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Dedicated to the Memory of
Raoul Bott

My master thesis is about Bott residue formula

and equivariant cohomology.

My minor thesis under Bott is about the Atiyah-

Hirzebruch vanishing theorem.

My PhD thesis is about Atiyah-Bott fixed point

formula and rigidity of elliptic genera.

Bott: Morse theory is indominitable.

Localization is indominitable!



String Duality is to identify different theories

in string theory. Such identifications have pro-

duced many surprisingly beautiful mathemati-

cal formulas.

The mathematical proofs of many of such for-

mulas depend on Localization Techniques on

various finite dimensional moduli spaces. More

precisely integrals of Chern classes on moduli

spaces, combined with various mathematics.

Functorial localization connects the computa-

tions of mathematicians on complicated spaces

and physicists’computations on simple spaces.



Atiyah-Bott Localization Formula:

For ω ∈ H∗
T (X) an equivariant cohomology class,

we have

ω =
∑

E

iE∗
(

i∗Eω

eT (E/X)

)
.

where E runs over all connected components
of T fixed points set, iE denotes the inlcusion.

Equivariant cohomology

H∗
T (X) = H∗(X ×T ET )

where ET is the universal bundle of T .

Example: ES1 = S∞. If S1 acts on Pn by

λ · [Z0, . . . , Zn] = [λw0Z0, . . . , λwnZn],

then we have

HS1(Pn;Q) ∼= Q[H, α]/〈(H−w0α) · · · (H−wnα)〉

There are n + 1 isolated fixed points in Pn

labelled by wi.



Functorial Localization Formula (LLY):

f : X → Y equivariant map. F ⊂ Y a fixed

component, E ⊂ f−1(F ) fixed components in

f−1(F ). Let f0 = f |E, then for ω ∈ H∗
T (X) an

equivariant cohomology class, we have identity

on F :

f0∗[
i∗Eω

eT (E/X)
] =

i∗F (f∗ω)

eT (F/Y )
.

This formula is used to push computations

on complicated moduli space to simple moduli

space. In most cases,

Complicated moduli: moduli of stable maps.

Simple moduli: projective spaces.

Compare with Riemann-Roch.



I will discuss the following topics:

(1) The mirror principle; (2) Hori-Vafa for-

mula. The discussions will be very brief. (Joint

with Lian, Yau).

(3) A new localization proof of the ELSV for-

mula; (4) A proof of the Witten conjecture

through localization. (Joint with Melissa Liu,

Zhou and Kim).

(5) The proof of the Mariño-Vafa formula; (6)

Work in progress: an effective method to de-

rive recursion formulas from localization. (Joint

with M. Liu, Zhou, Kim).

(7) Mathematical theory of topological vertex;

(8) Applications of topological vertex. (Joint

with J. Li, M. Liu, Zhou; others).



(1). Mirror Principle:

Mathematical moduli: M
g
d(X) = stable map

moduli of degree (1, d) into P1×X = {(f, C) :

f : C → P1 × X} with C a genus g (nodal)

curve, modulo obvious equivalence.

Physical moduli: Wd is toric variety for toric

X. (Witten, Aspinwall-Morrison):

Example: Pn with homogeneous coordinate

[z0, · · · , zn]. Then

Wd = [f0(w0, w1), · · · , fn(w0, w1)]

fj(w0, w1): homogeneous polynomials of de-

gree d. A large projective space.

There exists an explicit equivariant collapsing

map(LLY+Li; Givental for g = 0):

ϕ : M
g
d(P

n) −→ Wd.



M
g
d(X), embedded into M

g
d(P

n), is very ”singu-

lar” and complicated. But Wd smooth and sim-

ple. The embedding induces a map of M
g
d(X)

to Wd.

Functorial localization formula pushes all com-

putations on the stable map moduli to the sim-

ple moduli Wd through ϕ.

