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String Theory should be the final theory of

the world, and should be unique.

But now there are Five different looking string

theories.

Physicists: these theories should be equivalent,

in a way dual to each other: their partition

functions should be ”equivalent”.

Question: How to compute partition functions?

Localizations, modern version of residue theo-

rem, on infinite dimensional spaces:

Path integrals; Reduce to integrals of Chern

classes.

The identifications of partition functions of dif-

ferent theories have produced many surpris-

ingly beautiful mathematics like the famous

mirror formula.



The mathematical proofs of such formulas de-

pend on Localization Techniques on vari-

ous finite dimensional moduli spaces. More

precisely integrals of Chern classes on moduli

spaces:

Combined with various mathematics: Chern-

Simons knot invariants, combinatorics of sym-

metric groups, Kac-Moody algebras’ represen-

tations, Calabi-Yau, geometry and topology of

moduli space of stable maps....

Localization has been very successful in prov-

ing many conjectures from physics, see my

ICM2002 lecture for more examples.

Functorial Localization transfers computations

on complicated spaces to simple spaces:

Connects computations of mathematicians and

physicists.



Papers Containing the Results:

(1). A Proof of a conjecture of Mariño-Vafa

on Hodge Integrals, JDG 2003.

(2). A Formula of Two Partition Hodge Inte-

grals, math.AG/0310273.

C.-C. Liu, K. Liu and J. Zhou.

(3). A Mathematical Theory of Topological

Vertex, math.AG/0408426.

(4). Topological String Partition Functions as

Equivariant Indices, preprint.

J. Li, C.-C. Liu, K. Liu and J. Zhou.



Spirit of the Results:

(1). Duality: Gauge theory, Chern-Simons ⇐⇒
Calabi-Yau in String theory.

(2). Convolution formulas encoded in the mod-

uli spaces and in the combinatorics of symmet-

ric groups. ⇒ Differential equation: cut-and-

join equation from both representation theory

and geometry.

(3). Mathematical theory of Topological Ver-

tex: Vafa group’s works on duality for the past

several years.

(4). Integrality in GW invariants ⇔ Indices of

elliptic operators in Gauge theory. (Gopakumar-

Vafa conjecture).

I will first talk about the Marino-Vafa conjec-

ture, and then several other results.



The Mariño-Vafa Conjecture:

To compute mirror formula for higher genus,
we need to compute Hodge integrals (i.e. in-
tersection numbers of λ classes and ψ classes)
on the Deligne-Mumford moduli space of sta-
ble curves Mg,h, the most famous orbifold. It
has been studied since Riemann, and by many
Fields Medalists.

A point in Mg,h consists of (C, x1, . . . , xh), a
(nodal) curve and n smooth points on C.

The Hodge bundle E is a rank g vector bundle
over Mg,h whose fiber over [(C, x1, . . . , xh)] is
H0(C, ωC). The λ classes are Chern Classes:

λi = ci(E) ∈ H2i(Mg,h;Q).

The cotangent line T ∗xi
C of C at the i-th marked

point xi gives a line bundle Li over Mg,h. The
ψ classes are also Chern classes:

ψi = c1(Li) ∈ H2(Mg,h;Q).



Define

Λ∨g (u) = ug − λ1ug−1 + · · ·+ (−1)gλg.

Mariño-Vafa formula: Generating series of triple

Hodge integrals

∫

Mg,h

Λ∨g (1)Λ∨g (τ)Λ∨g (−τ − 1)
∏h

i=1(1− µiψi)
,

can be expressed by close formulas of finite

expression in terms of representations of sym-

metric groups, or Chern-Simons knot invari-

ants. Here τ is a parameter.

Conjectured from large N duality between Chern-

Simons and string theory.

Remark: Moduli space has been the sources

of many interests from Math to Physics.

Mumford computed some low genus numbers.

Witten conjecture is about the integrals of the

ψ classes.



