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1. Introduction:

Mirror principle is a general method developed in [LLY1]-[LLY4] to compute
characteristic classes and characteristic numbers on moduli spaces of stable maps
in terms of hypergeometric type series. The counting of the numbers of curves in
Calabi-Yau manifolds from mirror symmetry corresponds to the computation of
Euler numbers. This principle computes quite general Hirzebruch multiplicative
classes such as the total Chern classes.

In the history of mathematics, whenever a function theory or representation
theory was well developed, it would come into geometry in a very elegant and sub-
stantial way. It is very interesting to see how special functions enter into geometry.
Here we only list a few examples:

(a). Symmetric functions ⇔ characteristic classes.

(b). Trigonometric functions ⇔ index formulas.

(c). Theta-functions ⇔ elliptic genus.

(d). Hypergeometric series ⇔ characteristic numbers on stable map moduli.

(e). q-hypergeometric series ⇔ K-theory characteristic numbers on stable map
moduli.

We like to point out that, in the above, (a), (b) and (c) are representation-
theoretic; (d) actually came from the Atiyah-Bott localization formula, equivari-
ant Euler classes, and the geometry of moduli spaces of stable maps. This later
connection was made clear in [LLY1]-[LLY4]. (e) should appear in the K-theory
computation on stable map moduli space as shown in [LLY2].

Recall that a balloon manifold X is a projective manifold with torus action and
isolated fixed points. Let us denote by

H = (H1, · · · ,Hk)
74
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a basis of equivariant Kahler classes. Then X is called a balloon manifold if

(1). The restriction H(p) 6= H(q) for any two fixed points p, q ∈ X.

(2). The tangent bundle TpX has linearly independent weights for any fixed
point p ∈ X.

The 1-dimensional orbits in X joining every two fixed points in X are called
balloons which are copies of P1.

The key ingredients for the proof of the mirror principle are the following three.
Their definitions will be given later.

(1). Linear and non-linear sigma model;

(2). Euler data;

(3). Balloons and hypergeometric Euler data.

Note that, as explained in [LLY4], the above ingredients are independent of
the genus of the curves, except the hypergeometric Euler data, which for g > 0 is
more difficult to find out, while for the genus 0 case it can be easily read out from
localization at the smooth fixed points of the moduli spaces.

First let us recall the general set-up for mirror principle. Let X be a projective
manifold. We introduce the definitions of the main objects needed for the discus-
sions.

Non-linear sigma model, which we denote by Mg
d (X), is the moduli space

of stable maps of degree (1, d) and genus g into P1 ×X:

Mg
d (X) = {(f, C) : f : C → P1 ×X}

with C a genus g (nodal) curve and f(C) ∈ H2(P1 × X,Z) has bi-degree (1, d),
modulo the obvious equivalence. For convenience the degree d will also be used as
integers by choosing a basis in H2(X, Z).

Linear sigma model, which we denote by Wd for a toric manifold X was first
introduced by Witten and later by Aspinwall-Morrison for computations. It is a
large toric manifold. We refer to [LLY3] for a precise definition. Here we only give
a simple example.

Example: Let X = Pn, with homogeneous coordinate [z0, · · · , zn]. Then the
linear sigma model is given by the polynomial space Wd with projective coordinate

[f0(w0, w1), · · · , fn(w0, w1)]

where fj(w0, w1) are homogeneous polynomials of degree d.



76 BONG LIAN, KEFENG LIU, SHING-TUNG YAU

In the genus 0 case, Wd can be viewed as the simplest compactification of the
spaces of degree d maps from P1 to X. The following basic lemma connects this
compactification with a stable map moduli space. A proof can be found in [LLY4].

Lemma: There exists an explicit equivariant map

ϕ : Mg
d (Pn) −→ Wd.

Here the equivariance is with respect to the induced actions from the torus
actions on X and P1.

Roughly speaking the computation should be on Mg
d (X). But in general

Mg
d (X) is very ”singular” and complicated. But Wd is smooth and simple, our

main strategy is to push-forward everything to Wd through the map ϕ! The func-
torial localization formula below is one of the key tricks we used.

Let Mg,k(d,X) be the moduli space of stable maps of genus g and degree d
with k marked points into X. That is

Mg,k(d, X) = {(f, C; x1, · · · , xk) : f : C → X}
with x1, · · · , xk, k points on the genus g (nodal) curve C.