Mirror formulas, effective in genus 0, are to

compute certain integrals of Chern classes on

the moduli spaces of stable maps in terms of

hypergeometric type functions from mirror man-

ifolds. In fact we can say:

Mirror formulas = Comparison of computa-

tions on the two moduli spaces M
g
d and Wd!

Hypergeometric functions arise naturally on Wd

through localization formula.



(2). Proof of the Hori-Vafa Formula

Let M0,1(d, X) be the genus 0 moduli space

of stable maps of degree d into X with one

marked point, ev : M0,1(d, X) → X be evalu-

ation map, and c the first Chern class of the

tangent line at the marked point. One needs

to compute the generating series

HG[1]X(t) = e−tH/α
∞∑

d=0

ev∗[
1

α(α− c)
] edt.

Example: X = Pn, then we have ϕ∗(1) = 1,

trivially follow from functorial localization:

ev∗[ 1
α(α−c)] = 1∏d

m=1(x−mα)n+1

in Pn, where the denominators of both sides

are equivariant Euler classes of normal bundles

of fixed points. Here x denotes the hyperplane

class. We easily get the hypergeometric series.



For X = Gr(k, n) and flag manifolds, Hori-Vafa

conjectured a formula for HG[1]X(t) by which

we can compute this series in terms of those

of projective spaces:

Hori-Vafa Formula for Grassmannian:

HG[1]Gr(k,n)(t) = e(k−1)π
√−1σ/α 1∏

i<j(xi−xj)
·

∏
i<j(α

∂
∂xi
−α ∂

∂xj
)|ti=t+(k−1)π

√−1HG[1]P(t1, · · · , tk)

where P = Pn−1 × · · · × Pn−1 is product of k

copies of the projective spaces. Here σ is the

generator of the divisor classes on Gr(k, n) and

xi the hyperplane class of the i-th copy Pn−1:

HG[1]P(t1, · · · , tk) =
∏k

i=1 HG[1]P
n−1

(ti).

We use another smooth moduli, the Grothendieck

quot-scheme Qd of quotient sheaves on P1 to



play the role of the simple moduli, and apply
the functorial localization formula, and a gen-
eral set-up.

Plücker embedding τ : Gr(k, n) → PN induces
embedding of the stable map moduli of Gr(k, n)
into the corresponding stable map moduli of
PN . Composite with the collapsing map gives
us a map

ϕ : Md → Wd

into the simple moduli space Wd of PN .

On the other hand the Plücker embedding also
induces a map:

ψ : Qd → Wd.

The above two maps have the same image in
Wd: Imψ = Imϕ, and all the maps are equivari-
ant with respect to the induced circle action
from P1.



Functorial localization, applied to both ϕ and

ψ, transfers the computations on the stable

map moduli spaces to smooth moduli spaces,

the quot-scheme Qd.

Hori-Vafa formula = explicit computations of

localization in the quot-scheme Qd.

This can be explicitly done with combinatorial

computations by analyzing fixed points in Qd.

Similar for general flag manifolds.



In the following discussions, we will study Hodge

integrals (i.e. intersection numbers of λ classes

and ψ classes) on the Deligne-Mumford moduli

space of stable curves Mg,h.

A point in Mg,h consists of (C, x1, . . . , xh), a

(nodal) curve and h smooth points on C.

The Hodge bundle E is a rank g vector bun-

dle over Mg,h whose fiber over [(C, x1, . . . , xh)]

is space of holomorphic one forms H0(C, ωC).

The λ classes are Chern Classes:

λi = ci(E) ∈ H2i(Mg,h;Q).

The cotangent line T ∗xi
C of C at the i-th marked

point xi gives a line bundle Li over Mg,h. The

ψ classes are also Chern classes:

ψi = c1(Li) ∈ H2(Mg,h;Q).

Localization for virtual cycle in GW theory by

Kontsevich, Graber, Pandhripande and Vakil.



(3). A New Proof of ELSV Formula

Given a partition µ = (µ1 ≥ · · · ≥ µl(µ) ≥ 0) of

length l(µ), write |µ| = ∑
j µj.

