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Twenty years ago, at his Nankai Institute of

Mathematics, a lecture of Prof. S.-S. Chern

on the Atiyah-Singer index formula introduced

me to the beautiful subject of geometry and

topology.

He described Chern classes and the AS index

formula and its three proofs. That is the first

seminar on modern mathematics I had ever at-

tended. That changed my life.

I dedicate this lecture in memory of him.



I would like to give an overview of several re-

sults we obtained related to the moduli spaces

of Riemann surfaces during the past two years.

We have two types of results:

Geometric aspect: Detailed understanding of

two new metrics: the Ricci and the perturbed

Ricci metric, as well as all of the classical com-

plete metrics: especially the Kähler-Einstein

metric of Cheng-Yau.

Algebraic geometric result: stability of the log-

arithmic cotangent bundle of the moduli spaces.

Our project on the geometric aspect is to un-

derstand the various metrics on moduli spaces,

and more importantly to introduce new metrics

with good (hope to be best possible) geome-

try properties and find their applications. The

results are contained in



1. Canonical Metrics in the Moduli Spaces of

Riemann Surfaces I. math.DG/0403068. To

appear in JDG.

2. Canonical Metrics in the Moduli Spaces of

Riemann Surfaces II. math.DG/0409220. To

appear in JDG.

3. Good Metrics on Moduli Spaces of Riemann

Surfaces. In preparation.

by K. Liu, X. Sun, S.-T. Yau.

Remark: For simplicity we state our results for

Mg, the moduli of closed Riemann surfaces.

All of these results hold for Mg,n, the moduli

of Riemann surface with n punctures (marked

points).



Topological aspect: The proofs of the Mariño-

Vafa formula which gives closed formulas of

the generating series of triple Hodge integrals

of all genera and any number of marked points

and several consequences; proofs of the two

and three partition formulas of this type,

The mathematical theory of topological vertex

which gives complete closed formulas of the

Gromov-Witten invariants of all genera and all

degrees for all local toric Calabi-Yau manifolds,

All expressed in terms of Chern-Simons knot

invariants.

The project is motivated by conjectures of Vafa

and his collaborators on the large N duality in

Chern-Simons theory and string theory. The

results are contained in



(1). A Proof of a conjecture of Mariño-Vafa

on Hodge Integrals, JDG 2003.

(2). A Formula of Two Partition Hodge Inte-

grals, math.AG/0310273.

(3). Mariño-Vafa Formula and Hodge Integral

Identities, math.AG/0308015.

By C.-C. Liu, K. Liu and J. Zhou.

(4). A Mathematical Theory of Topological

Vertex, math.AG/0408426.

By J. Li, C.-C. Liu, K. Liu and J. Zhou.



Basics of the Teichmüller and the Moduli

Spaces:

Moduli spaces and Teichmüller spaces of Rie-

mann surfaces have been studied for many many

years, since Riemann, and by Ahlfors, Bers,

Royden, Deligne, Mumford, Yau, Siu, Thurston,

Faltings, Witten, Kontsevich, McMullen, Gieseker,

Mazur, Harris, Wolpert, Bismut, Sullivan, Mad-

sen and many many others and many in the

audience.... A generation of young mathemati-

cians. Still many unsolved problems.

They have appeared in many subjects of math-

ematics from geometry, topology, algebraic ge-

ometry, to number theory.

They have also appeared in theoretical physics

like string theory. Many computations of path

integrals are reduced to integrals of measures

or Chern classes on such moduli spaces.



Fix an orientable surface Σ of genus g ≥ 2.

• Uniformization Theorem: Each Riemann sur-

face of genus g ≥ 2 can be viewed as a quo-

tient of the hyperbolic plane H2 by a Fuchsian

group. Thus there is a unique Kähler-Einstein

metric, or the hyperbolic metric on Σ.

The group Diff+(Σ) of orientation preserv-

ing diffeomorphisms acts on the space C of all

complex structures on Σ by pull-back.

• Teichmüller space:

Tg = C/Diff+
0 (Σ)

where Diff+
0 (Σ) is the set of orientation pre-

serving diffeomorphisms which are isotopic to

identity.

