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Abstract. We consider the standard Hubbard model in the U = ~ hmit. We show that, for any finite 
lattice with all positive hopping matrix elements, t,j > 0, the ground state energy of the system 
containing two particles in excess of half filling plus the energy of the system at half filling is never lower 
than twice the energy of the system with a single extra particle. Similar results are obtained for 'holes' 
when the lattice is bipartite. As a byproduct, we obtain a simple alternative proof of Tasaki's 
generalization of the Nagaoka theorem for non-bipartite lattices (but without the uniqueness clause). 

AMS subject classification (1991). 82B20. 

It is of considerable interest to investigate the question of how, in the presence of 
purely repulsive electron-electron interactions, many body effects can produce an 
effective attraction between electrons or holes. For instance, a recent theory of 
superconductivity in doped C60 proposes that an effective force between conduction 
band electrons arises from an overscreening of the purely repulsive microscopic 
interaction between electrons on the C60 molecule [1]. 

Here, we consider the problem of adding or subtracting a few electrons to a finite 
size Hubbard model at half filling. We assume that such models can capture the 
essential features of 'molecules': Electron-electron interactions are represented in as 
simple a way as possible via the Hubbard interaction. 

We focus principally on the problem of adding electrons rather than the more 
commonly considered problem of adding holes; it has been determined that C60 can 
be electron doped but, at present, it has not been hole doped. A molecule will be 
deemed 'neutral' when, for N sites, there are exactly N electrons and it will be called 
singly charged if there are N + 1 electrons, etc. We denote the ground-state energy 
of the n-fold charged molecule by En. The pair binding energy for two electrons is 
therefore defined as 

A~ = 2El --/?2 - Eo. (la) 

Using similar notation for the system which is n electrons below half filling (i.e. has 
n 'holes'), we define 

Ah = 2 E - i  - - E  2--Eo (lb) 
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to be the binding energy for two holes. Thus, when A~ is positive, it is energetically 
preferable for a system to place two extra electrons on a single molecule and leave 
a second molecule neutral than to put a single electron on each of two molecules. 
In this sense, a positive Ao represents an effective attraction between the two 
electrons. Similar considerations may be applied to the hole pairing energy Ah. 

We define our model on a lattice of N sites each of which contains one or zero 
electrons of each spin type. The Hubbard Hamiltonian is given by 

H = -- ~ tijct,,.cj, o + U ~ n,,Tni, *, (2) 
i.j.cr l 

where ni,. = c*,,.ci,~ ; a = T or , and the c,,fs obey the usual (fermionic) anti-com- 
mutation relations, i.e. 

{c .... c,.,,} = {c,L, c,L.} = o, {c .... c,L.} = a,,ja,,r (3)  

It is known from exact diagonalization studies of various Hubbard clusters that 
there are structures where, for certain ranges of the parameter U, the A's in 
Equation (1) are positive [2]. Now for U = 0, it is readily established that A ~< 0. In 
this Letter, we consider the U = oo limit and show that under quite general 
circumstances, both Ae < 0 and Ah ~< 0. Thus, pair binding is an effect which occurs 
only at 'intermediate' energies and the pair binding energies, Ae and Au are likely to 
be somewhat complicated functions of U. (For example, when a structure does 
enjoy pair binding, the associated A cannot be a monotone function of U.) 

To exhibit the U = oo behavior of (2), we subtract from the Hamiltonian 
[U] x [a term which counts the minimum possible number of doubly occupied 
sites]. Specifically, in the n-excess particle sector, we subtract off n U  for n/> 0 and 
do nothing if n ~< 0. After this subtraction, the coefficient of U now counts the 
number of unnecessary doubly occupied sites in the system. Let ~ ( - ~ , )  denote the 
projection operator which selects only those states that have no unnecessary double 
occupations. For the large U limit, the sensible term to consider is the Hamiltonian: 

~t~ = ~ [__ ~i,j,a t"sc~*cJ'*] ~"  (4) 

It is not hard to demonstrate (recall that N < oo) that the corrections to those 
eigenfunctions of ~ residing in the projected subspace and their associated 
eigenvalues cannot exceed the order of 1/U. 

In our discussion of the Hamiltonian (4), it should be mentioned that, because we 
are considering only time reversal invariant systems, the t,j are real. Furthermore, 
Hermiticity, requires that the t,j are symmetric: t,. 1 = tj,,. We consider the case in 
which all the diagonal elements, ti,, are equal (and, hence, can be set to zero without 
loss of geherality). We will be primarily interested in the systems which do not have 
any negative t,.j. This is a natural assumption which accurately describes the single 
electron physics when the inter-atomic orbital overlap is positive (as will be the case 
for n-electrons in a planar cluster) and pairwise small compared with unity. 
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In the case of  electrons, we will make no additional assumptions. However, for 

holes, we will be forced to assume that the lattice is bipartite, which means that the 

lattice can be divided into two disjoint collections of  sites - ' red'  and 'black'  - and 

that the t,,: are nonzero only when they connect sites of  opposite color. 
Our principal results stem from the following: 

P R O P O S I T I O N  1. Let [~9 > be any state with n >1 0 and let q, = [<~bln,,rni, tl~b >] 1/2 
denote the 'excess charge amplitude' at site i. Then 

P R O P O S I T I O N  2. Let #, denote the square-root of the probability that the site i is 
devoid of electrons. Then, for any state I0 > below half filling, 

Remark. This is not particularly difficult to show because there are only a few 

possibilities for wave functions which 'survive' the operator ~[E~ c~cj,o]~. For  

example, in the cases n ~> 0, it is clear that whenever i and j are both singly 

occupied, the result will be zero since Z~ c~cj,~ - at best - creates an unnecessary 
hole. 