Mg(P1, µ): moduli space of relative stable maps

from a genus g (nodal) curve to P1 with fixed

ramification type µ at ∞. (Jun Li)

Hg,µ : the Hurwitz number of almost simple

covers of P1 of ramification type µ at ∞ by

connected genus g Riemann surfaces.

Theorem: The ELSV formula:

Hg,µ = (2g − 2 + |µ|+ l(µ))!Ig,µ

where

Ig,µ =
1

|Aut(µ)|
l(µ)∏

i=1

µ
µi
i

µi!

∫

Mg,l(µ)

Λ∨g (1)
∏l(µ)

i=1(1− µiψi)
.



Functorial localization formula, applied to the

branching morphism (Fantechi-Pandhripande):

Br : Mg(P
1, µ) → Pr,

where r denotes the dimension of Mg(P1, µ).

Label the isolated fixed points {p0, · · · , pr} of

Pr and denote by

I0
g,µ : the fixed points contribution in Br−1(p0).

I1
g,µ : the fixed points contribution in Br−1(p1).

Since Br∗(1) is a constant, we get

I0
g,µ = I1

g,µ

where I0
g,µ = Ig,µ and

I1
g,µ =

∑

ν∈J(µ)

I1(ν)Ig,ν +
∑

ν∈C(µ)

I2(ν)Ig−1,ν+

∑

g1+g2=g

∑

ν1∪ν2∈C(µ)

I3(ν
1, ν2)Ig1,ν1Ig2,ν2,



where I1, I2, I3 are some explicit combina-

torial coefficients. This recursion formula is

equivalent to that the generating function

R(λ, p) =
∑

g≥0

∑

|µ|≥1

Ig,µλ2g−2+|µ|+l(µ)pµ,

where p = (p1, p2, . . . , pn, . . .) denotes formal

variables and pµ = pµ1 · · · pµl(µ), satisfies the

cut-and-join equation:

∂R

∂λ
=

1

2

∞∑

i,j=1

(
(i + j)pipj

∂R

∂pi+j

+ijpi+j

(
∂R

∂pi

∂R

∂pj
+

∂2R

∂pi∂pj

))

The cut-and-join equation of same kind for the

generating series P of Hg,µ is simple and ex-

plicit combinatorial computation.

This equation is equivalent to systems of linear

ODE. R and P have the same initial value p1

at λ = 0, therefore are equal, which gives the

ELSV formula.



(4). Proof of the Witten Conjecture through

Localization

The Witten conjecture for moduli spaces states

that the generating series F of the integrals of

the ψ classes for all genera and any number

of marked points satisfies the KdV equations

and the Virasoro constraint. For example the

Virasoro constraint states that F satisfies

Ln · F = 0, n ≥ −1

where Ln denote certain Virasoro operators.

Witten conjecture was first proved by Kontse-

vich using combinatorial model of the moduli

space and matrix model, with later approaches

by Okounkov-Pandhripande using ELSV for-

mula and combinatorics, by Mirzakhani using

Weil-Petersson volumes on moduli spaces of

bordered Riemann surfaces.



I will present a simple proof by using functorial

localization and asymptotics, jointly with Y.-

S. Kim. The method has more applications in

deriving more general recursion formulas in the

subject.

The basic idea is to directly prove the following

recursion formula which, as derived in physics

by Dijkgraaf, Verlinde and Verlinde using quan-

tum field theory, implies both the Virasoro and

the KdV equation for the generating series F

of the integrals of the ψ classes.

We call this recursion formula the DVV recur-

sion.



Theorem: We have the identity of DVV:

〈σ̃n
∏

k∈S

σ̃k〉g =
∑

k∈S

(2k + 1)〈σ̃n+k−1
∏

l 6=k

σ̃l〉g+

1

2

∑

a+b=n−2

〈σ̃aσ̃b

∏

l 6=a,b

σ̃l〉g−1+

1

2

∑

S=X∪Y,
a+b=n−2,
g1+g2=g

〈σ̃a
∏

k∈X

σ̃k〉g1〈σ̃b

∏

l∈Y

σ̃l〉g2.