• Moduli space:

Mg = C/Diff+(Σ) = Tg/Mod(Σ)



is the quotient of the Teichmüller space by the

mapping class group where

Mod (Σ) = Diff+(Σ)/Diff+
0 (Σ).

• Dimension:

dimC Tg = dimCMg = 3g − 3.

Tg is a pseudoconvex domain in C3g−3. Mg is

a complex orbifold, quasi-projective.

• Compactification: Riemann surfaces are al-

gebraic curves. Geometric invariant theory of

Mumford gives an algebro-geometric construc-

tion of the moduli spaces. By adding stable

nodal curves we get the projective Deligne-

Mumford compactification Mg,

D = Mg \Mg is a divisor of normal crossings.



• Tangent and cotangent space: By the de-

formation theory of Kodaira-Spencer and the

Hodge theory, for any point X ∈Mg,

TXMg
∼= H1(X, TX) = HB(X)

where HB(X) is the space of harmonic Bel-

trami differentials on X.

T ∗XMg
∼= Q(X)

where Q(X) = H0(X, K2
X) is the space of holo-

morphic quadratic differentials on X.

For µ ∈ HB(X) and φ ∈ Q(X), the duality

between TXMg and T ∗XMg is

[µ : φ] =
∫

X
µφ.

Teichmüller metric is the L1 norm. The Weil-

Petersson (WP) metric is the L2 norm. The

WP metric is incomplete.



Observation:

The Ricci curvature of the Weil-Petersson met-

ric is bounded above by a negative constant,

one can use the negative Ricci curvature of the

WP metric to define a new metric.

We call this metric the Ricci metric

τīj = −Ric(ωWP )īj.

It turns out that this is a complete Kähler met-

ric, some of its geometric properties are better

than those of WP metric in many aspects, but

not good enough.

We perturb the Ricci metric with a large con-

stant multiple of the WP metric to get a new

complete Kähler metric, the perturbed Ricci

metric

ωτ̃ = ωτ + C ωWP .

This metric has some desired good curvature

properties we need.



There are many very famous classical metrics

on the Teichmüller and the moduli spaces:

(1). Finsler metrics: Teichmüller metric;

Caratheodory metric; Kobayashi metric.

(2). Kähler metrics: The (incomplete) Weil-

Petersson metric. Cheng-Yau Kähler-Einstein

metric; McMullen metric; Asymptotic Poincare

metric; Bergman metric.

New Kähler metrics: Ricci metric and the per-

turbed Ricci metric.

Several of these metrics have important appli-

cations in the study of the geometry and topol-

ogy of the moduli and the Teichmüller spaces,

in algebraic geometry, in string theory and in

three manifold topology.



Conventions: For a Kähler manifold (Mn, g)

with local holomorphic coordinates z1, · · · , zn,

the curvature of g is given by

Rījkl̄ = −
∂2gīj

∂zk∂z̄l
+ gpq̄∂giq̄

∂zk

∂gpj̄

∂z̄l
.

In this case, the Ricci curvature is

Rīj = −gkl̄Rījkl̄ = −∂zi∂z̄j
log det(gīj).

The holomorphic sectional curvature is nega-

tive means

R(v, v̄, v, v̄) < 0.

Two Kähler metrics g1 and g2 are equivalent

or two norms ‖ · ‖1 and ‖ · ‖2 are equivalent if

there is a constant C > 0 such that

C−1g1 ≤ g2 ≤ Cg1

or

C−1‖ · ‖1 ≤ ‖ · ‖2 ≤ C‖ · ‖1.

We denote this by g1 ∼ g2 or ‖ · ‖1 ∼ ‖ · ‖2.



Our Goal and Results:

(1) Understand the two new complete Kähler

metrics, the Ricci metric and the Perturbed

Ricci metric. We have rather complete under-

standing of these two new metrics.

(2) With the help of the new metrics we have

much better understanding of the Kähler-Einstein

metric: The curvature of KE metric and all of

its covariant derivatives are bounded on the

Teichmüller space. Injectivity radius has lower

bound.