Conifold transition: Resolve singularity in two
ways:

Conifold X
{(

x y
z w

)
∈ C4 : xw − yz = 0

}

(1). Deformed conifold T ∗S3

{(
x y
z w

)
∈ C4 : xw − yz = ε

}

(ε real positive number)

(2). Resolved conifold X̃ = O(−1)⊕O(−1) →
P1

{
([Z0, Z1],

(
x y
z w

)
) ∈ P1 ×C4 :

(x, y) ∈ [Z0, Z1]
(z, w) ∈ [Z0, Z1]

}

X̃ ⊂ P1 ×C4

↓ ↓
X ⊂ C4



Witten 92: The open topological string the-

ory on the deformed conifold T ∗S3 is equivalent

to Chern-Simons gauge thoery on S3.

Gopakumar-Vafa 98, Ooguri-Vafa 00: The

open topological string theory on the deformed

conifold T ∗S3 is equivalent to the closed topo-

logical string theory on the resolved conifold

X̃.

Vafa and his collaborators 98-Now: For the

past years, Vafa et al developed these duality

ideas into the most effective tool to compute

GW invariants on toric Calabi-Yau manifolds:

High point: Topological Vertex.

We will give a rather complete mathematical

theory. Start with Marinõ-Vafa formula.



Mathematical Consequence of the Duality:

Chern-Simons Partition function:

〈Z(U, V )〉 = exp(−F (λ, t, V ))

U : holonomy of the U(N) Chern-Simons gauge

field around the knot K ⊂ S3; V : U(M) matrix

〈Z(U, V )〉: Chern-Simons knot invariants of K.

F (λ, t, V ): Generating series of the open Gromov-

Witten invariants of (X̃, LK), where LK is a

Lagrangian submanifold of the resolved coni-

fold X̃ “canonically associated to” the knot K.

t’Hooft large N expansion, and canonical iden-

tifications of parameters similar to mirror for-

mula: at level k:

λ =
2π

k + N
, t =

2πiN

k + N



Special case: When K is the unknot, 〈Z(U, V )〉
was computed in the zero framing by Ooguri-

Vafa and in any framing τ ∈ Z by Mariño-Vafa.

Comparing with Katz-Liu’s computations of

F (λ, t, V ), Mariño-Vafa conjectured a striking

formula about triple Hodge integrals in terms

of Chern-Simons: representations and combi-

natorics of symmetric groups.

The framing in Mariño-Vafa’s computations

corresponds to choice of the circle action on

the pair (X̃, Lunknot) in Katz-Liu’s localization

computations. Both choices are parametrized

by an integer τ .

Question on General Duality: General knots

in General three manifolds ⇔ General Calabi-

Yau?



Mariño-Vafa Conjecture:

Geometric side:

For every partition µ = (µ1 ≥ · · ·µl(µ) ≥ 0),

define triple Hodge integral:

Gg,µ(τ) = A(τ) · ∫Mg,l(µ)

Λ∨g (1)Λ∨g (−τ−1)Λ∨g (τ)
∏l(µ)

i=1(1−µiψi)
,

with

A(τ) = −
√−1|µ|+l(µ)

|Aut(µ)| [τ(τ+1)]l(µ)−1 ∏l(µ)
i=1

∏µi−1
a=1 (µiτ+a)
(µi−1)! .

Introduce generating series

Gµ(λ; τ) =
∑

g≥0 λ2g−2+l(µ)Gg,µ(τ).

Special case when g = 0:

∫
M0,l(µ)

Λ∨0(1)Λ∨0(−τ−1)Λ∨0(τ)∏l(µ)
i=1(1−µiψi)

=
∫
M0,l(µ)

1∏l(µ)
i=1(1−µiψi)



which is equal to |µ|l(µ)−3 for l(µ) ≥ 3, and we

use this expression to extend the definition to

the case l(µ) < 3.

Introduce formal variables p = (p1, p2, . . . , pn, . . .),

and define

pµ = pµ1 · · · pµl(µ)

for any partition µ. (⇔ Tr V µj)

Generating series for all genera and all possible

marked points:

G(λ; τ ; p) =
∑
|µ|≥1 Gµ(λ; τ)pµ.

