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I want to dedicate this lecture to my teacher

Qi-Keng Lu

For his teaching in our 3 persons seminar at

his home in 1987 on classical domains.

I chose this topic to report, since it is a topic

that is very close to Prof. Lu’s research:

Teichmüller space is very similar to classical

domains.

His training has played important role in my

research.



Previous results related to this lecture are in

1. Canonical Metrics on the Moduli Spaces of

Riemann Surfaces I. JDG 68.

2. Canonical Metrics on the Moduli Spaces of

Riemann Surfaces II. JDG 69.

The main topic of today’s lecture is in

3. Good Metrics on the Moduli Spaces of Rie-

mann Surfaces I, II. In Preprints.

by K. Liu, X. Sun, S.-T. Yau.



Moduli spaces and Teichmüller spaces of Rie-

mann surfaces have been studied for many many

years, since Riemann.

They have appeared in many subjects of math-

ematics, from geometry, topology, algebraic

geometry to number theory. They have also

appeared in theoretical physics like string the-

ory.

Many computations of path integrals are re-

duced to integrals of Chern classes and metric

forms on such moduli spaces.

The Teichmüller space Tg, g ≥ 2, is a domain

of holomorphy embedded in Cn with n = 3g −
3. The moduli space Mg is a quasi-projective

orbifold, as a quotient of Tg by mapping class

group.

All results hold forMg,n of moduli with n marked

points.



The moduli spaces and their compactification

have highly nontrivial topology, and have been

actively studied for the past years from many

point of views in mathematics and physics.

Marino-Vafa conjecture we proved gives a closed

formula for the generating series of triple Hodge

integrals of all genera and all possible marked

points, in terms of Chern-Simons knot invari-

ants.

Witten conjecture, proved by Kontsevich, ELSV

formulas relating Hurwitz numbers to Hodge

integrals and many other conjectures related to

Hodge integrals can be deduced from Marino-

Vafa formula by taking various limits.

Gromov-Witten theory can be viewed as a nat-

ural extension of the moduli space theory.



The geometry of the Teichmüller spaces and

moduli spaces of Riemann surfaces also have

very rich structures.

There are many very famous classical metrics

on the Teichmüller and the moduli spaces:

(1). Finsler metrics:

Teichmüller metric;

Caratheodory metric; Kobayashi metric.

(2). Kähler metrics:

The Weil-Petersson metric, (Incomplete).

Cheng-Yau’s Kähler-Einstein metric; McMullen

metric; Bergman metric; Asymptotic Poincare

metric.



(3). New: Ricci metric and perturbed Ricci

metric (LSY).

The above seven metrics are complete Kähler

metrics.

Our project is to study the geometry of the

Teichmüller and the moduli spaces. More pre-

cisely to understand the various metrics on

these spaces, and more important, to intro-

duce new metrics with good property and find

their applications.

The key point is the understanding of the Ricci

and the perturbed Ricci metric: two new

complete Kähler metrics. Their curvatures,

boundary behaviors, are studied in great de-

tails, and are very well understood.

As easy corollary we have proved all of the

above complete metrics are equivalent. Also



proved that all of the complete Kähler met-

rics have strongly bounded geometry in Te-

ichmüller spaces.

From these we have good understanding of

the Kähler-Einstein metric on both the moduli

and the Teichmüller spaces, and find interest-

ing applications to the geometry.

Proof of the stability of the logarithmic cotan-

gent bundle of the moduli spaces and more will

follow.

The new metric we introduced, the perturbed

Ricci metric has bounded negative holomor-

phic sectional and Ricci curvature. It has bounded

geometry and Poincáre growth.

So this new metric has almost all of the pos-

sible good properties: close to be the best, if

holomorphic nonpositive bisetional curvature.



Basics of the Teichmüller and the Moduli

Spaces:

Fix an orientable surface Σ of genus g ≥ 2.

• Uniformization Theorem.

Each Riemann surface of genus g ≥ 2 can be

viewed as a quotient of the hyperbolic plane H2

by a Fuchsian group. Thus there is a unique

KE metric, or the hyperbolic metric on Σ.

The group Diff+(Σ) of orientation preserv-

ing diffeomorphisms acts on the space C of all

complex structures on Σ by pull-back.



• Teichmüller space.