(3) Algebro-geometric consequences: the log-

arithmic cotangent bundle of the DM moduli

space of stable curves is Mumford stable.

(4) Good understanding of the complete classi-

cal metrics: all of the classical complete met-

rics are proved to be equivalent to the new

metrics.



(5) The two new metrics and the Weil-Petersson
metric are proved to be good in the sense of
Mumford.

Now we give the detailed statements of our
results:

Theorem. Let τ be the Ricci metric on the
moduli space Mg. Then
• τ is equivalent to the asymptotic Poincaré
metric.
• The holomorphic sectional curvature of τ is
asymptotically negative in the degeneration di-
rections.
• The holomorphic bisectional curvature, there-
fore the holomorphic sectional curvature, and
the Ricci curvature of τ are bounded.

We can explicitly write down the asymptotic
behavior of this metric: asymptotic Poincaré:

m∑

i=1

Ci |dti|2
|ti|2 log2|ti|

+
n∑

i=m+1

ds2i .



ti’s are the coordinates in the degeneration di-

rections: {ti = 0} define the divisor.

To get control on the signs of the curvatures,

we need to perturb the Ricci metric. Recall

that the curvatures of the WP metric are neg-

ative.

Theorem. Let ωτ̃ = ωτ + CωWP be the per-

turbed Ricci metric on Mg. Then for suitable

choice of the constant C, we have

• τ̃ is a complete Kähler metric equivalent to

the asymptotic Poincaré metric.

• The holomorphic sectional curvature and the

Ricci curvature of τ̃ are bounded from above

and below by negative constants.

• The bisectional curvature is bounded.

Only through the understanding of the new

metrics, we were able to get the following re-

sult about the KE metric which means strongly

bounded geometry:



Theorem. The curvature of the KE metric

and all of its covariant derivatives are uniformly

bounded on the Teichmüller spaces, and its

injectivity radius has positive lower bound.

We also have the bounded geometry of the

new metrics:

Theorem. Both the Ricci and the perturbed

Ricci metric have bounded geometry on the

Teichmüller spaces: the curvatures are uni-

formly bounded and the injectivity radius has

positive lower bounds.

Remark: The perturbed Ricci metric is the

first known complete Kähler metric on the mod-

uli space whose holomorphic sectional and Ricci

curvature have negative bounds, and bounded

geometry. Note that the WP metric does not

have bounded curvature and is incomplete.



The detailed understanding of the boundary

behaviors of these metrics gives us geometric

corollaries.

Let Ē denote the unique logarithmic extension

of the cotangent bundle of Mg. Local sections

near compactification divisor has the form:

m∑

i=1

ai(t, s)
dti
ti

+
n∑

i=m+1

ai(t, s)dsi,

where recall that the compactification divisor

is defined by
∏m

i=1 ti = 0, with n = 3g − 3.

Theorem. The first Chern class c1(Ē) = [ωτ ] =

[ωKE] is positive and Ē is Mumford stable with

respect to c1(Ē).

This means for any proper coherent sub-sheaf

F of Ē, we have

deg (F )

rank (F )
<

deg (Ē)

rank (Ē)



where the degree is with respect to c1(Ē):

deg (F ) =
∫

Mg

c1(F )c1(Ē)n−1.

This theorem also implies that the moduli spaces

are of logarithmic general type.

A corollary of our understanding of the new

metrics and the Schwarz lemma of Yau is:

Theorem. On the moduli space Mg, the Te-

ichmüller metric ‖ · ‖T , the Kobayashi metric,

the Carathéodory metric ‖ · ‖C, the Kähler-

Einstein metric ωKE, the McMullen metric ωM ,

the asymptotic Poincaré metric ωP , the in-

duced Bergman metric ωB are equivalent to

the Ricci metric ωτ and the perturbed Ricci

metric ωτ̃ . Namely

ωτ̃ ∼ ωKE ∼ ωP ∼ ωM ∼ ωB ∼ ωτ



and

‖ · ‖K = ‖ · ‖T ∼ ‖ · ‖C ∼ ‖ · ‖M ∼ ‖ · ‖τ .