Here σ̃n = (2n + 1)!!ψn and

〈
n∏

j=1

σ̃kj
〉g =

∫

Mg,n

n∏

j=1

σ̃kj
.

The notation S = {k1, · · · , kn} = X ∪ Y .

To prove the above recursion relation, recall
that the functorial localization applied to the
map

Br : Mg(P
1, µ) → Pr,



and by comparing the contributions in Br−1(p0)

and Br−1(p1), we easily get the cut-and-join

equation for one Hodge integral:

Ig,µ =
∑

ν∈J(µ)

I1(ν)Ig,ν +
∑

ν∈C(µ)

I2(ν)Ig−1,ν+

∑

g1+g2=g

∑

ν1∪ν2∈C(µ)

I3(ν
1, ν2)Ig1,ν1Ig2,ν2

where I(ν), I(ν1, ν2) are some explicit combi-

natorial coefficients. Here recall

Ig,µ =
1

|Aut µ|
n∏

i=1

µ
µi
i

µi!

∫

Mg,n

Λ∨g (1)
∏
(1− µiψi)

.

We then do asymptotic expansion (Stirling type

formula). Write µi = Nxi and let N go to in-

finity and expand in N and xi, and take the

coefficient of Nm+1
2 with m = 3g − 3 + n

2.



We obtained the identity:

n∑

i=1

[
(2ki + 1)!!

2ki+1ki!
x

ki
i

∏

j 6=i

x
kj−1

2
j√
2π

∫

Mg,n

∏
ψ

kj
j −

∑

j 6=i

(xi + xj)
ki+kj−1

2√
2π

∏

l 6=i,j

x
kl−1

2
l√
2π

∫

Mg,n−1

ψki+kj−1 ∏
ψ

kl
l

−1

2

∑

k+l=ki−2

(2k + 1)!!(2l + 1)!!

2ki ki!
x

ki
i

∏

j 6=i

x
kj−1

2
j√
2π

[ ∫

Mg−1,n+1

ψk
1ψl

2

∏
ψ

kj
j +

∑

g1+g2=g,
ν1∪ν2=ν

∫

Mg1,n1

ψk
1

∏
ψ

kj
j

∫

Mg2,n2

ψl
1

∏
ψ

kj
j

]]
= 0

Performing Laplace transforms on the xi’s, we

get the recursion formula which implies both

the KdV equations and the Virasoro constraints.



(5). Proof of the Mariño-Vafa Formula

Introduce the total Chern classes of the Hodge

bundle on the moduli space of curves:

Λ∨g (u) = ug − λ1ug−1 + · · ·+ (−1)gλg.

Mariño-Vafa formula states that the generat-

ing series over g of triple Hodge integrals

∫

Mg,h

Λ∨g (1)Λ∨g (τ)Λ∨g (−τ − 1)
∏h

i=1(1− µiψi)
,

can be expressed by close formulas of finite

expression in terms of representations of sym-

metric groups, or Chern-Simons knot invari-

ants. Here τ is a parameter.

Mariño-Vafa conjectured the formula from large

N duality between Chern-Simons and string

theory, following works of Witten, Gopakumar-

Vafa, Ooguri-Vafa.



The Mariño-Vafa Formula:

Geometric side: For every partition µ = (µ1 ≥
· · · ≥ µl(µ) ≥ 0), define triple Hodge integral:

Gg,µ(τ) = A(τ)·
∫

Mg,l(µ)

Λ∨g (1)Λ∨g (−τ − 1)Λ∨g (τ)
∏l(µ)

i=1(1− µiψi)
,

with

A(τ) = −
√−1|µ|+l(µ)

|Aut(µ)| [τ(τ+1)]l(µ)−1 ∏l(µ)
i=1

∏µi−1
a=1 (µiτ+a)
(µi−1)! .

