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Mathematical Results Inspired by Physics

Kefeng Liu∗

Abstract

I will discuss results of three different types in geometry and topology.
(1) General vanishing and rigidity theorems of elliptic genera proved by using
modular forms, Kac-Moody algebras and vertex operator algebras. (2) The
computations of intersection numbers of the moduli spaces of flat connections
on a Riemann surface by using heat kernels. (3) The mirror principle about
counting curves in Calabi-Yau and general projective manifolds by using hy-
pergeometric series.
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1. Introduction

The results I will discuss are all motivated by the conjectures of physicists,
without which it is hard to imagine that these results would have appeared. In all
these cases the new methods discovered during the process to prove those conjec-
tures often give us many more surprising new results. The common feature of the
proofs is that they all depend on localization techniques built upon various parts
of mathematics: modular forms, heat kernels, symplectic geometry, and various
moduli spaces.

Elliptic genera were invented through the joint efforts of physicists and mathe-
maticians [17]. Actually in Section 2 I will only discuss in detail a vanishing theorem
of the Witten genus, which is the index of the Dirac operator on loop space. This
is a loop space analogue of the famous Atiyah-Hirzebruch vanishing theorem. It
was discovered in the process of understanding the Witten rigidity conjectures for
elliptic genera. A loop space analogue of a famous theorem of Lawson-Yau for
non-abelian Lie group actions will also be discussed.
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Moduli spaces of flat connections on Riemann surfaces have been studied for
many years in various subjects of mathematics [2]. The computations of the inter-
section numbers on such moduli spaces have been among the central problems in
the subject. In Section 3 I will discuss a very effective way to compute the most
interesting intersection numbers by using the localization property of heat kernels.
This proves several beautiful formulas conjectured by Witten [38]. We remark that
these intersection numbers include those needed for the Verlinde formula.

In Section 4 I discuss some remarkable formulas about counting curves in pro-
jective manifolds, in particular in Calabi-Yau manifolds. I will discuss the mirror
principle, a general method developed in [27]-[30] to compute characteristic classes
and characteristic numbers on moduli spaces of stable maps in terms of hypergeo-
metric series. The mirror formulas from mirror symmetry correspond to the compu-
tations of the Euler numbers. Mirror principle computes quite general Hirzebruch
multiplicative classes such as the total Chern classes.

2. Elliptic Genera

Let M be a compact smooth spin manifold with a non-trivial S1-action, D be
the Dirac operator on M . Atiyah and Hirzebruch proved that in such a situation
the index of the Dirac operator IndD = Â(M) = 0, where Â(M) is the Hirzebruch
Â-genus [3]. One interesting application of this result is that a K3 surface does not
allow any non-trivial smooth S1-action, because it has non-vanishing Â-genus.

Let LM be the loop space of M . LM consists of smooth maps from S1 to M .
There is a natural S1-action on LM induced by the rotation of the loops, whose
fixed points are the constant loops which is M itself. Witten formally applied the
Atiyah-Bott-Segal-Singer fixed point formula to the Dirac operator on LM , from
which he derived the following formal elliptic operator [36]:

DL = D ⊗
∞⊗

n=1

SqnTM =
∞∑

n=0

D ⊗ Vn qn

where q is a formal variable and for a vector bundle E,

Sq E = 1 + q E + q2 S2E + · · ·

is the symmetric operation and Vn is the combinations of the symmetric products
Sj(TM)’s by formal power series expansion. So DL, which is called the Dirac oper-
ator on loop space, actually consists of an infinite series of twisted Dirac operators
with the pure Dirac operator D as the degree 0 term. The index of DL, denoted
by Ind DL, is called the Witten genus. The loop space analogue of our vanishing
theorem is the following:

Theorem 2.1: ([21]) Let M be a spin manifold with non-trivial S1-action.
Assume p1(M)S1 = n π∗u2 for some integer n, then the Witten genus vanishes:
IndDL = 0.

Here p1(M)S1 is the equivariant first Pontrjagin class and u is the generator
of the cohomology group of the classifying space BS1, and π : M ×S1 ES1 → BS1

is the natural projection from the Borel construction.