Remark: Wolpert: The question on the rela-

tionship between Carathéodory metric and the

Bergman metric was raised by Bers in the early

70s. Yau conjectured the equivalences of Te-

ichmüller metric and Bergman metric to the

KE metric in early 80s.

The equivalences ‖ · ‖K = ‖ · ‖T ∼ ‖ · ‖M were

known before by Royden and McMullen.

The following theorem is a trivial corollary, since

the metrics are asymptotic Poincaré:

Theorem. The L2 cohomology groups of Mg

of the above complete Kähler metrics are all

the same as the de Rham cohomology groups

of Mg.



Recall that goodness of a Kähler metric (in the

sense of Mumford) means that near the bound-

ary the metric tensor has logarithmic growth,

the connection form and curvature form ma-

trices have Poincaré type growth. The Chern

classes of the logarithmic cotangent bundle can

be computed by using the good metric.

Theorem. The Weil-Petersson metric, the Ricci

metric and the perturbed Ricci metric are good

metrics.

The L2 index and fixed point formula may be

applied to the Teichmüller spaces to under-

stand the representations of mapping class groups.

The goodness of WP metric has been unknown

for a long time. We are double-checking that

the KE metric is also good.

The ideas of the proofs: There are 85 terms

in the curvature formula of the Ricci metric.



Even more for the perturbed Ricci metric. Too

complicated to see any property. We work out

its asymptotics near the boundary. Note that

the curvature of the WP metric only has two

terms.

To compute the asymptotics of the Ricci met-

ric and its curvature, we work on surfaces near

the boundary of Mg. The geometry of these

surfaces localized on the pinching collars.

We construct approximation solutions on the

local model, single out the leading terms and

then carefully estimate the error terms one by

one. The estimates are long and complicated

computations, since the estimates need to be

very precise. Even more subtle are the higher

order estimates in proving the goodness.

Through careful analysis, we perturb the Ricci

metric by the WP metric to control the signs



of the curvature in the interior of the mod-

uli, and the non-degenerate direction near the

boundary.

The proof of the stability of the logarithmic

cotangent bundle needs the detailed understand-

ing of the boundary behaviors of the KE met-

ric to control the convergence of the integrals

of the degrees. Also needed is a basic non-

splitting property of the mapping class group.

Bounded geometry of KE: The proofs used

Ricci flow and the higher order estimates of

curvature. The proof of lower bound of injec-

tivity radius used minimal surfaces.

I only list some precise asymptotic estimates.

Let (t1, · · · tm, sm+1, · · · sn) be the pinching co-

ordinates, ui = li
2π, li ≈ − 2π2

log |ti| short geodesic

lengths and u0 =
∑

ui +
∑ |sj|. Recall that

{tj = 0} define the boundary:



Theorem. The Ricci metric τ has the asymp-

totic behaviors:

(1) τīi = 3
4π2

u2
i

|ti|2(1 + O(u0)) if i ≤ m;

(2) τīj = O

(
u2

i u2
j

|titj| (ui+uj)

)
if i, j ≤ m and i 6= j;

(3) τīj = O
(u2

i
|ti|

)
if i ≤ m < j;

(4) τīj = O(1) if i, j ≥ m + 1.

We then derive the curvature asymptotics:

Theorem. The holomorphic sectional curva-

ture of the Ricci metric τ satisfies

R̃īiīi =
3u4

i

8π4|ti|4
(1 + O(u0)) < 0

if i ≤ m and

R̃īiīi = O(1)

if i ≥ m + 1.

It is important to have the precise estimates of

the boundary behaviors and the bounds in the



non-degeneration directions, since the leading

terms have same order and different signs. More

precise higher order estimates and various lifts

of local vector fields on Mg to total space are

needed for the goodness of the metrics.



Now we discuss the results on the topological

aspect of the moduli spaces.

String Theory, as the unified theory of all fun-

damental forces, should be unique. But now

there are Five different looking string theories.

Physicists: these theories should be equivalent,

in a way dual to each other: their ”partition

functions” should be ”equivalent”. The identi-

fications of partition functions of different the-

ories have produced many surprisingly beautiful

mathematical formulas.