Tg = C/Diff+
0 (Σ)

where Diff+
0 (Σ) is the set of orientation pre-

serving diffeomorphisms which are isotopic to
identity.

• Moduli space.

Mg = C/Diff+(Σ) = Tg/Mod(Σ)

is the quotient of the Teichmüller space by the
mapping class group where

Mod (Σ) = Diff+(Σ)/Diff+
0 (Σ).

• Dimension.

dimC Tg = dimCMg = 3g − 3.

Tg is a pseudoconvex domain in C3g−3. Mg is
a complex orbifold, it can be compactified to
a projective orbifold by adding normal cross-
ing divisors consisting of stable nodal curves,
called the Deligne-Mumford compactification,
or DM moduli.



• Tangent and cotangent space.

By the deformation theory of Kodaira-Spencer

and the Hodge theory, for any point X ∈Mg,

TXMg
∼= H1(X, TX) = HB(X)

where HB(X) is the space of harmonic Bel-

trami differentials on X.

T ∗XMg
∼= Q(X)

where Q(X) is the space of holomorphic quadratic

differentials on X.

For µ ∈ HB(X) and φ ∈ Q(X), the duality

between TXMg and T ∗XMg is

[µ : φ] =
∫

X
µφ.

Teichmüller metric is the L1 norm. The WP

metric is the L2 norm.



Curvature formulas:

• Weil-Petersson metric

Let X be the total space over the Mg and π

be the projection map.

Pick s ∈ Mg, let π−1(s) = Xs. Let s1, · · · , sn

be local holomorphic coordinates on Mg and

let z be local holomorphic coordinate on Xs.

Recall

TsMg
∼= HB(Xs).

The Kodaira-Spencer map is

∂

∂si
7→ Ai

∂

∂z
⊗ dz̄ ∈ HB(Xs).

The Weil-Petersson metric is

hīj =
∫

Xs

AiĀj dv

where dv =
√−1

2 λdz ∧ dz̄ is the volume form of

the KE metric λ on Xs.



By the work of Royden, Siu and Schumacher,

let

ai = −λ−1∂si∂z̄ logλ.

Then

Ai = ∂z̄ai.

Let η be a relative (1,1) form on X. Then

∂

∂si

∫

Xs

η =
∫

Xs

Lviη

where

vi =
∂

∂si
+ ai

∂

∂z

is called the harmonic lift of ∂
∂si

.

In the following, we let

fīj = AiĀj and eīj = T (fīj).

Here T = (2+1)−1 with Laplacian 2 = −λ−1∂z∂z̄,

is the Green operator. The functions fīj and

eīj will be the building blocks of the curvature

formula.



• Curvature formula of the WP metric.
By the work of Wolpert, Siu and Schumacher,
the curvature of the Weil-Petersson metric is

Rījkl̄ = −
∫

Xs

(eījfkl̄ + eīlfkj̄) dv.

Remark: (1). The sign of the curvature of
the WP metric can be seen directly.

(2). The precise upper bound − 1
2π(g−1) of the

holomorphic sectional curvature and the Ricci
curvature of the WP metric can be obtained by
spectrum decomposition of the operator (2 +
1).

(3). The curvature of the WP metric is not
bounded from below. But surprisingly the Ricci
and the perturbed Ricci metrics have bounded
(negative) curvatures.

The curvature of the Ricci metric has more
than 80 terms, since it is fourth order deriva-
tives. Perturbed Ricci even has more.



Observation:

The Ricci curvature of the Weil-Petersson met-

ric is bounded above by a negative constant,

one can use the negative Ricci curvature of the

WP metric to define a new metric.

We call this metric the Ricci metric

τīj = −Ric(ωWP )īj.

We proved the Ricci metric is complete, Poincare

growth, and has bounded geometry.

We perturbed the Ricci metric with a large

constant multiple of the WP metric. We define

the perturbed Ricci metric

ωτ̃ = ωτ + C ωWP .

We proved that the perturbed Ricci metric is

complete, Poincare growth and has bounded

negative holomorphic sectional, negative Ricci

curvature, and bounded geometry.



Selected applications of these metrics:

Example: Royden proved that

Teichmüller metric = Kobayashi metric.

This implies that the isometry group of Tg is
exactly the mapping class group.

Example: Ahlfors: the Weil-Petersson (WP)
metric is Kähler, the holomorphic sectional cur-
vature is negative.

