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Abstract. By using Yau’s Schwarz lemma and the Quillen determinant line
bundles, several results about fibered algebraic surfaces and the moduli spaces
of curves are improved and reproved.

Introduction

Let π : X → B be a family of stable curves of genus g > 1, over a projective
complex curve B. Let ωX/B be the relative dualizing sheaf. Denote by Mg the
moduli space of smooth curves of genus g and by Tg the corresponding Teichmüller
space. The following results are important and well known in algebraic and complex
geometry.

(1) (ω2
X/B) and det π∗ωX/B are always strictly positive for non-isotrivial families

of stable curves.
(2) (ω2

X/B) ≤ (2g− 2)(2q− 2 + s), where q is the genus of B and s is the number

of singular fibers.
(3) If the family is non-isotrivial and B is CP 1, then s ≥ 3; if B is an elliptic

curve, then s ≥ 1.
(4) The Weil-Petersson metric is Kähler and its Kähler class is rational.
(5) The compactified moduli space Mg is projective. Here we use the Deligne-

Mumford compactification.
(6) The Teichmüller space Tg is a domain of holomorphy.

In this paper, we give simple and elementary proofs of these results by using the
differential geometry of Mg and Tg and make clear the geometric meanings of the
quantities appearing above.

The first proof of (1) is by Arekelov [1], then by Ueno [16]. See also [17]. Result
(2) was obtained by Vojta in [8] using the Bogomolov-Miyaoka-Yau inequality c21 ≤
3c2 for surfaces of general type. Our proof is much more elementary. By Parshin
[18], we know that (2) already implies the Modell conjecture for a function field.
Result (3) for CP 1 is due to Beauville [2]. Result (4) is due to Ahlfors and Wolpert.
In fact we prove that (2) is a strict inequality for any non-isotrivial family of g > 1.
Our methods are significantly different from their previous proofs. We use the
Schwarz lemma and Quillen determinant line bundles which have been very well
understood in differential geometry and string theory [10], [19].
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From our discussion, we can see that (ω2
X/B) is in fact the degree of a natural

positive line bundle on B. The Chern class of this line bundle is the Kähler class of
the Weil-Petersson metric. We speculate that there should be a similar geometric
interpretation of the positivity of (ω2

X/B) in Arakelov theory for arithmetic surfaces

[8]. We can also use our method to discuss families of Abelian varieties or Hodge
structures [4].

It is interesting to note that the finiteness (or Mordell type) results for families are
all intrinsically implied by the negative curvature properties of the corresponding
moduli spaces. The height estimates are equivalent to the upper bound estimates of
Green functions or Weil-Petersson metrics. We can also reduce Vojta’s conjectural
height estimate for a function field (see [8]) to an upper bound estimate of a Green
function which agrees with the fact in number theory that the Green function is the
∞-adic height function. Therefore it should be interesting to see a number theory
analogue of the Weil-Peterson metric.

We hope our method to prove (2), which is a simple application of the Schwarz
lemma, can be used to derive c21 ≤ 3c2 for surfaces of general type. So far we can
get this for some special surfaces.

1. Some preparatory material

Let π : Xg → Tg be the universal curve over the Teichmüller space. The Poincaré
metric on each fiber patches together to give a smooth metric on ΩXg/Tg , the relative

cotangent bundle. Then π∗Ω
⊗2
Xg/Tg

, the push-down of Ω⊗2
Xg/Tg

, is the cotangent

bundle of Tg. Recall that for any point s ∈ Tg

π∗Ω
⊗2
Xg/Tg

∣∣∣
s

∆
= H0(Xs,Ω

⊗2
Xs

)

where Xs = π−1(s).
There exists a natural inner product on π∗Ω

⊗2
Xg/Tg

induced from the Poincaré

metric on each fiber. This inner product induces the Weil-Petersson metric on
π∗Ω

⊗2
Xg/Tg

which is not complete. Its sectional curvature is bounded from above by

− 1
2π(g−1) (see Wolpert [10]).

The Weil-Petersson metric is invariant under the action of modular group Γg. So
it induces a metric on the moduli space of smooth curves of genus g, Mg = Tg/Γg.
Here we consider Mg as a V -manifold; see [7].

Let ∆s be the Laplacian on Xs = π−1(s) acting on the functions of Xs and
{λj(s)}∞j=1 be its eigenvalues.