The mathematical proofs of such formulas de-

pend on Localization Techniques on various fi-

nite dimensional moduli spaces. More precisely

integrals of Chern classes on moduli spaces:



Combined with various mathematics: Chern-

Simons knot invariants, combinatorics of sym-

metric groups, Kac-Moody algebras’ represen-

tations, Calabi-Yau, geometry and topology of

moduli space of stable maps....

A simple technique we use: Functorial Local-

ization transfers computations on complicated

spaces to simple spaces: Connects computa-

tions of mathematicians and physicists.

I will first talk about the Mariño-Vafa formula,

and then the other results if have time.



The Mariño-Vafa Conjecture:

For various purposes we need to compute Hodge

integrals (i.e. intersection numbers of λ classes

and ψ classes) on the Deligne-Mumford moduli

space of stable curves Mg,h.

A point in Mg,h consists of (C, x1, . . . , xh), a

(nodal) curve and h smooth points on C.

The Hodge bundle E is a rank g vector bundle

over Mg,h whose fiber over [(C, x1, . . . , xh)] is

H0(C, ωC). The λ classes are Chern Classes:

λi = ci(E) ∈ H2i(Mg,h;Q).

The cotangent line T ∗xi
C of C at the i-th marked

point xi gives a line bundle Li over Mg,h. The

ψ classes are also Chern classes:

ψi = c1(Li) ∈ H2(Mg,h;Q).



Define

Λ∨g (u) = ug − λ1ug−1 + · · ·+ (−1)gλg.

Mariño-Vafa formula: Generating series over g

of triple Hodge integrals

∫

Mg,h

Λ∨g (1)Λ∨g (τ)Λ∨g (−τ − 1)
∏h

i=1(1− µiψi)
,

can be expressed by close formulas of finite

expression in terms of representations of sym-

metric groups, or Chern-Simons knot invari-

ants. Here τ is a parameter.

Conjectured from large N duality between Chern-

Simons and string theory.

Remark: Mumford first computed some low

genus intersection numbers in early 80s. Wit-

ten conjecture in early 90s is about the inte-

grals of the ψ classes.



Conifold transition: Resolve singularity in two
ways:

Conifold X
{(

x y
z w

)
∈ C4 : xw − yz = 0

}

(1). Deformed conifold T ∗S3

{(
x y
z w

)
∈ C4 : xw − yz = ε

}

(ε real positive number)

(2). Resolved conifold X̃ = O(−1)⊕O(−1) →
P1

{
([Z0, Z1],

(
x y
z w

)
) ∈ P1 ×C4 :

(x, y) ∈ [Z0, Z1]
(z, w) ∈ [Z0, Z1]

}

X̃ ⊂ P1 ×C4

↓ ↓
X ⊂ C4



Witten 92: The open topological string the-

ory on the deformed conifold T ∗S3 is equivalent

to Chern-Simons gauge theory on S3.

Gopakumar-Vafa 98, Ooguri-Vafa 00: The

open topological string theory on the deformed

conifold T ∗S3 is equivalent to the closed topo-

logical string theory on the resolved conifold

X̃.

Vafa and his collaborators 98-04: For the

past several years, Vafa et al developed these

duality ideas into the most powerful and effec-

tive tool to get closed formulas for the Gromov-

Witten invariants on all local toric Calabi-Yau

manifolds: Topological Vertex.

We have a rather complete mathematical the-

ory of topological vertex. Start with Mariño-

Vafa formula.



Mathematical Consequence of the Duality:

Chern-Simons Partition function:

〈Z(U, V )〉 = exp(−F (λ, t, V ))

U : holonomy of the U(N) Chern-Simons gauge

field around the knot K ⊂ S3; V : U(M) matrix

〈Z(U, V )〉: Chern-Simons knot invariants of K.

F (λ, t, V ): Generating series of the open Gromov-

Witten invariants of (X̃, LK), where LK is a

Lagrangian submanifold of the resolved coni-

fold X̃ “canonically associated to” the knot K.

(Taubes).

t’Hooft large N expansion, and canonical iden-

tifications of parameters similar to mirror for-

mula: duality identification at level k:

λ =
2π

k + N
, t =

2πiN

k + N
.