Introduce generating series

Gµ(λ; τ) =
∑

g≥0

λ2g−2+l(µ)Gg,µ(τ).

Special case when g = 0:

∫

M0,l(µ)

Λ∨0(1)Λ∨0(−τ − 1)Λ∨0(τ)
∏l(µ)

i=1(1− µiψi)

=
∫

M0,l(µ)

1
∏l(µ)

i=1(1− µiψi)
= |µ|l(µ)−3



for l(µ) ≥ 3, and we use this expression to

extend the definition to the case l(µ) < 3.

Introduce formal variables p = (p1, p2, . . . , pn, . . .),

and define

pµ = pµ1 · · · pµl(µ)

for any partition µ.

Generating series for all genera and all possible

marked points:

G(λ; τ ; p) =
∑

|µ|≥1

Gµ(λ; τ)pµ.

Representation side: χµ: the character of

the irreducible representation of symmetric group

S|µ| indexed by µ with |µ| = ∑
j µj,

C(µ): the conjugacy class of S|µ| indexed by µ.



Introduce:

Wµ(q) = qκµ/4 ∏

1≤i<j≤`(µ)

[µi − µj + j − i]

[j − i]

`(µ)∏

i=1

1
∏µi

v=1[v − i + `(µ)]

where

κµ = |µ|+
∑

i

(µ2
i − 2iµi), [m] = qm/2 − q−m/2

andq = e
√−1λ. The expression Wµ(q) has an

interpretation in terms of quantum dimension

in Chern-Simons knot theory.

Define:

R(λ; τ ; p) =
∑

n≥1

(−1)n−1

n

∑
µ

[
∑

∪n
i=1µi=µ

n∏

i=1

∑

|νi|=|µi|

χνi(C(µi))

zµi
e
√−1(τ+1

2)κνiλ/2Wνi(λ)]pµ



where µi are sub-partitions of µ, zµ =
∏

j µj!j
µj

for a partition µ.

Theorem: Mariño-Vafa Conjecture is true:

G(λ; τ ; p) = R(λ; τ ; p).

Remark: (1). Equivalent expression:

G(λ; τ ; p)• = exp [G(λ; τ ; p)] =
∑
µ

G(λ; τ)•pµ =

∑

|µ|≥0

∑

|ν|=|µ|

χν(C(µ))

zµ
e
√−1(τ+1

2)κνλ/2Wν(λ)pµ



(2). Each Gµ(λ, τ) is given by a finite and

closed expression in terms of representations

of symmetric groups:

Gµ(λ, τ) =
∑

n≥1

(−1)n−1

n

∑

∪n
i=1µi=µ

n∏

i=1

∑

|νi|=|µi|

χνi(C(µi))

zµi
e
√−1(τ+1

2)κνiλ/2Wνi(λ).

Gµ(λ, τ) gives triple Hodge integrals for moduli

spaces of curves of all genera with l(µ) marked

points.

(3). Mariño-Vafa formula gives explicit values

of many interesting Hodge integrals up to three

Hodge classes including the ELSV formula.

The idea to prove the Mariño-Vafa formula is

to prove that both G and R satisfy the Cut-

and-Join equation:



Theorem : Both R and G satisfy the following

differential equation:

∂F

∂τ
=

1

2

√−1λ
∞∑

i,j=1

(
(i + j)pipj

∂F

∂pi+j

+ijpi+j

(
∂F

∂pi

∂F

∂pj
+

∂2F

∂pi∂pj

))

This is equivalent to linear systems of ODE.

They have the same initial value at τ = 0:

The solution is unique!

G(λ; τ ; p) = R(λ; τ ; p).

Cut-and-Join operator, denoted by (CJ), in

variables pj on the right hand side gives a nice

match of Combinatorics and Geometry from

collecting the following operations:



Combinatorics: Operations in symmetric group:

Cut: an (i + j)-cycle is cut into an i-cycle and

a j-cycle, denote the set by C(µ):

Join: an i-cycle and a j-cycle are joined to an

(i + j)-cycle, denote the set by J(µ):

Geometry: How curves stably vary,

Cut: One curve split into two lower degree or

lower genus curves.