Masur: WP metric is incomplete.

Wolpert studied WP metric in great details,
found many important applications in topol-
ogy(relation to Thurston’s work) and algebraic
geometry(relation to Mumford’s work).

Each family of semi-stable curves induces a
holomorphic maps into the moduli space.

Yau’s Schwarz lemma: very sharp geometric
height inequalities in algebraic geometry.



Corollaries include:

1. Kodaira surface X has strict Chern number

inequality: c1(X)2 < 3c2(X).

2. Beauville conjecture: the number of sin-

gular fibers for a non-isotrivial family of semi-

stable curves over P1 is at least 5.

Geometric Height Inequalities, by K. Liu, MRL

1996.

Example: McMullen proved that the moduli

spaces of Riemann surfaces are Kähler hyper-

bolic, by using his own metric which he ob-

tained by perturbing the WP metric.

This means bounded geometry and the Kähler

form on the Teichmüller space is of the form

dα with α bounded one form.



The lowest eigenvalue of the Laplacian on the

Teichmüller space is positive.

Only middle dimensional L2 cohomology is nonzero

on the Teichmüller space.

Example: We have proved that the complete

Kähler metrics all have strongly bounded ge-

ometry.

In particular, the curvature of KE metric and

all of its covariant derivatives are bounded on

the Teichmüller space: strongly bounded ge-

ometry.

Algebro-geometric consequences: the log cotan-

gent bundle of the Deligne-Mumford moduli

space of stable curves is stable.

The (log) cotangent bundle is ample....



Today I will discuss the goodness of the Weil-

Petersson metric, the Ricci and the perturbed

Ricci metric in the sense of Mumford, and their

applications in understanding the geometry of

moduli spaces.

The question that WP metric is good or not

has been open for many years, according to

Wolpert.

Corollaries include:

Chern classes can be defined on the moduli

spaces by using the WP metric, the Ricci met-

ric or the perturbed Ricci metric; the L2-index

theory and fixed point formulas can be applied

on the Teichmüller spaces.

The log cotangent bundle is Nakano positive;

vanishing theorems of L2 cohomology; rigidity

of the moduli spaces.



Goodness of Hermitian Metrics

For an Hermitian holomorphic vector bundle

(F, g) over a closed complex manifold M , the

Chern forms of g represent the Chern classes

of F . However, this is no longer true if M is

not closed since g may be singular.

X: quasi-projective variety of dimCX = k by

removing a divisor D of normal crossings from

a closed smooth projective variety X̄.

Ē: a holomorphic vector bundle of rank n over

X̄ and E = Ē |X.

h: Hermitian metric on E which may be singu-

lar near D.



Mumford introduced conditions on the growth

of h, its first and second derivatives near D

such that the Chern forms of h, as currents,

represent the Chern classes of Ē.

We cover a neighborhood of D ⊂ X̄ by finitely

many polydiscs
{
Uα =

(
∆k, (z1, · · · , zk)

)}
α∈A

such that Vα = Uα\D = (∆∗)m×∆k−m. Namely,

Uα ∩D = {z1 · · · zm = 0}. We let U =
⋃

α∈A Uα

and V =
⋃

α∈A Vα. On each Vα we have the

local Poincaré metric

ωP,α =

√−1

2
(

m∑

i=1

1

2|zi|2 (log |zi|)2
dzi ∧ dz̄i+

k∑

i=m+1

dzi ∧ dz̄i).



Definition: Let η be a smooth local p-form

defined on Vα.

(1). We say η has Poincaré growth if there is

a constant Cα > 0 depending on η such that

|η(t1, · · · , tp)|2 ≤ Cα

p∏

i=1

‖ti‖2ωP,α

for any point z ∈ Vα and t1, · · · , tp ∈ TzX.

(2). η is good if both η and dη have Poincaré

growth.

Definition: An Hermitian metric h on E is

good if for all z ∈ V , assuming z ∈ Vα, and

for all basis (e1, · · · , en) of Ē over Uα, if we let

hīj = h(ei, ej), then

(1).
∣∣∣hīj

∣∣∣ , (deth)−1 ≤ C
(∑m

i=1 log |zi|
)2n

for

some C > 0;



(2). The local 1-forms
(
∂h · h−1

)
αγ

are good

on Vα. Namely the local connection and cur-

vature forms of h have Poincaré growth.