Mathematical Results Inspired by Physics 3

This theorem implies that under the extra condition on the first Pontrjagin
class, we have infinite number of elliptic operators with vanishing indices. The
condition on the first equivariant Pontrjagin class is equivalent to that the S1-
action preserves the spin structure of LM . If we have a non-abelian Lie group acts
on M non-trivially, then for an S1 subgroup, the condition p1(M)S1 = n π∗u2 is
equivalent to p1(M) = 0 which implies that LM is spin. As an easy consequence,
we get:

Corollary 2.2: Assume a non-abelian Lie group acts on the spin manifold M
non-trivially and p1(M) = 0, then the Witten genus, IndDL, vanishes.

This corollary should be considered as a loop space analogue of a result of
Lawson-Yau in [18], which states that if a non-abelian Lie group acts on the spin
manifold M non-trivially, then IndD = 0. Our results motivated Hoehn and Stolz
to conjecture that, for a compact spin manifold M with positive Ricci curvature
and p1(M) = 0, the Witten genus vanishes. So far all of the known examples have
non-abelian Lie group action, therefore our results applies. It should be interesting
to see how to combine curvature with modular forms to get vanishing results.

The proof of Theorem 2.1 is an interesting combination of the Atiyah-Bott-
Segal-Singer fixed point formula with Jacobi forms. The magic combination of
geometry and modular invariance implies the vanishing of the equivariant index of
DL. Similar idea can be used to prove many more rigidity, vanishing and divisibility
results for DL twisted by bundles constructed from loop group representations. Such
operators can be viewed as twisted Dirac operators on loop space. See [20] and [21].
In these cases the Kac-Weyl character formulas came into play. If we take the level 1
representations of the loop group of the spin group in our general rigidity theorem,
we get the Witten conjectures on the rigidity of elliptic genera [36], which were
proved by Taubes [35], Bott-Taubes [8], Hirzebruch [15], Krichever, Landweber-
Stong, Ochanine for various cases.

Our method can actually go very far. Recently in [33] we proved rigidity
and vanishing theorems for families of elliptic genera and the Witten genus. In
[32] we proved similar theorems for foliated manifolds. In [10] such theorems were
generalized to orbifolds. More recently in [11] we have proved a far general rigidity
theorem for DL twisted by vertex operator algebra bundles.

If we apply the modular invariance argument to the non-equivariant elliptic
genera, we get a general formula which expresses the Hirzebruch L-form in terms of
the twisted Â-forms [22]. A 12 dimensional version of this formula, due to Alveraz-
Gaume and Witten, called the miraculous cancellation formula, had played impor-
tant role in the development of string theory. This formula has many interesting
mathematical consequences involving the eta-invariants. We refer the reader to [22]
and [23].

3. Moduli Spaces

Let G be a compact semi-simple Lie group and Mu be the moduli space of flat
connections on a principal flat G-bundle P on a Riemann surface S with boundary,
where u ∈ Z(G) is an element in the center. Here for simplicity we first discuss the



4 Kefeng Liu

case when S has one boundary component, G is simply connected and the moduli
space is smooth. A point in Mu is an equivalence class of flat connection on P with
holonomy u around the boundary. In general we let Mc denote the moduli space
of flat connections on P with holonomy around the boundary to be c ∈ G which
is close to u, or equivalently in the conjugacy class of c. The following formula is
essentially a refined version of the formula [38] which Witten derived from the path
integrals on the space of connections.

Theorem 3.1: ([24], [25]), We have the following identity:

∫
Mu

p(
√
−1Ω)eωu = |Z(G)| |G|

2g−2

(2π)2Nu
· limc→ulimt→0

∑
λ∈P+

χλ(c)
d2g−1

λ

p(λ + ρ)e−tpc(λ).

The notations in the above formula are as follows: ωu is the canonical symplec-
tic form on Mu induced by Poincare duality on S; p(

√
−1Ω) is a Pontrjagin class of

the tangent bundle TMu of the moduli space associated to the symmetric polyno-
mial p; P+ is the set of irreducible representations of G identified as a lattice in T ∗
which is the dual Lie algebra of the maximal torus T of G; pc(λ) = |λ + ρ|2 − |ρ|2
where ρ = 1

2

∑
α∈∆+ α with respect to the Killing form, and ∆+ denotes the set

of positive roots; χλ and dλ are respectively the character and dimension of λ; |G|
denotes the volume of G with respect to the bi-invariant metric induced from the
Killing form; |Z(G)| denotes the number of elements in the center Z(G) of G and
finally Nu is the complex dimension of Mu.

