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A. String Theory should be the final theory
of the world, and should be unique.

But now there are Five different looking
string theories.

Physicists: these theories should be equiv-
alent, in a way dual to each other: their
partition functions should be ”equivalent”.

Question: How to compute partition func-
tions?

Localizations, modern version of residue

theorem, on infinite dimensional spaces: Path
integrals; Reduce to integrals of Chern classes.

The identifications of partition functions of
different theories have produced many sur-
prisingly beautiful mathematics like the fa-
mous mirror formula.

B. The mathematical proofs of such formulas
depend on Localization Techniques on



various finite dimensional moduli spaces.
More precisely integrals of Chern classes
on moduli spaces:

Combined with various mathematics: Chern-
Simons knot invariants, combinatorics of
symmetric groups, Kac-Moody algebras’ rep-
resentations, Calabi-Yau, geometry and topol-
ogy of moduli space of stable maps.

Localization has been successful in prov-
ing many conjectures from physics, see my
ICM2002 lecture for more examples.

This lecture is dedicated to my friends
in Peking University.



Papers Containing the Results :

(1). A Proof of a conjecture of Mariño-Vafa
on Hodge Integrals,

C.-C. Liu, K. Liu and J. Zhou, math.AG/0306434.

(2). A Formula of Two Partition Hodge Inte-
grals,

C.-C. Liu, K. Liu and J. Zhou, math.AG/0310273.

(3). A Mathematical Theory of Topological
Vertex,

J. Li, C.-C. Liu, K. Liu and J. Zhou, in prepa-
ration.

Spirit of the Results:

(1). Duality: Chern-Simons ⇐⇒ Calabi-Yau.

(2). Differential equation: cut-and-join equa-
tion from both representation theory and ge-
ometry.



The Mariño-Vafa Conjecture.

To compute mirror formula for higher genus,
we need to compute Hodge integrals (i.e. in-
tersection numbers of λ classes and ψ classes)
on the Deligne-Mumford moduli space of sta-
ble curves Mg,h, the most famous orbifold.

A point in Mg,h consists of (C, x1, . . . , xh), a
(nodal) curve and n smooth points on C.

The Hodge bundle E is a rank g vector bundle
over Mg,h whose fiber over [(C, x1, . . . , xh)] is
H0(C, ωC). The λ classes are Chern Classes:

λi = ci(E) ∈ H2i(Mg,h;Q).

The cotangent line T ∗xi
C of C at the i-th marked

point xi gives a line bundle Li over Mg,h. The
ψ classes are also Chern classes:

ψi = c1(Li) ∈ H2(Mg,h;Q).



Define

Λ∨g (u) = ug − λ1ug−1 + · · ·+ (−1)gλg.

Mariño-Vafa formula: Generating series of triple
Hodge integrals

∫

Mg,h

Λ∨g (1)Λ∨g (τ)Λ∨g (−τ − 1)
∏h

i=1(1− µiψi)
,

can be expressed by close formulas of finite
expression in terms of representations of sym-
metric groups, or Chern-Simons knot invari-
ants.



Conjectured from large N duality between Chern-
Simons and string theory:

Conifold transition: Resolve singularity in two
ways:

Conifold X
{(

x y
z w

)

∈ C4 : xw − yz = 0

}

(1). Deformed conifold T ∗S3

{(

x y
z w

)

∈ C4 : xw − yz = ε

}

(ε real positive number)

(2). Resolved conifold X̃ = O(−1)⊕O(−1) →
P1

{

([Z0, Z1],

(

x y
z w

)

) ∈ P1 ×C4 :
(x, y) ∈ [Z0, Z1]
(z, w) ∈ [Z0, Z1]

}



X̃ ⊂ P1 ×C4

↓ ↓
X ⊂ C4

Witten 92: The open topological string the-
ory on the N D-branes on S3 of T ∗S3 is equiv-
alent to U(N) Chern-Simons gauge thoery on
S3.