Special case: When K is the unknot, 〈Z(U, V )〉
was computed in the zero framing by Ooguri-

Vafa and in any framing τ ∈ Z by Mariño-Vafa.

Comparing with Katz-Liu’s computations of

F (λ, t, V ), Mariño-Vafa conjectured a striking

formula about triple Hodge integrals in terms

of Chern-Simons: representations and combi-

natorics of symmetric groups.

The framing in Mariño-Vafa’s computations

corresponds to choice of the circle action on

the pair (X̃, Lunknot) in Katz-Liu’s localization

computations. Both choices are parametrized

by an integer τ .



The Mariño-Vafa Formula:

Geometric side: For every partition µ = (µ1 ≥
· · · ≥ µl(µ) ≥ 0), define triple Hodge integral:

Gg,µ(τ) = A(τ)·
∫

Mg,l(µ)

Λ∨g (1)Λ∨g (−τ − 1)Λ∨g (τ)
∏l(µ)

i=1(1− µiψi)
,

with

A(τ) = −
√−1|µ|+l(µ)

|Aut(µ)| [τ(τ+1)]l(µ)−1 ∏l(µ)
i=1

∏µi−1
a=1 (µiτ+a)
(µi−1)! .

Introduce generating series

Gµ(λ; τ) =
∑

g≥0

λ2g−2+l(µ)Gg,µ(τ).

Special case when g = 0:

∫

M0,l(µ)

Λ∨0(1)Λ∨0(−τ − 1)Λ∨0(τ)
∏l(µ)

i=1(1− µiψi)

=
∫

M0,l(µ)

1
∏l(µ)

i=1(1− µiψi)
= |µ|l(µ)−3



for l(µ) ≥ 3, and we use this expression to

extend the definition to the case l(µ) < 3.

Introduce formal variables p = (p1, p2, . . . , pn, . . .),

and define

pµ = pµ1 · · · pµl(µ)

for any partition µ. (⇔ Tr V µj)

Generating series for all genera and all possible

marked points:

G(λ; τ ; p) =
∑

|µ|≥1

Gµ(λ; τ)pµ.

Representation side: χµ: the character of

the irreducible representation of symmetric group

S|µ| indexed by µ with |µ| = ∑
j µj,

C(µ): the conjugacy class of S|µ| indexed by µ.



Introduce:

Wµ(λ) =
∏

1≤a<b≤l(µ)

sin [(µa − µb + b− a)λ/2]

sin [(b− a)λ/2]

· 1
∏l(ν)

i=1
∏µi

v=1 2 sin [(v − i + l(µ))λ/2]
.

This has an interpretation in terms of quantum

dimension in Chern-Simons knot theory.

Define:

R(λ; τ ; p) =
∑

n≥1

(−1)n−1

n

∑
µ

[
∑

∪n
i=1µi=µ

n∏

i=1

∑

|νi|=|µi|

χνi(C(µi))

zµi
e
√−1(τ+1

2)κνiλ/2Wνi(λ)]pµ

where µi are sub-partitions of µ, zµ =
∏

j µj!j
µj

and κµ = |µ| + ∑
i(µ

2
i − 2iµi) for a partition

µ: standard for representations of symmetric

groups.



Mariño-Vafa Conjecture:

G(λ; τ ; p) = R(λ; τ ; p).

Remark: (1). This is a formula:

G: Geometry = R: Representations

Representations of symmetric groups are es-

sentially combinatorics.

(2). Equivalent expression:

G(λ; τ ; p)• = exp [G(λ; τ ; p)] =
∑
µ

G(λ; τ)•pµ =

∑

|µ|≥0

∑

|ν|=|µ|

χν(C(µ))

zµ
e
√−1(τ+1

2)κνλ/2Wν(λ)pµ

(3). Each Gµ(λ, τ) is given by a finite and

closed expression in terms of representations



of symmetric groups:

Gµ(λ, τ) =
∑

n≥1

(−1)n−1

n

∑

∪n
i=1µi=µ

n∏

i=1

∑

|νi|=|µi|

χνi(C(µi))

zµi
e
√−1(τ+1

2)κνiλ/2Wνi(λ).