Let

ζ(t) =
∑
λj 6=0

λ−tj (s),

which can be analytically extended to the whole complex t-plane, and define the
Ray-Singer torsion

det′∆s = e−ζ
′(0).

Then on

detπ∗ωXg/Tg

∣∣∣
s

∆
= ΛgH0(Xs,ΩXs)
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we have the Quillen metric

‖ · ‖2Q = ‖ · ‖2L2 · det′∆s

and the following Quillen formula [15]:

c1(detπ∗ωXg/Tg )Q =

√
−1

4π
∂s∂̄s log

det′∆s

det Im τ
=

1

24π2
ωWP.(∗)

Here ωWP is the Kähler form of the Weil-Petersson metric and c1(·)Q denotes
the Chern form with respect to the Quillen metric. Also Im τ is the imaginary part
of the period matrix; in the other words, (det Im τ) is the L2-norm on Λgπ∗ωXg/Tg
with respect to a basis of H0(Sx,ΩXs). For the most general Quillen formula for
families of curves, see [3].

We also have the following equality of Wolpert [7]:

π∗c
2
1(ωXg/Tg ) =

1

2π2
ωWP.(∗∗)

Here by π∗, we mean to take the integral along a generic fiber. The metric on
ωXg/Tg is induced from the Poincaré metric of the fiber.

All of the above metrics are invariant under the action of the modular group Γg.
So all of the above equalities still hold on the moduli space Mg = Tg/Γg which is

considered as a V -manifold. According to [12], as currents (∗∗) holds on Mg. Let
π : Xg →Mg be the universal curve. (We can define Xg = Xg/Γg as a V -manifold.)

In fact, Mg, the Deligne-Mumford compactification of Mg, can also be obtained
as the quotient of Tg with partial boundary by Γg. Recall that, in the sense of

Deligne-Mumford, Mg is obtained from Mg by adding nodal curves. See [9], [12].

2. The proofs of (2) and (3)

Proof of (2). Let X
π→ B be the family of stable curves. Then π induces a holo-

morphic map

B
f→Mg.

By definition

(ω2
X/B) =

∫
B

π∗(c
2
1(ωX/B)) =

1

2π2

∫
B

f∗ω̄WP.

The second equality is the pull-back of (∗∗) by f . Here ω̄WP is the extension of
ωWP to Mg. Let ∆ be those points over which the fibers are singular.

Assume the genus of B is q > 1, and if q = 0 or q = 1, then the number of
points in ∆ is bigger than or equal to 3 or 1, respectively. Then on B −∆ we have
a natural complete metric, the Poincaré metric ωP of constant curvature −1. The
sectional curvature of the corresponding Weil-Petersson metric on Mg is strictly
bounded above by − 1

2π(g−1) . So a simple application of the Schwarz lemma ([13],

Theorem 2′) to the induced map

B −∆
f→Mg

gives us∫
B

f∗ω̄WP =

∫
B−∆

f∗ωWP < 2π(g − 1)

∫
B−∆

ωP = 2π(g − 1) · 2π(2q − 2 + s)

where q is the genus of B. The last step is Gauss-Bonnet.



692 KEFENG LIU

So the quantity (2q − 2 + s) that appeared in the upper bound of (ω2
X/B) is

in fact the negative Euler number of B − ∆. We can compare this proof with
the method in [8] and see that the upper bound of the sectional curvature of the
Weil-Petersson metric and the Schwarz lemma are as effective as the Bogomolov-
Miyaoka-Yau inequality for fibered surface. Note that we need to slightly generalize
Yau’s Schwarz lemma to V -manifolds, which can be easily done as in [7], Lemma
2. Actually since our domain manifold is one-dimensional and smooth, while the
computations in [13] all occur on the domain manifold, both the methods and
results in [13] can be easily carried over.

We note that c1(ωX/B) was computed by Wolpert [11]. By [8] for any section
s : B → X , the height of this section is defined as

h(s) =

∫
B

s∗c1(ωX/B) =

∫
s(B)

c1(ωX/B).

In [11], Wolpert obtained a formula for c1(ωX/B) in terms of a Green function
of the fiber. He also gave an upper bound estimate of this Green function which
is independent of the genus of the fiber. This bound is not effective, but enough
for a proof of the functional field Mordell conjecture. It might be possible to prove
Vojta’s conjectural inequality by giving a precise upper bound estimate of this
Green function. The lower bound of

∫
B f
∗ω̄WP, which we are unable to get, will

give the Xiao and Harris-Cornalba inequalities.