Gopakumar-Vafa 98, Ooguri-Vafa 00: The
open topological string theory on the N D-
branes on S3 of the deformed conifold is equiv-
alent to the closed topological string theory on
the resolved conifold X̃.



Mathematical Consequence: Chern-Simons
Partition function:

〈Z(U, V )〉 = exp(−F (λ, t, V ))

U : holonomy of the U(N) Chern-Simons gauge
field around the knot K ⊂ S3; V : U(M) matrix

〈Z(U, V )〉: Chern-Simons knot invariants of K.

F (λ, t, V ): Generating series of the open Gromov-
Witten invariants of (X̃, LK), where LK is a
Lagrangian submanifold of the resolved coni-
fold X̃ “canonically associated to” the knot K.

t’Hooft large N expansion, and canonical iden-
tifications of parameters similar to mirror for-
mula: at level k:

λ = 2π
k+N , t = 2πiN

k+N



Special case: When K is the unknot, 〈Z(U, V )〉
was computed in the zero framing by Ooguri-
Vafa and in any framing τ ∈ Z by Mariño-Vafa.
Comparing with Katz-Liu’s computations of
F (λ, t, V ), Mariño-Vafa conjectured a striking
formula about triple Hodge integrals in terms
of Chern-Simons: representations and combi-
natorics of symmetric groups.

The framing in Mariño-Vafa’s computations
corresponds to choice of the circle action on
the pair (X̃, Lunknot) in Katz-Liu’s localization
computations. Both choices are parametrized
by an integer τ .



Mariño-Vafa formula:

Geometric side:

For every partition µ = (µ1 ≥ · · ·µl(µ) ≥ 0),
define triple Hodge integral:

Gg,µ(τ) = A(τ) ·
∫

Mg,l(µ)

Λ∨g (1)Λ∨g (−τ−1)Λ∨g (τ)
∏l(µ)

i=1(1−µiψi)
,

with

A(τ) = −
√
−1|µ|+l(µ)

|Aut(µ)| [τ(τ+1)]l(µ)−1 ∏l(µ)
i=1

∏µi−1
a=1 (µiτ+a)
(µi−1)! .

Introduce generating series

Gµ(λ; τ) =
∑

g≥0 λ2g−2+l(µ)Gg,µ(τ).

Special case when g = 0:

∫

M0,l(µ)

Λ∨0(1)Λ∨0(−τ−1)Λ∨0(τ)
∏l(µ)

i=1(1−µiψi)
=

∫

M0,l(µ)

1
∏l(µ)

i=1(1−µiψi)



which is equal to |µ|l(µ)−3 for l(µ) ≥ 3, and we
use this expression to extend the definition to
the case l(µ) < 3.

Introduce formal variables p = (p1, p2, . . . , pn, . . .),
and define

pµ = pµ1 · · · pµl(µ)

for any partition µ.

Generating series for all genera and all possible
marked point:

G(λ; τ ; p) =
∑

|µ|≥1 Gµ(λ; τ)pµ.

Representation side:

χµ: the character of the irreducible representa-
tion of symmetric group S|µ| indexed by µ with
|µ| =

∑

j µj,



C(µ): the conjugacy class of S|µ| indexed by µ.

Introduce:

Wµ(λ) =
∏

1≤a<b≤l(µ)
sin[(µa−µb+b−a)λ/2]

sin[(b−a)λ/2]

· 1
∏l(ν)

i=1
∏µi

v=1 2 sin[(v−i+l(µ))λ/2]
.

This has an interpretation in terms of quan-
tum dimension in Chern-Simons knot theory.

Define

R(λ; τ ; p) =
∑

n≥1
(−1)n−1

n
∑

µ[(
∑

∪n
i=1µi=µ

∏n
i=1

∑

|νi|=|µi|
χνi(C(µi))

zµi
e
√
−1(τ+1

2)κνiλ/2Wνi(λ)]pµ

where µi are sub-partitions of µ, zµ =
∏

j µj!j
µj

and κµ = |µ|+
∑

i(µ2
i − 2iµi) for a partition µ:

standard for representations.