• Properties of Good Metrics

(1). The definition of Poincaré growth is in-

dependent of the choice of Uα or local coordi-

nates on it.

(2). A form η ∈ Ap(X) with Poincaré growth

defines a p-current [η] on X̄. In fact we have
∫

X
|η ∧ ξ| < ∞

for any ξ ∈ Ak−p(X̄).

(3). If both η ∈ Ap(X) and ξ ∈ Aq(X) have

Poincaré growth, then η∧ξ has Poincaré growth.

(4). For a good form η ∈ Ap(X), we have

d[η] = [dη].



The importance of a good metric on E is that

we can compute the Chern classes of Ē via the

Chern forms of h as currents.

Mumford has proved:

Theorem. Given an Hermitian metric h on

E, there is at most one extension Ē of E to X̄

such that h is good.

Theorem. If h is a good metric on E, the

Chern forms ci(E, h) are good forms. Further-

more, as currents, they represent the corre-

sponding Chern classes ci(Ē) ∈ H2i(X̄,C).

Remark: With the growth assumptions on the

metric and its derivatives, we can integrate by

part, so Chern-Weil theory still holds.



Good Metrics on Moduli Spaces

Now we consider the metrics induced by the

Weil-Petersson metric, the Ricci and perturbed

Ricci metrics on the logarithmic extension of

the holomorphic tangent bundles over the mod-

uli space of Riemann surfaces.

Our theorems hold for the moduli space of Rie-

mann surfaces with punctures.

Let Mg be the moduli space of genus g Rie-

mann surfaces with g ≥ 2 and let M̄g be its

Deligne-Mumford compactification. Let n =

3g − 3 be the dimension of Mg and let Y =

M̄g \Mg be the compactification divisor.

Let Ē = T ∗̄Mg
(logY ) be the logarithmic cotan-

gent bundle over M̄g. For any Kähler metric g



on Mg, let g∗ be the induced metric on Ē. We
know that near the boundary {t1 · · · tm = 0},

(
dt1
t1

, · · · ,
dtm

tm
, dtm+1, · · · , dtn

)

is a local holomorphic frame of Ē.

In these notations, near the boundary the log
tangent bundle F = TM̄g

(logY ) has local frame

{
t1

∂

∂t1
, · · · , tm

∂

∂tm
,

∂

∂tm+1
, · · · ,

∂

∂tn

}
.

We have proved several results about the good-
ness of the metrics on moduli spaces. By very
subtle analysis on the metric, connection and
curvature tensors. We first proved the follow-
ing theorem:

Theorem. The metric h∗ on the logarithmic
cotangent bundle Ē over the DM moduli space
induced by the Weil-Petersson metric is good
in the sense of Mumford.



Based on the curvature formulae of the Ricci
and perturbed Ricci metrics we have derived
before, we have proved the following theorem
from much more detailed and harder analysis:
estimates over 80 terms.

Theorem. The metrics on the log tangent
bundle TM̄g

(logY ) over the DM moduli space
induced by the Weil-Petersson metric, the Ricci
and perturbed Ricci metrics are good in the
sense of Mumford.

A direct corollary is

Theorem. The Chern classes ck

(
TM̄g

(logY )
)

are represented by the Chern forms of the Weil-
Petersson, Ricci and perturbed Ricci metrics.

This in particular means we can use the ex-
plicit formulas of Chern forms of the Weil-
Petersson metric derived by Wolpert to repre-
sent the classes, as well as those Chern forms
of the Ricci and the perturbed Ricci metric.



Dual Nakano Negativity of WP Metric

It was shown by Ahlfors, Royden and Wolpert

that the Weil-Petersson metric have negative

Riemannian sectional curvature.

Schumacher showed that the curvature of the

WP metric is strongly negative in the sense of

Siu.

In 2005, we showed that the curvature of the

WP metric is dual Nakano negative.

Let (Em, h) be a holomorphic vector bundle

with a Hermitian metric over a Kähler manifold

(Mn, g). The curvature of E is given by

Pījαβ̄ = −∂α∂β̄hīj + hpq̄∂αhiq̄∂β̄hpj̄.

(E, h) is Nakano positive if the curvature P

defines a positive form on the bundle E ⊗ TM .