Join: Two curves joined together to give a

higher genus or higher degree curve.

The proof of cut-and-join equation for R is a

direct computation in combinatorics.

The first proof of the cut-and-join equation for

G used functorial localization formula.



Label the isolated fixed points {p0, · · · , pr} of
Pr:

J0
g,µ : the fixed points contribution in Br−1(p0)

J1
g,µ : the fixed points contribution in Br−1(p1).

Then

J0
g,µ(τ) =

√−1|µ|−l(µ)Gg,µ(τ),

J1
g,µ(τ) =

√−1|µ|−l(µ)−1·



∑

ν∈J(µ)

I1(ν)Gg,ν(τ) +
∑

ν∈C(µ)

I2(ν)Gg−1,ν(τ)

+
∑

g1+g2=g,ν1∪ν2∈C(µ)

I3(ν
1, ν2)Gg1,ν1(τ)Gg2,ν2(τ)


 .

We proved the following identity by analyzing
equivariant cohomology classes on Pr:

d

dτ
J0

g,µ(τ) = −J1
g,µ(τ).



which is the cut-and-join equation we need.

In fact we have more higher order cut-and-join
equations:

(−1)k

k!

dk

dτk
J0

g,µ(τ) = Jk
g,µ(τ)

from comparing contributions from the first
and the k-th fixed point on Pr.

Remark: Cut-and-join equation is encoded in
the geometry of the moduli spaces of stable
maps: convolution formula of the form:

G•µ(λ, τ) =
∑

|ν|=|µ|
Φ•

µ,ν(−
√−1τλ)zνK•

ν(λ)

where Φ•
µ,ν is series of double Hurwitz num-

bers. This gives the explicit solution of the
cut-and-join equation, with initial value K•(λ),
the integrals of Euler classes on moduli of rel-
ative stable maps.

Another approach by Okounkov-Pandhripande
using ELSV formula and the λg conjecture.



(6). Work in Progress

We note that asymptotic cut-and-join equa-

tion from the functorial localization formula

and moduli space of relative stable maps al-

ways holds. This gives an effective way to de-

rive the most crucial recursive type formulas in

Hodge integrals and in GW invariants:

(1) The recursion formula related to the gen-

eralized Witten conjecture for W -algebra con-

straints by considering moduli of relative stable

maps into P1 with spin structure.

(2) Recursion formula for GW invariants of

general projective manifolds by considering mod-

uli of relative stable maps into X ×P1.

We do localization by ”creating” circle action:

From Localization to Recursion!



(7). Mathematical Theory of Topological
Vertex

It is very important but difficult to compute
the GW invariants both in mathematics and
physics, especially to get complete and closed
formulas for all degree and all genera.

The remarkable topological vertex theory, as
developed by Aganagic-Klemm-Mariño-Vafa from
string duality and geometric engineering, gives
complete answers for all genera and all degrees
in the toric Calabi-Yau cases in terms of Chern-
Simons knot invariants!

By using localization technique we developed
the mathematical theory of topological vertex.
We first proved a three partition analogue of
the Mariño-Vafa formula. This formula gives
closed formula for the generating series of the
Hodge integrals of all genera involving three
partitions in terms of Chern-Simons knot in-
variants of Hopf links.



The corresponding cut-and-join equation has
the form:
∂

∂τ
F • = (CJ)1F •+ 1

τ2
(CJ)2F •+ 1

(τ + 1)2
(CJ)3F •

where (CJ) denotes the cut-and-join operator
with respect to the three groups of infinite
numbers of variables associated to the three
partitions.

To prove this equation we derived the convo-
lution formulas both in combinatorics and in
geometry. Then we proved the identity of ini-
tial values at τ = 1. The combinatorial expres-
sion of ours is different from AKMV’s which
does not affect most applications.