The starting point for the proof of this theorem is to use the holonomy model
of the moduli space and the explicit heat kernel on G. We consider the holonomy
map f : G2g × Oc → G with f(x1, · · · , yg; z) =

∏g
j=1[xj , yj ]z where Oc is the

conjugacy class through the generic point c ∈ G. It is well-known that the moduli
space is given by Mc = f−1(e)/G where G acts on G2g ×Oc by conjugation.

We have the explicit expression for the heat kernel on G:

H(t, x, y) =
1
|G|

∑
λ∈P+

dλ · χλ(xy−1)e−tpc(λ)

where x, y ∈ G are two points. The key idea is to consider the integral

I(t) =
∫

h∈G2g×Oc

H(t, c, f(h))dh

where dh denotes the induced bi-invariant volume form on G2g ×Oc. We compute
I(t) in two different ways. First as t → 0, I(t) localizes to an integral on Mc,
which is the symplectic volume of Mc with respect to the canonical symplectic
form induced by the Poincare duality on the cohomology groups of S with values in
the adjoint Lie algebra bundle. To prove this we used the beautiful observation of
Witten [37] that the symplectic volume form of Mc is the same as the Reidemeister
torsion which arises from the Gaussian integral in the heat kernel.

On the other hand the orthogonal relations among the characters of the rep-
resentations of G easily give us the infinite sum. In summary we have obtained



Mathematical Results Inspired by Physics 5

the following more precise version of Witten’s beautiful formula for the symplectic
volume of the moduli space,

Proposition 3.2: ([24]) As t → 0, we have

∫
Mc

eωc = |Z(G)| |G|
2g−1|j(c)|

(2π)2Nc |Zc|
∑

λ∈P+

χλ(c)
d2g−1

λ

e−tpc(λ) + O(e−δ2/4t).

Here δ is any small positive number, |Zc| is the volume of the centralizer Zc

of c, j(c) =
∏

α∈∆+(e
√
−1α(C)/2 − e

√
−1α(C)/2) is the Weyl denominator, and Nc is

the complex dimension of Mc.
To get the intersection numbers from the volume formula, we take derivatives

with respect to C where c = u expC. This is another key observation. By using
the relation between the symplectic form on Mc and that on Mu, and then taking
the limits we arrive at the formula in Theorem 3.1. For the details see [24] and
[25]. Another easy consequence of the method is that the symplectic volume of Mc

is a piecewise polynomial of degree at most 2g |∆+| in C ∈ T from which we get
certain very general vanishing theorems for those integrals when the degree of the
polynomial p is relatively large [25].

Similar results for moduli spaces when S has more boundary components can
be obtained in the same way [25]. More precisely, assume S has s boundary compo-
nents and consider the moduli space of flat connections on the principal G bundle
P with holonomy c1, · · · , cs ∈ G around the corresponding boundaries. Let Mc

denote the moduli space and ωc denote the canonical symplectic form. Then we
have

Theorem 3.3 ([25]) The following formula holds:

∫
Mc

p(
√
−1Ω)eωc = |Z(G)|

|G|2g−2+s
∏s

j=1 j(cj)
(2π)2Nc

∏s
j=1 |Zcj

|
limt→0

∑
λ∈P+

∏s
j=1 χλ(cj)

d2g−2+s
λ

p(λ+ρ)e−tpc(λ).

Here Nc is the complex dimension of Mc and p(
√
−1Ω) is a Pontrjagin class of

Mc. By taking derivatives with respect to the cj ’s we can get intersection numbers
involving the other generators of the cohomology ring of Mc, as well as the poly-
nomial property. From index formula we know that the integrals in our formulas
contain all the information needed for the famous Verlinde formula. Recently the
general Verlinde formula has been directly derived along this line of idea [7].

This localization method of using heat kernels can be applied to other general
situation like moment maps, from which we derive the non-abelian localization
formula of Witten. See [25] for applications to three dimensional manifolds and see
[26] for applications involving finite groups and moment maps.