Mariño-Vafa Conjecture:

G(λ; τ ; p) = R(λ; τ ; p).

—————————————–

Remark: (1). This is a formula:

G: Geometry = R: Representations

Representations of symmetric groups are es-
sentially combinatorics.

(2). Each Gµ(λ, τ) is given by a finite and
closed expression in terms of representations
of symmetric groups:

Gµ(λ, τ) =
∑

n≥1
(−1)n−1

n (
∑

∪n
i=1µi=µ

∏n
i=1

∑

|νi|=|µi|
χνi(C(µi))

zµi
e
√
−1(τ+1

2)κνiλ/2Wνi(λ)



Gµ(λ, τ) gives triple Hodge integrals for moduli
spaces of curves of all genera with l(µ) marked
points.

(3). Equivalent expression:

G(λ; τ ; p)• = eG(λ;τ ;p)

∑

|µ|≥0
∑

|ν|=|µ|
χν(C(µ))

zµ
e
√
−1(τ+1

2)κνλ/2Wν(λ)

(4). Mariño-Vafa: this formula gives values for
all Hodge integrals up to three Hodge classes.

Taking Taylor expansion in τ on both sides,
various Hodge integral identities have been de-
rived by C.-C. Liu, K. Liu and Zhou.



For example, as easy consequences of the MV
formula and the cut-and-join equation, we have
unified simple proofs of the λg conjecture,

∫

Mg,n
ψk1

1 · · ·ψkn
n λg =

(

2g + n− 3
k1, . . . , kn

)

22g−1 − 1
22g−1

|B2g|
(2g)!

,

for k1+ · · ·+kn = 2g−3+n, and the following
identities for Hodge integrals:

∫

Mg
λ3

g−1 =
∫

Mg
λg−2λg−1λg = 1

2(2g−2)!
|B2g−2|
2g−2

|B2g|
2g ,

B2g are Bernoulli numbers.

∫

Mg,1

λg−1
1−ψ1

= bg
∑2g−1

i=1
1
i−

1
2

∑

g1+g2=g
g1,g2>0

(2g1−1)!(2g2−1)!
(2g−1)! bg1bg2,



where

bg =







1, g = 0,
22g−1−1
22g−1

|B2g|
(2g)!, g > 0.

Idea of Proof: ( with Chiu-Chu Liu, Jian
Zhou)

The proof is based on the Cut-and-Join equa-
tion: a beautiful match of Combinatorics and
Geometry.

Cut-and-Join: The combinatorics and geom-
etry:

Combinatorics: Denote by [s1, · · · , sk] a k-
cycle in the permutation group:

Cut: a k-cycle is cut into an i-cycle and a
j-cycle:



[s, t] · [s, s2, · · · , si, t, t2, · · · tj]

= [s, s2, · · · , si][t, t2, · · · tj].

Join: an i-cycle and a j-cycle are joined to an
(i + j)-cycle:

[s, t] · [s, s2, · · · , si][t, t2, · · · tj]

= [s, s2, · · · , si, t, t2, · · · tj].



Geometry:

Cut: One curve split into two lower degree or
lower genus curves.

Join: Two curves joined together to give a
higher genus or higher degree curve.

The combinatorics and geometry of cut-and-
join are reflected in the following two differen-
tial equations, like heat equation:

proved either by direct computations in com-
binatorics or by localizations on moduli spaces
of relative stable maps:



Combinatorics: Computation:

Theorem 1:

∂R
∂τ

=
1
2

√
−1λ

∞
∑

i,j=1

(

(i + j)pipj
∂R

∂pi+j

+ijpi+j

(

∂R
∂pi

∂R
∂pj

+
∂2R

∂pi∂pj

))

Geometry: Localization:

Theorem 2:

∂G
∂τ

=
1
2

√
−1λ

∞
∑

i,j=1

(

(i + j)pipj
∂G

∂pi+j

+ijpi+j

(

∂G
∂pi

∂G
∂pj

+
∂2G

∂pi∂pj

))

Initial Value: τ = 0, Ooguri-Vafa formula:

G(λ,0, p) =
∞
∑

d=1

pd

2d sin
(

λd
2

) = R(λ,0, p).