This moduli space may have higher dimension than expected, even worse, its
different components may have different dimensions. To compute integrals on such
space, we need to first define the integral. For this purpose, we have the notion
of virtual cycles: the virtual fundamental class which is first given by Li-Tian [LT]
and later by Behrend-Fantechi [BF]. Let us denote by

LT g
d (X) ∈ A∗(M

g
d )T ,

the equivariant analogue of the virtual fundamental cycle which is a class in the
equivariant Chow group of cycles of Mg

d (X). Another virtual cycle will also be
used:

LTg,k(d, X) ∈ A∗(Mg,k(d, X))T .

Now let us introduce the starting data of the argument. We let V −→ X be
an equivariant concavex bundle. The notion of concave bundles was introduced in
[LLY1], it represents a direct sum of a positive and a negative bundle on X. From
a concavex bundle V , we can induce vector bundles V g

d on Mg,k(d, X) by taking
either H0(C, f∗V ) or H1(C, f∗V ), or their direct sum. Let b be a multiplicative
characteristic class.

Problem: The main problem of mirror principle is to compute the integral

Kg
d =

∫
LTg,k(d,X)

b(V g
d ).
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More precisely, let λ, q be two formal variables. We would like to compute the
generating series,

F (q, λ) =
∑
d,g

Kg
d λgqd

in terms of certain natural explicit hypergeometric series. So far we have rather
complete success for the case of balloon manifolds and genus g = 0.

2. Rational curves

The mirror principle for the genus 0 case has been more or less fully developed,
which implies almost all of the genus 0 conjectural formulas from string theory
[LLY1]-[LLY3]. The most famous corollary is possibly the Candelas formula [Cd].
In this note we will briefly review our approach to the higher genus mirror principle,
which is still under progress with partial successes as discussed in [LLY4]. Roughly
speaking we now have the following general theorem:

Theorem: Assume g = 0. Mirror principle holds for balloon manifolds and
any concavex bundles.

Remarks: 1. For toric manifolds, the above mirror principle implies almost
all mirror conjectural formulas derived from string theory.

2. In the above statement of mirror principle, we need to require splitting type
on V when restricted onto each balloon = P1, and certain condition on the first
Chern class c1(V ). We refer the reader to [LLY1], [LLY2] for details.

There are many non-split bundle V with given splitting type, such as TPn;
and many equivariant bundles over toric manifolds [LY]. Such bundles will give
non-complete intersection Calabi-Yau manifolds, such as Pfaffian variety; moduli
space of rank 2 bundles over Riemann surface.

3. The special case of Pn, with V the sum of positive line bundles, b the Euler
class, a second approach can be found in [BDPP], [P] following [G]; for V direct
sum of positive and negative line bundles, see also [E]. In [Ga] a mirror formula
was proved by using relative stable maps.

Recently in [Lee], the functorial localization formula [LLY1] and deformations
of normal cone were used to derived a mirror formula with V the sum of positive or
negative line bundles, and b the Euler class. However, it requires strong restrictions
on the first Chern class of V , and it yields no information when V is the trivial
bundle.

One of the most interesting corollary of the mirror principle is when we take V
to be sum of negative bundles. This gives the so-called local mirror symmetry,
which is called geometric engineering in [KKV]. The examples include:
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(a). Take X to be the de Pezzo surface, P1 × P1 or P2. Take V = KX , the
canonical line bundle and b the Euler class. In this case, the corresponding hyper-
geometric series are periods of elliptic curves, which are called the Seiberg-Witten
curves [KKV]. Indeed the total space of KX is an open CY, its mirror is the elliptic
curve, the Seiberg-Witten curve.

(b). The simplest but very interesting example is when X = P1, V = O(−1)⊕
O(−1) and b the Euler class. In this case we have the multiple cover formula of
Candelas et al: Kd = d−3. When X = P1, V = O(−2) and b the total Chern
class, we get a similar multiple cover formula Kd = d−3. Another very interesting
example is when X = P2, V = O(−3) and b the total Chern class [LLY1].

2. Higher genus

In the following we will review our approach to the general mirror principle for
higher genus. As one may notice that, almost all of the techniques for genus 0 case
work well for higher genus, except the last step of finding the hypergeometric type
series which is more difficult in higher genus due to the complicated fixed point
moduli spaces.