4. Mirror Principle

Let X be a projective manifold. Let Mg,k(d, X) denote the moduli space of
stable maps of genus g and degree d with k marked points into X. Modulo the
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obvious equivalence, a point in Mg,k(d, X) is given by a triple (f ;C; x1, · · · , xk)
where f : C → X is a degree d holomorphic map and x1, · · · , xk are k points on the
genus g curve C. Here d ∈ H2(X, ,Z) will also be identified as the integral index
(d1, · · · , dn) by choosing a basis of H2(X, ,Z) dual to a basis of Kahler classes.

This moduli space may have higher dimension than expected. Even worse, its
different components may have different dimensions. To define integrals on such
space, we need the virtual fundamental cycle first constructed in [19] and later in
[6]. Let us denote by LTg,k(d, X) the virtual fundamental cycle which is a homology
class of the expected dimension in Mg,k(d, X).

We first consider the case k = 0. Let V be a concavex bundle on X. The
notion of concavex bundles was introduced in [27], it is a direct sum of a positive
and a negative bundle on X. From a concavex bundle V , we can obtain a sequence
of vector bundles V g

d on Mg,k(d, X) by taking either H0(C, f∗V ) or H1(C, f∗V ), or
their direct sum. Let b be a multiplicative characteristic class. The main problem
of mirror principle is to compute the integral [16]

Kg
d =

∫
LTg,0(d,X)

b(V g
d ).

More precisely, let λ and T = (T1, · · · , , Tn) be formal variables. Mirror principle is
to compute the generating series,

F (q, λ) =
∑
d, g

Kg
d λg ed·T

in terms of certain natural explicit hypergeometric series. So far we have rather
complete picture for the case of balloon manifolds.

A balloon manifold X is a projective manifold with complex torus action and
isolated fixed points. Let H = (H1, · · · ,Hn) be a basis of equivariant Kahler classes.
Then X is called a balloon manifold if H(p) 6= H(q) when restricted to any two
fixed points p, q ∈ X, and the tangent bundle TpX has linearly independent weights
for any fixed point p ∈ X. The complex 1-dimensional orbits in X joining every
two fixed points in X are called balloons which are copies of P1. We require the
bundle V to have fixed splitting type when restricted to each balloon [27].

Theorem 4.1 ([27]-[30]): Mirror principle holds for balloon manifolds and
concavex bundles.

In the most interesting cases for the mirror formulas, we simply take character-
istic class b to be the Euler class and the genus g = 0. The mirror principle implies
that mirror formulas actually hold for very general manifolds such as Calabi-Yau
complete intersections in toric manifolds and in compact homogeneous manifolds.
See [31] and [29] for details. In particular this implies all of the mirror formulas
for counting rational curves predicted by string theorists. Actually mirror princi-
ple holds even for non-Calabi-Yau and for certain local complete intersections. In
[30] we developed the mirror principle for counting higher genus curves, for which
the only remaining problem is to find the explicit hypergeometric series. Also our
method clearly works well for orbifolds.
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As an example, we consider a toric manifold X and genus g = 0. Let D1, .., DN

be the toric invariant divisors, and V be the direct sum of line bundles: V =
⊕

j Lj

with c1(Lj) ≥ 0 and c1(X) = c1(V ). We denote by 〈·, ·〉 the pairing of homology
and cohomology classes. Let b be the Euler class and

Φ(T ) =
∑

d

K0
d ed·T

where d · T = d1T1 + · · · dnTn. Introduce the hypergeometric series

HG[B](t) = e−H·t
∑

d

∏
j

〈c1(Lj),d〉∏
k=0

(c1(Lj)− k)

∏
〈Da,d〉<0

∏−〈Da,d〉−1
k=0 (Da + k)∏

〈Da,d〉≥0

∏〈Da,d〉
k=1 (Da − k)

ed·t

with t = (t1, · · · , tn) formal variable.
Corollary 4.2 [29] There are explicitly computable functions f(t), g(t) =

(g1(t), · · · , gn(t)), such that∫
X

(
efHG[B](t)− e−H·T e(V )

)
= 2Φ−

∑
j

Tj
∂Φ
∂Tj

where T = t + g(t).
From this formula we can determine Φ(T ) uniquely. The functions f and g are

given by the expansion of HG[B](t). We can also replace V by general concavex
bundles [29]. To make our algorithm more explicit, let us consider the the Calabi-
Yau quintic, for which we have the famous Candelas formula [9]. In this case
V = O(5) on X = P4 and the hypergeometric series is:

HG[B](t) = eH t
∞∑

d=0

∏5d
m=0(5H + m)∏d
m=1(H + m)5

ed t,

where H is the hyperplane class on P4 and t is a parameter. Introduce

F(T ) =
5
6
T 3 +

∑
d>0

K0
d ed T .