The solution is unique! Series of homoge-
neous ODE:

G(λ; τ ; p) = R(λ; τ ; p).

Remark: (1). Cut-and-join equation is more
fundamental: encodes both geometry and com-
binatorics: Vafa: Virasoro operators come out
of the cut-and-join.

(2). Witten conjecture is about KdV equa-
tions. But the Marinõ-Vafa formula gives closed
formula!

Same argument gives a simple and geometric
proof of the ELSV formula for Hurwitz num-
bers.

The proof of the combinatorial cut-and-join
formula, by Jian Zhou, is based on Burnside



formula and various results in symmetric func-
tions.

Taking derivative with respect to τ !

The proof of the geometric cut-and-join for-
mula used Functorial Localization Formula:

f : X → Y equivariant map. F ⊂ Y a fixed
component, E ⊂ f−1(F ) fixed components in
f−1(F ). Let f0 = f |E, then

For ω ∈ H∗
T (X) an equivariant cohomology class,

we have identity on F :

f0∗[
i∗Eω

eT (E/X)
] =

i∗F (f∗ω)

eT (F/Y )
.

This formula, which is a generalization of Atiyah-
Bott localization to relative setting, has been
applied to various settings to prove the con-
jectures from physics.



It is used to push computations on complicated
moduli space to simpler moduli space.

Let Mg(P1, µ) denote the moduli space of rel-
ative stable maps from a genus g curve to P1

with fixed ramification type µ at ∞, where µ is
a partition.

Apply the functorial localization formula to the
divisor morphism from the relative stable map
moduli space to projective space:

Br : Mg(P1, µ) → Pr,

where r denotes the dimension of Mg(P1, µ).

This is similar to the set-up of mirror principle,
with a different linearized moduli.

The fixed points of the target Pr precisely
labels the cut-and-join of the triple Hodge in-
tegrals.



Applications: Computing GW invariants on
Toric Calabi-Yau:

Physical approaches: Aganagic-Mariño-Vafa (2002):
BPS numbers for toric Calabi-Yau by using
large N dulaity and Chern-Simons invariants.

Mathematical approach (Jian Zhou): Mariño-
Vafa formula can be used to compute BPS
numbers (which are conjectured to be inte-
gers by Gopakumar-Vafa) for toric Calabi-Yau
3-fold.

The physical and mathematical approaches should
be equivalent:

Bridge: The Mariño-Vafa formula: which
can be viewed as a duality:

Chern-Simons ⇐⇒ Calabi-Yau.



Can we go further with the ideas and methods?

Duality and cut-and-join.

Yes much more!

One, two, three partitions.

Mariño-Vafa: one partition case....



Two Partition.

Let µ+, µ− any two partitions. Introduce Hodge
integrals:

Gµ+,µ−(λ; τ) = B(τ) ·
∑

g≥0 λ2g−2

∫

Mg,l(µ+)+l(µ−)

Λ∨g (1)Λ∨g (τ)Λ∨g (−τ−1)

∏l(µ+)
i=1

1
µ+
i

(

1
µ+
i
−ψi

)

∏l(µ−)
j=1

τ
µ−i

(

τ
µ−j
−ψj+l(µ+)

)

with

B(τ) = −(
√
−1λ)l(µ+)+l(µ−)

zµ+·zµ−
[τ(τ + 1)]l(µ

+)+l(µ−)−1·

∏l(µ+)
i=1

∏µ+
i −1

a=1

(

µ+
i τ+a

)

µ+
i !

