixed points:

P00 = ([1 : 0], [1 : 0]), P01 = ([1 : 0], [0 : 1]),

P10 = ([0 : 1], [1 : 0]), P11 = ([0 : 1], [0 : 1]).

Similar to the discussion in §3.1, the fixed point set of the induced action on the n-
th Hilbert scheme of CP1×CP1 is in one-to-one correspondence with the following
set

{(P00, P01, P10, P11) ∈ P(n00)×P(n01)×P(n10)×P(n11) : n00+n01+n10+n11 = n}.

Furthermore the tangent space at the fixed point corresponding to the quadruple
of partitions (P00, P01, P10, P11) has the following decomposition:

T = T00 ⊕ T01 ⊕ T10 ⊕ T11,
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where in the representation ring of T 2,

Tab =
∑

e∈E(Pab)

(λ−a(e)−1
ab µ

l(e)
ab + λ

a(e)
ab µ

−l(e)−1
ab ),

where

λab = t
(−1)a

1 , µab = t
(−1)b

2 , .

As in 3.2 we get∑
n≥0

χ−y((CP1 × CP1)[n])qn =
1∏

a,b=0

 ∑
nab≥0

∑
Pab∈P(nab)

χ
(ab)
−y (Pab)qnab

 ,

where

χ
(ab)
−y (Pab) =

∏
e∈E(P t

ab)

1− yλ
−a(e)−1
ab µ

l(e)
l

1− λ
−a(e)−1
ab µ

l(e)
l

·
1− yλ

a(e)
ab µ

−l(e)−1
ab

1− λ
a(e)
ab µ

−l(e)−1
ab

.

After taking the limit as t1 → 0 then taking the limit as t2 → 0, one obtains∑
n≥0

pnχ−y((CP1 × CP1)[n])

=

∑
n≥0

pn
∑

P∈P(n)

yn

 ·

∑
n≥0

pn
∑

P∈P(n)

yn+r(P )

2

·

∑
n≥0

pn
∑

P∈P(n)

yn−r(P )


=

∏
m≥0

1
(1− ympm+1)(1− ym+1pm+1)(1− ym+2pm+1)

= exp

(∑
n>0

pn

n

1 + 2yn + y2n

1− (yp)n

)
= exp

(∑
n>0

pn

n

χ−yn(CP1 × CP1)
1− (yp)n

)
Since χy is a complex genus, by §1.3, we have completed the proof of (3).
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