The algorithm is to take the expansion in H:

HG[B](t) = H{f0(t) + f1(t)H + f2(t)H2 + f3(t)H3}.

Then the famous Candelas formula can be reformulated as
Corollary 4.3: ([27]) With T = f1/f0, we have

F(T ) =
5
2
(
f1

f0

f2

f0
− f3

f0
).

Another rather interesting consequence of mirror principle is the local mirror
symmetry which is the case when V is a concave bundle. Local mirror symmetry
is called geometric engineering in string theory which is used to explain the stringy
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origin of the Seiberg-Witten theory. In these cases the hypergeometric series are
the periods of elliptic curves which are called the Seiberg-Witten curves. These
elliptic curves are the mirror manifolds of the open Calabi-Yau manifolds appeared
in the local mirror formulas. For example the total space of the canonical bundle
of a del Pezzo surface is an example of open Calabi-Yau manifold covered by the
local mirror symmetry. The case P2 already has drawn a lot of interests in string
theory. The case for O(−1)⊕O(−1) on P1 easily gives the multiple cover formula.

The key ingredients for the proof of the mirror principle consist of the following:
linear and non-linear sigma model, Euler data, balloon and hypergeometric Euler
data. As explained in [30], these ingredients are independent of the genus of the
curves, except the hypergeometric Euler data, which for g > 0 is more difficult to
find out, while for the genus 0 case it can be easily read out from localization at
the smooth fixed points of the moduli spaces which are covers of the balloons. The
interested reader is refered to [27]-[30] for details. Our idea is to go to the equivariant
setting and to use the localization formula as given in [1] and its virtual version in
[14] on two moduli spaces which we called non-linear and linear sigma models.
One key observation is the functorial localization formula [27]-[30]. We apply this
formula to the equivariant collapsing map between the two sigma models, and to
the evaluation maps. One can see [30] for the existence of the collapsing map for
arbitrary genus. Hypergeometric series naturally appear from localizations on the
linear sigma models and at the smooth fixed points in the moduli spaces.

Euler data is a very general notion, it can include general Gromov-Witten
invariants by adding the pull-back classes by the evaluation map evj at the marked
points. More precisely we can try to compute integrals of the form:

Kg
d,k =

∫
LTg,k(d,X)

∏
j

ev∗j ωj · b(V g
d )

where ωj ∈ H∗(X). By introducing the generating series with summation over k,
we can still get Euler data. One goal of the most general mirror principle is to
explicitly compute such series in terms of hypergeometric series.

We remark that the development of the proof of the mirror formulas owes to
many people, first to the string theorists Candelas and his collaborators, Witten,
Vafa, Warner, Greene, Morrison, Plesser and many others. They used the physical
theory of mirror symmetry, and their computations used mirror manifolds and their
periods. For the general theory of mirror principle, see [27]-[30]. See also [13], [12]
and [5] for different approaches to the mirror formula.

5. Concluding Remarks.

Localization techniques have been very successful in solving many conjectures
from physics. In the meantime string theorists have produced many more exciting
new conjectures. We can certainly expect their solutions by using localizations.

Recently several mirror formulas of counting holomorphic discs have been con-
jectured by Vafa and his collaborators. The boundary of the disc is mapped into
a Langrangian submanifolds of the Calabi-Yau. Other related conjectures include
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the Gopakumar-Vafa conjecture on the higher genus multiple covering formula and
the mirror formulas for counting higher genus curves in Calabi-Yau. With Chien-
Hao Liu we are trying to extend the mirror principle to these settings. Another
exciting conjecture is the S-duality conjecture which includes the Witten conjecture
on the equality of the Donaldson invariants with the Seiberg-Witten invariants and
the Vafa-Witten conjecture on the modularity of the generating series of the Euler
numbers of the moduli spaces of self-dual connections. Some progresses are made
by constructing a larger moduli space with circle action, the so-called non-abelian
monople moduli spaces. Finally there is the Dijkgraaf-Moore-Verlinde-Verlinde con-
jecture on the generating series of the elliptic genera of Hilbert schemes. For an
approach of using localization, see [34].
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