Gµ(λ, τ) gives triple Hodge integrals for moduli

spaces of curves of all genera with l(µ) marked

points.

(4). Mariño-Vafa formula gives explicit values

of many interesting Hodge integrals up to three

Hodge classes:

• Taking limit τ −→ 0 we get the λg conjecture

(Faber-Pandhripande),

∫

Mg,n

ψ
k1
1 · · ·ψkn

n λg =

(
2g + n− 3
k1, . . . , kn

)
22g−1 − 1

22g−1

|B2g|
(2g)!

,



for k1+ · · ·+kn = 2g−3+n, and the following

identity for Hodge integrals:
∫

Mg

λ3
g−1 =

∫

Mg

λg−2λg−1λg

=
1

2(2g − 2)!

|B2g−2|
2g − 2

|B2g|
2g

,

B2g are Bernoulli numbers. And other identi-

ties.

• Taking limit τ −→ ∞, we get the famous

ELSV formula which relates the generating se-

ries of Hurwitz numbers to Hodge integrals.

• Taking limit µi −→∞ again in ELSV, Okounkov-

Pandhripande derived the Witten conjecture

proved by Kontsevich.

The idea to prove the Mariño-Vafa formula is

to prove that both sides satisfy the Cut-and-

Join equation:



Theorem 1:

∂R

∂τ
=

1

2

√−1λ
∞∑

i,j=1

(
(i + j)pipj

∂R

∂pi+j

+ijpi+j

(
∂R

∂pi

∂R

∂pj
+

∂2R

∂pi∂pj

))

Theorem 2:

∂G

∂τ
=

1

2

√−1λ
∞∑

i,j=1

(
(i + j)pipj

∂G

∂pi+j

+ijpi+j

(
∂G

∂pi

∂G

∂pj
+

∂2G

∂pi∂pj

))

Initial Value: τ = 0, Ooguri-Vafa formula:

G(λ,0, p) =
∞∑

d=1

pd

2d sin
(

λd
2

) = R(λ,0, p).

Linear systems of ODE: The solution is unique!

G(λ; τ ; p) = R(λ; τ ; p).



Remark: (1). Cut-and-join equation is en-

coded in the geometry of the moduli spaces of

stable maps: convolution formula of the form:

(disconnected version: G• = expG)

G•µ(λ, τ) =
∑

|ν|=|µ|
Φ•

µ,ν(−
√−1τλ)zνK•

ν(λ)

where Φ•
µ,ν is series of double Hurwitz num-

bers, zν the combinatorial constants. Equiva-

lently this gives the explicit solution of the cut-

and-join equation, with initial value K•(λ), the

integrals of Euler classes on moduli of relative

stable maps.

(2). Witten conjecture is about KdV equa-

tions. But the Mariño-Vafa formula gives closed

formula!

The proof of the geometric cut-and-join equa-

tion used Functorial Localization Formula:



f : X → Y equivariant map. F ⊂ Y a fixed

component, E ⊂ f−1(F ) fixed components in

f−1(F ). Let f0 = f |E, then

For ω ∈ H∗
T (X) an equivariant cohomology class,

we have identity on F :

f0∗{
i∗Eω

eT (E/X)
} =

i∗F (f∗ω)

eT (F/Y )
.

This formula, similar to Riemann-Roch, a gen-

eralization of Atiyah-Bott localization to rela-

tive setting, has been applied to various set-

tings to prove the conjectures from physics.

It is used to push computations on compli-

cated moduli space to simpler moduli space:

the proof of the mirror formula; the proof of

the Hori-Vafa formula; the proof of the ELSV

formula.... In each case we have natural equiv-

ariant maps from the moduli spaces to much

simpler spaces which the physicists use.



In our first proof of the Mariño-Vafa formula

we used the moduli spaces of relative stable

maps to P1 as introduced by J. Li and natural

maps to projective spaces.

Remarks: (1). The cut-and-join equation is

closely related to the Virasoro algebra.