Representation side:

χµ: the character of the irreducible representa-

tion of symmetric group S|µ| indexed by µ with

|µ| = ∑
j µj,



C(µ): the conjugacy class of S|µ| indexed by µ.

Introduce:

Wµ(λ) =
∏

1≤a<b≤l(µ)
sin[(µa−µb+b−a)λ/2]

sin[(b−a)λ/2]

· 1∏l(ν)
i=1

∏µi
v=1 2 sin[(v−i+l(µ))λ/2]

.

This has an interpretation in terms of quantum

dimension in Chern-Simons knot theory.

Define:

R(λ; τ ; p) =
∑

n≥1
(−1)n−1

n

∑
µ[(

∑
∪n

i=1µi=µ

∏n
i=1

∑
|νi|=|µi|

χ
νi(C(µi))

z
µi

e
√−1(τ+1

2)κνiλ/2Wνi(λ)]pµ

where µi are sub-partitions of µ, zµ =
∏

j µj!j
µj

and κµ = |µ|+ ∑
i(µ

2
i − 2iµi) for a partition µ:

standard for representations.



Mariño-Vafa Conjecture:

G(λ; τ ; p) = R(λ; τ ; p).

Remark: (1). This is a formula:

G: Geometry = R: Representations

Representations of symmetric groups are es-

sentially combinatorics.

(2). Each Gµ(λ, τ) is given by a finite and

closed expression in terms of representations

of symmetric groups:

Gµ(λ, τ) =
∑

n≥1
(−1)n−1

n (
∑
∪n

i=1µi=µ
∏n

i=1

∑
|νi|=|µi|

χ
νi(C(µi))

z
µi

e
√−1(τ+1

2)κνiλ/2Wνi(λ)



Gµ(λ, τ) gives triple Hodge integrals for moduli

spaces of curves of all genera with l(µ) marked

points.

(3). Equivalent expression:

G(λ; τ ; p)• = exp [G(λ; τ ; p)] =

∑
|µ|≥0

∑
|ν|=|µ|

χν(C(µ))
zµ

e
√−1(τ+1

2)κνλ/2Wν(λ)

(4). Mariño-Vafa: this formula gives values for

all Hodge integrals up to three Hodge classes.

Taking Taylor expansion in τ on both sides,

various Hodge integral identities have been de-

rived by C.-C. Liu, K. Liu and Zhou.



For example, as easy consequences of the MV

formula and the cut-and-join equation, we have

unified simple proofs of the λg conjecture,

∫

Mg,n

ψ
k1
1 · · ·ψkn

n λg =

(
2g + n− 3
k1, . . . , kn

)
22g−1 − 1

22g−1

|B2g|
(2g)!

,

for k1+ · · ·+kn = 2g−3+n, and the following

identities for Hodge integrals:

∫
Mg

λ3
g−1 =

∫
Mg

λg−2λg−1λg = 1
2(2g−2)!

|B2g−2|
2g−2

|B2g|
2g ,

B2g are Bernoulli numbers. And

∫
Mg,1

λg−1
1−ψ1

= bg
∑2g−1

i=1
1
i−

1
2

∑
g1+g2=g
g1,g2>0

(2g1−1)!(2g2−1)!
(2g−1)! bg1bg2,



where

bg =




1, g = 0,
22g−1−1
22g−1

|B2g|
(2g)!, g > 0.

Idea of Proof: (with Chiu-Chu Liu, Jian Zhou)

The first proof is based on the Cut-and-Join

equation: a beautiful match of Combinatorics

and Geometry.

Cut-and-Join: The combinatorics and geome-

try:

Combinatorics: Denote by [s1, · · · , sk] a k-

cycle in the permutation group:

Cut: a k-cycle is cut into an i-cycle and a j-

cycle:

[s, t] · [s, s2, · · · , si, t, t2, · · · tj]



= [s, s2, · · · , si][t, t2, · · · tj].