One of the simple but key techniques used in our approach is the following im-
portant Functorial localization formula. Let X and Y be two manifolds with
torus action.

Lemma: Let f : X → Y be an equivariant map. Let F ⊂ Y be a fixed
component, and E ⊂ f−1(F ) be the fixed components in X. Let f0 = f |E, then for
an equivariant cohomology class ω ∈ H∗

T (X), we have the identity on F :

f0∗[
i∗Eω

eT (E/X)
] =

i∗F (f∗ω)
eT (F/Y )

.

It is interesting to note that this functorial localization formula is very much
in the spirit of the Riemann-Roch formula. Functorial localization is one of the key
ideas in [LLY1] and [LLY2]. This same idea was later used in [B] and [Lee]. We will
apply this formula to ϕ, the collapsing map. Before that let us first work out the
fixed points in the nonlinear and linear sigma models with respect to the induced
S1-action from P1, as well as some of its key properties.

The fixed points in Mg
d (X) induced by the S1-action on P1 are given by the

components:

F g1,g2
r = Mg1,1(r, X)×X Mg2,1(d− r, X)

with g1 + g2 = g and r = 0, · · · , d. By considering the pull-back of bT (V g
d ) through

the projection:

π : Mg
d (X) → Mg,0(d, X)

and its restriction to F g1,g2
r , we have the important
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Gluing identity:

bT (V )bT (V g
d ) = bT (V g1

r )bT (V g2
d−r).

The collapsing map ϕ, when restricted to F g1,g2
r is just the evaluation map ev

into X at the gluing point. The next step is to get the so-called Euler data from
the above gluing identity. Let us write

Ag
d = ev∗[

i∗π∗bT (V g
d ) ∩ LTg,1(d, X)

eT (F g,0
d /Mg

d (X))v
]

which comes from the left hand side of the Functorial Localization Formula. Here
we have actually used a virtual version of the functorial localization formula, which
is proved by using the virtual Atiyah-Bott formula as generalized in [GP]. The
denominator eT (F g,0

d /Mg
d (X))v denotes the virtual equivariant Euler class. See

[LLY3] and [LLY4].

Let us form the generating series:

Ad =
∑

g

Ag
d λg, A =

∑
d

Ad edt

¿From gluing identity and the functorial localization formula we can derive the
following identity:

bT (V ) · i∗rA
g1,g2
d = Āg1

r ·Ag2
d−r (∗)

where i∗rA
g1,g2
d is the local term from the localization of bT (V g

d ) onto F g1,g2
r , and Ār

denotes the switch of sign: α → −α. Here α is the weight of the S1-action induced
from the action on P1. This then gives us quadratic relations among the Ad’s. See
[LLY4] for the details.

The right hand side of the functorial localization formula is the localization of
the push-forward class by ϕ:

ϕ∗[bT (V g
d ) ∩ LT g

d (X)] ∈ A∗(Wd)T (∗∗)
which is a polynomial class in α. Note that Ag

d is actually a rational class in α.
Through functorial localization formula and localization on Wd, we derive, from
the gluing identity, that {Ad} is an Euler data.

Here Euler data, roughly speaking, are the sequences of classes like Ad with
properties like (*) and (**). The connection between (*) and (**) is the functorial
localization formula. From the above discussion, we see that any triple (X, V, b)
induces an Euler data through the functorial localization formula.

On the other hand, we know that knowing Ag
d is equivalent to knowing Kg

d , as
given by the following:
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Lemma: We have the formula:

αg−3(2− 2g − d · t)Kg
d =

∫
X

e−t·H/αAg
d.

So the problem is reduced to the computation of the Euler data Ad. The
next step in our approach is to approximate Ad by restricting to ”smooth part” or
”generic part” of Mg,k(d,X).

When the genus g = 0, by localization to smooth fixed points, the multiple
covers of the balloons, which are those complex 1-dimensional orbits in X. When
restricting the Ad to those smooth fixed points in M0,1(d, X), we get another class
Bd which is an explicit hypergeometric type cohomology class. Here we just illus-
trate by a typical example:

Example: Let X = Pn, V = O(l) and b=Euler class. Then we have

Bd =
∏ld

m=0(lH −mα)∏d
m=1(H −mα)n+1

.