·
∏l(µ−)

i=1

∏µ−i −1
a=1

(

µ−i
1
τ +a

)

µ−i !
.

They naturally arise in open string theory.



Introduce notations:

Geometry side:

G•(λ; p+, p−; τ) =

exp
(

∑

(µ+,µ−)∈P2 Gµ+,µ−(λ, τ)p+
µ+p−µ−

)

,

p±µ± are two sets of formal variables associated
to the two partitions.

Representation side:

R•(λ; p+, p−; τ) =
∑

|ν±|=|µ±|≥0
χν+(C(µ+))

zµ+

χν−(C(µ−))
zµ−

·

e
√
−1(κν+τ+κν−τ−1)λ/2Wν+,ν−p+

µ+p−µ−.

Here

Wµ,ν = ql(ν)/2Wµ · sν(Eµ(t))



= (−1)|µ|+|ν|q
κµ+κν+|µ|+|ν|

2

∑

ρ q−|ρ|sµ/ρ(1, q, . . . )sν/ρ(1, q, . . . )

in terms of Schur functions: Chern-Simons in-
variant of Hopf link.

Theorem: (Zhou conjecture),

G•(λ; p+, p−; τ) = R•(λ; p+, p−; τ).

Idea of Proof: (With C.-C. Liu and J. Zhou)

Both sides satisfies same cut-and-join equa-
tion:

∂
∂τ H• = 1

2(CJ)+H• − 1
2τ2(CJ)−H•,

where



(CJ)± cut-and-join operator: differential with
respect to p±.

and the same initial value at τ = −1:

G•(λ; p+, p−;−1) = R•(λ; p+, p−;−1),

Ooguri-Vafa formula.

The cut-and-join equation can be written in a
linear matrix form, naturally through localiza-
tion technique.

The proof of the geometric cut-and-join equa-
tion: Reorganize the generating series from lo-
calizations on moduli space of stable maps into
P1 × P1 blown up two lines at ∞, in terms of
the two-Hurwitz numbers

Generating series of two Hurwitz numbers has
a nice cut-and-join equation, which is ”trans-
mitted” to the cut-and-join of G. This proof
is more geometric and natural.



Iqbal and Vafa et al Conjecture:

Aganagic-Klemm-Mariño-Vafa (2003): Topo-
logical vertex. Complete formula for computa-
tions of GW invariants and BPS numbers for all
degree and all genus in terms of Chern-Simons.
(BPS numbers are related to GW invariants by
Gopakumar-Vafa formula.)

GW invariants here are integrals of Chern classes
on stable map moduli spaces.

Iqbal’s instanton counting in terms of Chern-
Simons invariants.

Jian Zhou: Introduced ”chemistry”: a beau-
tiful trick: Re-organize contributions of fixed
points as combinations of the two partition
Hodge integral formulas and using the above
two partition formula transform the expressions
into Chern-Simons invariants.



Proved the formula of Iqbal and Vafa et al:
amazing formulas for all toric Calabi-Yau three
folds.



Three Partition.

Topological Vertex introduced by Vafa et al
can be deduced from a three partition analogue
of such formulas.

Given any three partitions µ1, µ2, µ3, the cut-
and-join equation in this case, for both the ge-
ometry and representation sides, is

∂
∂τ F •g,µ1,µ2,µ3(τ) = (CJ)1F •g,µ1,µ2,µ3(τ)+

1
τ2(CJ)2F •g,µ1,µ2,µ3(τ)+

1
(τ+1)2

(CJ)3F •g,µ1,µ2,µ3(τ).

Initial value at τ = 1, given by the formula of
two partition case.

Chern-Simons invariant side is given byWµ1,µ2,µ3.

Wµ1,µ2,µ3 is a combination of Wµ,ν.

Joint with J. Li, C.-C. Liu and J. Zhou: Math-
ematical definition of topological vertex.