Join: an i-cycle and a j-cycle are joined to an

(i + j)-cycle:

[s, t] · [s, s2, · · · , si][t, t2, · · · tj]

= [s, s2, · · · , si, t, t2, · · · tj].

Such operations can be organized into differ-

ential equations: cut-and-join equation.



Geometry: In the moduli of stable maps:

Cut: One curve split into two lower degree or

lower genus curves.

Join: Two curves joined together to give a

higher genus or higher degree curve.

The combinatorics and geometry of cut-and-

join are reflected in the following two differen-

tial equations, like heat equation. It is equiva-

lent to a series of linear ODE systems:

Proved either by direct computations in com-

binatorics or by localizations on moduli spaces

of relative stable maps in geometry:



Combinatorics: Computation:

Theorem 1:

∂R

∂τ
=

1

2

√−1λ
∞∑

i,j=1

(
(i + j)pipj

∂R

∂pi+j

+ijpi+j

(
∂R

∂pi

∂R

∂pj
+

∂2R

∂pi∂pj

))

Geometry: Localization:

Theorem 2:

∂G

∂τ
=

1

2

√−1λ
∞∑

i,j=1

(
(i + j)pipj

∂G

∂pi+j

+ijpi+j

(
∂G

∂pi

∂G

∂pj
+

∂2G

∂pi∂pj

))

Initial Value: τ = 0, Ooguri-Vafa formula:

G(λ,0, p) =
∞∑

d=1

pd

2d sin
(

λd
2

) = R(λ,0, p).



The solution is unique! Therefore

G(λ; τ ; p) = R(λ; τ ; p).

Remark: (1). Cut-and-join equation is en-
coded in the geometry of the moduli spaces of
stable maps: convolution formula of the form:
(disconnected version: G• = expG)

G•µ(λ, τ) =
∑

|ν|=|µ|
Φ•

µ,ν(−
√−1τλ)zνK•

ν(λ)

where Φ•
µ,ν is series of double Hurwitz num-

bers, zν the combinatorial constants. Equiva-
lently this gives the explicit solution of the cut-
and-join equation, with initial value K•(λ), the
integrals of Euler classes on moduli of relative
stable maps.

(2). Witten conjecture is about KdV equa-
tions. But the Marinõ-Vafa formula gives closed
formula!



Taking limits in τ and µi’s one can obtain the
Witten conjecture (Okounkov-Pandhrapande).

Same argument gives a simple and geometric
proof of the ELSV formula for Hurwitz num-
bers.

The proof of the combinatorial cut-and-join
formula is based on Burnside formula and var-
ious simple results in symmetric functions.

The proof of the geometric cut-and-join for-
mula used Functorial Localization Formula:

f : X → Y equivariant map. F ⊂ Y a fixed
component, E ⊂ f−1(F ) fixed components in
f−1(F ). Let f0 = f |E, then

For ω ∈ H∗
T (X) an equivariant cohomology class,

we have identity on F :

f0∗[
i∗Eω

eT (E/X)
] =

i∗F (f∗ω)

eT (F/Y )
.



This formula, which is a generalization of Atiyah-

Bott localization to relative setting, has been

applied to various settings to prove the con-

jectures from physics.

It is used to push computations on compli-

cated moduli space to simpler moduli space:

the proof of the mirror formula; the proof of

the Hori-Vafa formula; the proof of the ELSV

formula....

Let Mg(P1, µ) denote the moduli space of rel-

ative stable maps from a genus g curve to P1

with fixed ramification type µ at ∞, where µ is

a partition.

Apply the functorial localization formula to the

divisor morphism from the relative stable map

moduli space to projective space:

Br : Mg(P1, µ) → Pr,



where r denotes the dimension of Mg(P1, µ).

This is similar to the set-up of mirror principle,

with a different linearized moduli.