The general toric case is very similar, and Bd is also read out from localization
on the balloons. Here for general vector bundle V , the splitting type comes in. See
[LLY3] for further details.

By applying localization formula on the linear sigma model Wd of X, we find
that Bd is also an Euler data. And we know that Ad = Bd at the smooth points,
which we called them linked. Together with an Lagrange interpolation type argu-
ment, we derive the following uniqueness lemma by using localization again:

Lemma: If degα(Ad −Bd) ≤ −2, then Ad = Bd.

That is to say that Bd determines Ad up to degree −2. But in general Bd has
higher degree, instead this degree is zero. Then we can always find a so-called mir-
ror transformation to decrease its degree to −2. Here is one of the typical example
of the mirror formula as a corollary of mirror principle:

Example: Let X be a toric manifold; and consider the case of g = 0. Let
D1, .., DN be the T -invariant divisors, and V the direct sum of positive line bun-
dles: V = ⊕iLi, c1(Li) ≥ 0 and c1(X) = c1(V ).

Let b(V ) = e(V ), Φ(T ) =
∑

Kd ed·T , and

B(t) = e−H·t
∑

d

∏
i

〈c1(Li),d〉∏
k=0

(c1(Li)− k)
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×
∏

〈Da,d〉<0

∏−〈Da,d〉−1
k=0 (Da + k)∏

〈Da,d〉≥0

∏〈Da,d〉
k=1 (Da − k)

ed·t.

Then the mirror principle implies that there are explicitly computable functions
f(t), g(t), such that∫

X

(
efB(t)− e−H·T e(V )

)
= 2Φ−

∑
Ti

∂Φ
∂Ti

where T = t + g(t). From this formula we can determine Φ uniquely.

The whole argument is actually genus independent except finding Bd. The
problem is that for g > 0, the good fixed points are given by the Deligne-Mumford
moduli space of stable curves Mg,1. And when localizing Ad to such fixed points,
we get explicit Hodge integrals on Mg,1, which are all explicitly computable. Our
approach works well until the last step: we can not figure out a simple Bd from the
integral on Mg,1, which is again an Euler data, to approximate Ad.

But the fact that Ad is an Euler data already puts very strong restriction on
such sequences, and this determines it up to certain degree. Such restrictions are
all quadratic and compatible with mirror symmetry for higher genus by Vafa et al.
Even if we take X a single point in our non-linear sigma model, we already get
strong information on the Hodge integrals on Mg,1. This was worked out in [FP].
More interesting results are obtained in [TZ]. At this point we are trying to design
more refined localization involving Mg to find some more refined relations among
the Ad’s.

Euler data is a very general notion, it can include general Gromov-Witten
invariants. We can consider marked points to the moduli spaces and add the pull-
back classes to the Ad’s. More precisely we can try to compute integrals of the
form:

Kg
d,k =

∫
LTg,k(d,X)

∏
j

ev∗j ωj · b(V g
d )

where ωj ∈ H∗(X).

By introducing the generating series with summation over k, we can still get
Euler data. The Ultimate Mirror Principle we are searching for is the following
statement: Compute this series by explicit hypergeometric series! Our discussion
above has reduced this to the problem of finding the hypergeometric Euler data
Bd’s.

4. Concluding remarks:

Now we like to discusss some related problems to our above discussions. we
will not give details here.
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(1). Counting holomorphic discs: The boundary of these holomorphic discs lie
in certain special Lagrangian sub-manifold, which is some vanishing cycle, in X.
We hope to extend mirror principle to deal with such problems. Nonlinear sigma
model has been studied by Fukaya et al, and linear sigma model has been worked
out in string theory. In this situation both sigma models have boundaries. The
string theorists Vafa et al have made several interesting conjectures. Some pro-
gresses have been made in [KL] and [LS].

(2). The Gopakumar-Vafa formula: This formula [GV] reinterpretes, via physics,
the rational number Kg

d in terms of certain integer valued instanton numbers ng
d,

generalizing the multiple cover formula for rational curves. In particular, in the
genus zero case, this gives rise to integer series expansions for Yukawa couplings.
The question of integrality and divisibility of these series expansions were first stud-
ied in [LY], as a special of Lian-Yau’s integrality conjecture. Using the formula of
[GV] and this conjecture as a guide, we hope to construct hypergeometric Euler
data, which is linked to Ad.
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