The notion of formal toric Calabi-Yau mani-
folds was introduced to work out the gluing of
Calabi-Yau and the topological vertices. We
then derived all of the basic properties of topo-
logical vertex, like the fundamental gluing for-
mula, by using localization.



By using gluing formula of the topological ver-

tex, we can derive closed formulas for gener-

ating series of GW invariants, all genera and

all degrees, open or closed, for all toric Calabi-

Yau, in terms Chern-Simons invariants, by sim-

ply looking at The moment map graph of the

toric Calabi-Yau.

Each vertex of the moment map graph con-

tributes a closed expression to the generating

series of the GW invariants in terms of explicit

combinatorial Chern-Simons knot invariants.

Let us look at an example to see the compu-

tational power of topological vertex.



Let Ng,d denote the GW invariants of a toric

Calabi-Yau, total space of canonical bundle on

a toric surface S.

It is the Euler number of the obstruction bun-

dle on the moduli space Mg(S, d) of stable

maps of degree d ∈ H2(S,Z) from genus g curve

into the surface S:

Ng,d =
∫

[Mg(S,d)]v
e(Vg,d)

with Vg,d a vector bundle induced by the canon-

ical bundle KS.

At point (Σ; f) ∈Mg(S, d), its fiber is H1(Σ, f∗KS).

Write

Fg(t) =
∑

d

Ng,d e−d·t.



Example: Topological vertex formula of GW

generating series in terms of Chern-Simons in-

variants. For the total space of canonical bun-

dle O(−3) on P2:

exp (
∞∑

g=0

λ2g−2Fg(t)) =
∑

ν1,ν2,ν3

Wν1,ν2Wν2,ν3Wν3,ν1·

(−1)|ν1|+|ν2|+|ν3|q
1
2

∑3
i=1 κνi et(|ν1|+|ν2|+|ν3|).

Here q = e
√−1λ, and Wµ,ν are from the Chern-

Simons knot invariants of Hopf link. Sum over

three partitions ν1, ν2, ν3.

Three vertices of moment map graph of P2 ↔
three Wµ,ν’s, explicit in Schur functions.

For general (formal) toric Calabi-Yau, the ex-

pressions are just similar: closed formulas.



8. Applications of Topological Vertex.

Recall the interesting:

Gopakumar-Vafa conjecture: There exists

expression:

∞∑

g=0

λ2g−2Fg(t) =
∞∑

k=1

∑

g,d

n
g
d

1

d
(2 sin

dλ

2
)2g−2e−kd·t,

such that n
g
d are integers, called instanton num-

bers.

By using the explicit knot invariant expressions

from topological vertex in terms of the Schur

functions, we have the following applications:

(1). Motivated by the Nekrasov conjecture,

by comparing with Atiyah-Bott localization for-

mulas on instanton moduli we have proved:



Theorem: For conifold and the toric Calabi-
Yau from the canonical line bundle of the Hirze-
bruch surfaces, we can identify the n

g
d as equivari-

ant indices of twisted Dirac operators on mod-
uli spaces of anti-self-dual connections on C2.

A complicated change of variables like mirror
transformation is performed.

(2). The following theorem was first proved
by Pan Peng:

Theorem: The Gopakumar-Vafa conjecture is
true for all (formal) local toric Calabi-Yau for
all degree and all genera.

(3). The proof of the flop invariance of the
GW invariants of (toric) Calabi-Yau by Konishi
and Minabe, with previous works of Li-Ruan
and Chien-Hao Liu-Yau.

More applications expected from the compu-
tational power of the topological vertex.



We have seen close connection between knot

invariants and Gromov-Witten invariants. There

should be a more interesting and grand duality

picture between Chern-Simons invariants for

real three dimensional manifolds and Gromov-

Witten invariants for complex three dimensional

Calabi-Yau.

In any case String Duality has already inspired

exciting duality and unification among various

mathematical subjects.



Thank You Very Much!