The fixed points of the target Pr precisely la-

bels the cut-and-join of the triple Hodge inte-

grals. Reduce the the study of polynomials in

the equivariant cohomology group of Pr.

Remarks: The cut-and-join equation is closely

related to the Virasoro algebra.

Other approaches:

(1) Direct derivation of convolution formula.

(Y.-S. Kim)

(2) Okounkov-Pandhrapande: using ELSV.



The Mariño-Vafa formula can be viewed as a

duality:

Chern-Simons ⇐⇒ Calabi-Yau.

Can we go further with the ideas and methods?

Duality and cut-and-join.

Yes much more!

One, two, three partitions.

Mariño-Vafa: one partition case....

Topological vertex: three partition case.



Two Partition:

Let µ+, µ− any two partitions. Introduce Hodge

integrals:

Gµ+,µ−(λ; τ) = B(τ) ·∑g≥0 λ2g−2

∫
M

g,l(µ+)+l(µ−)

Λ∨g (1)Λ∨g (τ)Λ∨g (−τ−1)

∏l(µ+)
i=1

1

µ+
i

(
1

µ+
i

−ψi

)
∏l(µ−)

j=1
τ

µ−
i

(
τ

µ−
j

−ψ
j+l(µ+)

)

with

B(τ) = −(
√−1λ)l(µ+)+l(µ−)

z
µ+·zµ−

[τ(τ + 1)]l(µ
+)+l(µ−)−1·

∏l(µ+)
i=1

∏µ+
i
−1

a=1

(
µ+

i τ+a
)

µ+
i !

·∏l(µ−)
i=1

∏µ−
i
−1

a=1

(
µ−i

1
τ +a

)

µ−i !
.

They naturally arise in open string theory.



Introduce notations:

Geometry side:

G•(λ; p+, p−; τ) =

exp
(∑

(µ+,µ−)∈P2 Gµ+,µ−(λ, τ)p+
µ+p−

µ−
)

,

p±
µ± are two sets of formal variables associated

to the two partitions.

Representation side:

R•(λ; p+, p−; τ) =
∑
|ν±|=|µ±|≥0

χ
ν+

(C(µ+))
z
µ+

χν−(C(µ−))
zµ−

·

e
√−1(κ

ν+
τ+κν−τ−1)λ/2Wν+,ν−p+

µ+p−
µ−.



Here

Wµ,ν = ql(ν)/2Wµ · sν(Eµ(t))

= (−1)|µ|+|ν|q
κµ+κν+|µ|+|ν|

2

∑
ρ q−|ρ|sµ/ρ(1, q, . . . )sν/ρ(1, q, . . . )

in terms of Schur functions s: Chern-Simons

invariant of Hopf link.

Theorem: We have the equality:

G•(λ; p+, p−; τ) = R•(λ; p+, p−; τ).

Idea of Proof: (with C.-C. Liu and J. Zhou)

Both sides satisfies the same equation ( follows

from convolution formula):

∂
∂τ H• = 1

2(CJ)+H• − 1
2τ2(CJ)−H•,



where (CJ)± cut-and-join operator: differen-

tial with respect to p±.

and the same initial value at τ = −1:

G•(λ; p+, p−;−1) = R•(λ; p+, p−;−1),

Ooguri-Vafa formula.

The cut-and-join equation can be written in a

linear matrix form, follows from the convolu-

tion formula, naturally from localization tech-

nique on moduli.

The proof of the geometric side: Reorganize

the generating series from localizations on mod-

uli space of stable maps into P1×P1 blown up

two lines at ∞, in terms of the two-Hurwitz

numbers



Three Partition:

Topological Vertex introduced by Vafa et al

can be deduced from a three partition analogue

of such formulas. (LLLZ)

Given any three partitions µ1, µ2, µ3, the cut-

and-join equation in this case, for both the ge-

ometry and representation sides, is

∂
∂τ F •

g,µ1,µ2,µ3(τ) = (CJ)1F •
g,µ1,µ2,µ3(τ)+

1
τ2(CJ)2F •

g,µ1,µ2,µ3(τ)+
1

(τ+1)2
(CJ)3F •

g,µ1,µ2,µ3(τ).