Namely, Pījαβ̄CiαC̄jβ > 0 for all n× n complex

matrix C 6= 0.

E is dual Nakano negative if the dual bundle

(E∗, h∗) is Nakano positive. Our result is

Theorem. The Weil-Petersson metric on the

tangent bundle TMg are dual Nakano negative.

To prove this theorem, we only need to show

that (T ∗Mg, h∗) is Nakano positive. Let Rījkl̄

be the curvature of TMg and Pījkl̄ be the cur-

vature of the cotangent bundle.

We first have Pmn̄kl̄ = −hin̄hmj̄Rījkl̄.

Thus if we let akj =
∑

m hmj̄Cmk, we then have

Pmn̄kl̄C
mkC̄nl = −

∑

i,j,k,l

Rījkl̄aijālk.



Recall that at X ∈Mg we have

Rījkl̄ = −
∫

X

(
eījfkl̄ + eīlfkj̄

)
dv.

By combining the above two formulae, to prove

that the WP metric is Nakano negative is equiv-

alent to show that
∫

X

(
eījfkl̄ + eīlfkj̄

)
aijālk dv > 0.

For simplicity, we first assume that matrix [aij]

is invertible.

Write T = (2 + 1)−1 the Green operator. Re-

call eīj = T
(
fīj

)
where fīj = AiĀj and Ai is

the harmonic representative of the Kodaira-

Spencer class of ∂
∂ti

.

Let Bj =
∑n

i=1 aijAi. Then the inequality we

need to prove is equivalent to

−
∑

j,k

R(Bj, B̄k, Ak, Āj) =



∑

j,k

∫

X

(
T

(
BjĀj

)
AkB̄k + T

(
BjB̄k

)
AkĀj

)
dv ≥ 0.

Let µ =
∑

j BjĀj. Then the first term in the

above equation is
∑

j,k

∫

X
T

(
BjĀj

)
AkB̄k dv =

∫

X
T (µ)µ̄ dv ≥ 0.

We then let G(z, w) be the Green’s function of

the operator T . Let

H(z, w) =
∑

j

Āj(z)Bj(w).

The second term is
∑

j,k

∫

X
T

(
BjB̄k

)
AkĀj dv =

=
∫

X

∫

X
G(z, w)H(z, w)H̄(z, w)dv(w)dv(z) ≥ 0

where the last inequality follows from the fact

that the Green’s function G positive.



Applications

As corollaries of goodness and the positivity

or negativity of the metrics, first we directly

obtain:

Theorem. The Chern classes of the log cotan-

gent bundle of the moduli spaces of Riemann

surfaces are positive.

We have several corollaries about cohomology

groups of the moduli spaces:

Theorem. The Dolbeault cohomology of the

log tangent bundle TM̄g
(logY ) on M̄g com-

puted via the singular WP metric g is isomor-

phic to the ordinary cohomology (or Cech co-

homology) of the sheaf TM̄g
(logY ).

Here we need the goodness of the metric g

induced from the WP metric in a substantial

way.



Saper proved that the L2-cohomology of Mg

of the WP metric h (with trivial bundle C) is

the same as the ordinary cohomology of M̄g.

Parallel to his result, we have

Theorem.

H∗
(2)

(
(Mg, ωτ), (TMg, ωWP )

) ∼= H∗(M̄g, F ).

An important and direct application of the good-

ness of the WP metric and its dual Nakano

negativity is the vanishing theorem of

L2-cohomology group:

Theorem. The L2-cohomology groups

H
0,q
(2)

(
(Mg, ωτ) ,

(
TM̄g

(logY ), ωWP

))
= 0

unless q = n. Here ωτ is the Ricci metric.

We put the Ricci metric on the base manifold

to avoid the incompleteness of the WP metric.



This implies a result of Hacking

Hq(M̄g, TM̄g
(logY )) = 0, q 6= n.

To prove this theorem, we first consider the

Kodaira-Nakano identity

2∂̄ = 2∇ +
√−1

[
∇2,Λ

]
.

We then apply the Nakano negativity of the

WP metric to get the vanishing theorem by

using the goodness to deal with integration by

part. There is no boundary term.

Remark: (1). As corollaries, we also have:

the moduli space of Riemann surfaces is rigid:

no holomorphic deformation.

(2). We are proving that the KE metric, Bergman

metric are also good metrics.



Thank You All!