(2). Other later approaches:

(a). Direct derivation of convolution formula

(Liu-Liu-Zhou).

(b). Okounkov-Pandhripande: use ELSV for-

mula and λg conjecture.

The Mariño-Vafa formula can be viewed as a

duality:

Chern-Simons ⇐⇒ Calabi-Yau.



Can we go further with the ideas and methods?

Duality ⇔ convolution and cut-and-join.

Yes much more!

One, two, three partitions.

Mariño-Vafa: one partition case....

Topological vertex: three partition case.

Generating series of Hodge integrals with more

partitions ⇔ closed formulas in terms of Chern-

Simons invariants of Hopf link and more....

Mirror symmetry used periods and holomorphic

anomaly to compute GW series, difficult for

higher genera. Topological vertex gives com-

plete answers for all genera and all degrees in

the local Calabi-Yau cases in terms of Chern-

Simons knot invariants.



Topological Vertex is related to a three par-

tition analogue of the Mariño-Vafa formula.

This formula gives closed formula for the gen-

erating series of the Hodge integrals involv-

ing three partitions. The cut-and-join equation

has the form:

∂

∂τ
F • = (CJ)1F •+ 1

τ2
(CJ)2F •+ 1

(τ + 1)2
(CJ)3F •

where (CJ) denotes the cut-and-join operator

with respect to the three groups of infinite vari-

ables associated to the three partitions.

We first derive the convolution formulas both

in combinatorics and in geometry. Then we

need to prove the identity of initial values at

τ = 1. Much more complicated in both geom-

etry and in combinatorics.



By using gluing formula of the topological ver-

tex, we can derive closed formulas for gener-

ating series of GW invariants, all genera and

all degrees, open or closed, for all local toric

Calabi-Yau, in terms Chern-Simons invariants,

by simply looking at their moment map graphs.

Let Ng,d denote the GW invariants of a local

toric CY, total space of canonical bundle on a

toric surface S: the Euler number of the ob-

struction bundle on the moduli space Mg(S, d)

of stable maps of degree d ∈ H2(S,Z) from

genus g curve into the surface S:

Ng,d =
∫

[Mg(S,d)]v
e(Vg,d)

with Vg,d a vector bundle induced by the canon-

ical bundle KS: at point (Σ; f) ∈ Mg(S, d), its

fiber is H1(Σ, f∗KS). Write

Fg(t) =
∑

d

Ng,d e−d·t.



Example: Topological vertex formula of GW

generating series in terms of CS invariants. For

the total space of canonical bundle O(−3) on

P2:

exp (
∞∑

g=0

λ2g−2Fg(t)) =
∑

ν1,ν2,ν3

Wν1,ν2Wν2,ν3Wν3,ν1·

(−1)|ν1|+|ν2|+|ν3|q
1
2

∑3
i=1 κνi et(|ν1|+|ν2|+|ν3|).

Here q = e
√−1λ, and Wµ,ν are from the Chern-

Simons knot invariants of Hopf link.

Three vertices of moment map graph ↔ three

Wµ,ν’s.

For general local toric Calabi-Yau, the expres-

sions are just similar, closed formulas.

GV conjecture: There exists expression:

∞∑

g=0

λ2g−2Fg(t) =
∞∑

k=1

∑

g,d

n
g
d

1

d
(2 sin

dλ

2
)2g−2e−kd·t,



such that n
g
d are integers, called instanton num-

bers.

For some interesting cases we can interpret the

n
g
d as equivariant indices of twisted Dirac op-

erators on moduli spaces of anti-self-dual con-

nections on C2, related to the Nekrasov con-

jecture.

By using the Chern-Simons knot expressions

from topological vertex, the following theorem

was first proved by Peng Pan:

Theorem. The Gopakumar-Vafa conjecture

is true for all (formal) local toric Calabi-Yau

for all degree and all genera.

There should be a more interesting and grand

duality picture between Chern-Simons invari-

ants for three dimensional manifolds and Gromov-

Witten invariants for toric CY. Real dimension

and complex dimension 3.



We expect that our studies of the geometric

and topological aspects of the moduli spaces

will merge together very soon.

Thank You Very Much!