Initial value at τ = 1, given by the formula of

two partition case.

Chern-Simons invariant side is given byWµ1,µ2,µ3.

Wµ1,µ2,µ3 is a combination of Wµ,ν.



F •
g,µ1,µ2,µ3(τ) is the generating series of all gen-

era and all marked points of the triple Hodge
integral:

A
∫
Mg,l1+l2+l3

Λ∨g (1)Λ∨g (τ)Λ∨g (−τ−1)
∏l1

j=1(1−µ1
j ψj)

∏l2
j=1 τ(τ−µ2

j ψl1+j)
·

(τ(τ+1))l1+l2+l3−1

∏l3
j=1(−τ−1)(−τ−1−µ3

j ψl1+l2+j)
.

A = −(
√−1λ)l1+l2+l3

|Aut(µ1)||Aut(µ2)||Aut(µ3)|
∏l1

j=1

∏µ1
j
−1

a=1 (τµ1
j +a)

(µ1
j−1)!

·

∏l2
j=1

∏µ1
j
−1

a=1 ((−1−1/τ)µ2
j +a)

(µ2
j−1)!

∏l3
j=1

∏µ1
j
−1

a=1 (−µ3
j /(τ+1)+a)

(µ3
j−1)!

In the above expression, li = l(µi), i = 1,2,3.
Complicated coefficients but natural from lo-
calization on relative moduli.

F •
g,µ1,µ2,µ3(τ) has an expression in terms of the

Chern-Simons invariants: theWµ1,µ2,µ3, a closed
finite expression.



Closed Formulas for GW Invariants in terms
of Chern-Simons Invariants:

Topological vertex gives the most effective way
to compute GW invariants (i.e. Euler num-
bers) of toric CY: Both open and closed, by
gluing the vertices.

Vafa and his group derived the topological ver-
tex by using string duality, Chern-Simons and
Calabi-Yau, a physical theory.

We established the mathematical theory for
the topological vertex, and derived mathemat-
ical corollaries: Knot invariants ⇔ GW invari-
ants:

By using gluing formula of the topological ver-
tex, we can derive closed formulas for gener-
ating series of GW invariants, all genera and
all degrees, open or closed, for all toric Calabi-
Yau, in terms Chern-Simons invariants: finite
sum of products of those W’s.



Gopakumar-Vafa Conjecture and Equivari-

ant Indices of Elliptic Operators :

Let Ng,d denote the GW invariant: the Euler

number of the obstruction bundle on the mod-

uli space of stable maps of degree d ∈ H2(S,Z)
from genus g curve into the surface S:

Ng,d =
∫

[Mg(S,d)]v
e(Vg,d)

with Vg,d = R1π∗µ∗KS a vector bundle on the

moduli induced by the canonical bundle KS,

where π : U →Mg(S, d) denotes the universal

curve and µ can be considered as the evalua-

tion or universal map. Write

Fg(t) =
∑

d

Ng,d e−d·t.



GV conjecture: There exists expression:

∞∑

g=0

λ2g−2Fg(t) =
∞∑

k=1

∑

g,d

n
g
d

1

d
(2sin

dλ

2
)2g−2e−kd·t,

such that n
g
d are integers, called instanton num-

bers.

Theorem: (LLLZ) For many interesting cases,

these n
g
d’s can be written as equivariant indices

on the moduli spaces of Anti-Self-Dual connec-

tions on C2.

Remarks: The proof is to compare fixed point

formula expressions for equivariant indices of

elliptic operators on the ASD moduli and the

combinatorial expressions of GW invariants on

stable curve moduli. They agree up to non-

trivial ”mirror transformation”.



First explicit complete examples for all genera

and all degrees.

There is a more interesting and grand duality

picture between CS invariants for 3-folds and

GW invariants for toric CY.

Thank You Very Much!