Proof of (3). This is very easy. In fact, given X
π→ CP 1, we have the induced map

CP 1 −∆
f→Mg

where ∆ still denotes the singular set. Since CP 1 with one or two punctures have
C as universal coverings, a simple application of the Schwarz lemma shows that f
must be constant. One can prove the case of the elliptic curve with one puncture
in the same way.

3. The proofs of (1), (4), (5), and (6)

Proof of (1). Since (ω2
X/B) =

∫
B π∗(c

2
1(ωX/B)) = 1

2π2

∫
B f
∗ω̄WP, the positivity of

(ω2
X/B) is obvious. If (ω2

X/B) = 0, then f∗ω̄WP = 0 and the image of the induced

map B
f→ Mg must be one point. This means that π : X → B is isotrivial, i.e.

trivial after a base change. Here since Mg is a V -manifold and ωWP is considered
as a metric on a V -manifold, we need a finite cover.

The positivity of detπ∗ωX/B follows from the Noether formula [17]

detπ∗ωX/B =
1

12
((ω2

X/B) + δ)

where δ is the number of double points on bad fibers.
This means that detπ∗ωX/B is more positive than (ω2

X/B). We can also use the

Quillen formula (∗) to get this result.

The statements in (1) were first proved by Arekelov using algebraic geometry
[1]. This was an important step in his proof of the Shafarevich conjecture for the
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function field. Wolpert discussed the ampleness of ωX/B in detail in [11] by using
differential geometry.

Proofs of (4), (5) and (6). In fact, the equalities in (∗) already tell us a lot. First
on Tg, the Teichmüller space, they tell us

√
−1∂∂̄ log

det′∆2

det Im τ
=

1

6π
ωWP.

This means that the globally defined function log det′∆s

detIm τ
is the test function for

the pseudoconvexity of Tg. This gives (6).
On Mg we use

c1(det π∗ωXg/Mg
)Q =

1

24π2
ωWP,

which tells us that detπ ∗ ωXg/Mg
is a positive line bundle on 1

π2 Mg on one hand
and ωWP is Kähler and rational on the other hand, which implies (4).

For (5), as shown in [9], the key point is to find a positive line bundle on Mg.

We content ourselves in just giving such a line bundle. First note that on Mg we
have the equality of currents

12c1(detπ∗ωXg/Mg
)− δ =

1

2π2
ω̄WP

where δ is the current corresponding to the first Chern class of the line bundle given
by the compactification divisor ∆ = [Mg −Mg].

There are at least three ways to prove this equality. The first is to use the
formula in [3] which gives

π∗c
2
1(ω

Xg/Mg
) = 12c1(det π∗ωXg/Mg

)Q − δ

together with (∗∗) which also holds on Mg by Wolpert [10], [11]. That is

π∗c
2
1(ω

Xg/Mg
) =

1

2π2
ω̄WP.

The second is to use a result of Wolpert in [12]. The third is to directly compute
the degeneracy of det′∆s which is well known in string theory [19]. So ω̄WP is still
rational on Mg. This also proves the famous ampleness of 12λ− δ. Here we still
use δ to denote the line bundle corresponding to ∆, and λ = detπ∗ωXg/Mg

is the

so-called Hodge line bundle. So ω̄WP or 12λ− δ, both positive and rational, can be
used to get the required embedding of Mg and Mg into CPN . For V -manifolds, the
embedding property was discussed by Baily. A quite different way to get a positive
line bundle on the moduli space, also using Weil-Petersson metric, was given by
Wolpert in a series of papers.

As one can see, many interesting properties of the moduli space are direct con-
sequences of the Quillen formula. Actually it is possible to use the Quillen formula
to prove the projectivities of other moduli spaces, since we have similar formula for
higher dimensional manifolds. We can also get some height estimates. For exam-
ple, for Ag → Ag, the universal family of Abelian varieties over the corresponding
moduli space, we have the formula

c1(ωAg/Ag ) = ωWP
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where (ωAg/Ag ) = ΛgΩ1
Ag/Ag

and ωWP is the Kähler class of Weil-Petersson metric

on Ag. In fact, we have a more general formula for the moduli space of compact
complex manifolds with c1 = 0 (see [6]). Then by our method, the degree estimate
in [4] is equivalent to the estimate of the degree of ωWP. It is easy to get effective
height estimates by using the Schwarz lemma and the curvature computation of
Griffiths-Schmid. We leave these as exercises to the readers.
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