Proof of Proposition 1. Let us write, in all possible generality, a state with n ~> 0, 

_4_ t t t t + t ~(c,.~c,.~cj.T) + + ,~2(c,,Tc~,~c:,~) 
t t t + ~r + <e2(c:3c:.:,,1) + 

t t t t + ~(c,3 c~, t c ,3 c,,~ )] Io>, (5) 

where in the above expression, the operators ~/1 �9 �9 �9 ~ operate on coordinates other 
than i and j and it is assumed that none of these operators are affected by ~ .  (In 

particular, we have omitted basis states with no electrons on site i or j since these 
will be annihilated by ~ . )  Note that, by definition, 

q~ = + + y 10> = IB,I  + I B # +  IDL 
etc. Now. as mentioned in the remark, none of the 'A '  terms contribute to Q,.j and, 
for a similar reason, there is no contribution from the D term (which is anyway 
absent altogether when n < 2). We are left with 

<~] ~ [ ~  c~.cj,o] ~ ]~ > = <01 ~ # ,  [0> + <01 #~(#210> (6) 

so that 

<01 c :,.oJ 10> -< IB, I Ic, I + IB211c21. (7) 
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N o w  

I~,1 Ic, I+ I~l Ic~l ~ (IB112 .+. IB~I ~) 1/2(1c, 12) + ic~l ~) ,/~, (8) 
which implies the desired inequality, Proposition 1. [] 

The proof of Proposition 2 follows exactly the steps of Proposition 1 so we will 
omit the details. [] 

In order to properly state our first theorem, we need to introduce a bit of  
notation. For the collection of the (tij) -= t which go into the make-up of the 
Hamiltonian, consider the associated lattice 'Laplacian' At (which here is entirely 
off-diagonal) that acts on scalar functions ~b~. via 

( a,~),  = E t,j~j. 
J 

Let - s0  denote the lowest eigenvalue of the operator - A t .  Then we have 

THEOREM 1. For t~a >1 0 and n >I 0, E, >~ -nso .  

Proof. As is well known, -So is obtained by finding the ~b which minimizes 

(9) 

--(~ a,~)  = -- Z 5,t , j~j  (10) 
Id  

subject to the constraint that the Iebi[2 add up to one. When none of the tij are 
negative, we get that 

(~l  ~ f  t~)  >I - ~  q, tijqj ( l l )  
,j 

so that ql may be regarded as a trial function - whose square sums to n - for the 
operator - A t .  Theorem 1 follows immediately. [] 

COROLLARY. In the U = oo limit, Ae <~ O. 
Proof. It is immediately obvious that E0 = 0. Starting from the bound of Theo- 

rem 1, we observe that, for n = 1, the lower bound can be realized in the 
ferromagnetic (Nagaoka) states [3, 4], that is, the states with the maximum possible 
spin consistent with the Pauli principle. This gives us the desired inequality. [] 

Remark. In the original references [3, 4], it was established that in the one-hole 
sector, the ferromagnetic states are the unique ground-states of a large class of 
bipartite lattices. This is referred to as Nagaoka's Theorem. Recently, Tasaki [5] 
has generalized the theorem to include 'connected' but nonbipartite lattices with all 
negative hopping matrix elements, ti,j ~< 0. (As shown below, this is equivalent to 
the case of one added electron with the tij ~> 0.) The following is a simpler 
demonstration of the existence of these ground-states. Let IF,) denote the ferro- 
magnetic (up) vacuum: 

IFT) = ~TI O) - H c~TIo), (12) 
i 
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where the operators on the right-hand side of (12) are written in some definite 

order. We define 

[i> = c~tlFr>, (13) 

and observe that, for j #-k, 

[C~TCk, r + C*,,ICk.t] [j> = 0. (14) 

Indeed c,*,T after anticommuting with ck.Tc~i, always destroys the ferromagnetic 
vacuum, while (since j # k), ck.~ anticommutes through all preceding operators and 
then destroys the (true) vacuum. On the other hand, i f j  = k, c~,+c~+ acts like one on 
the vacuum and we are left with c~t tFr > = [i>. Thus, we have a family of  wave 
functions (1i>) for which 

1i> =~,  - %  lJ> (15) 
] 

and from which the existence of  the Nagaoka states follows immediately. In 
particular, if 49(0 is any eigenfunction of - A , ,  so that Z, 49(i)c~T[0> is a single 
particle wave function, then 

149; FT > = ~ dP(i)c~tIFT > (16) 
1 

will be an eigenfunction with the same energy when the system has a single electron 
in excess of  half filling. Since the lowest energy eigenfunction of this type saturates 
the bound in Theorem 1, it is necessarily a ground-state. 

As a consequence of Proposition 2, we have the analog of  Theorem 1, namely 
that the energy of  n holes is no smaller than -na0.  The difference between particles 
and holes shows up when we try to construct the Nagaoka states. Indeed, the 
natural proposal for a state with a hole at i would be 

Ii~ - C,.T [FT >. (17) 

However, it is straightforward to see that 

cLrcj, r Ii~ = -[j~ (18) 

and there is very little that can be done about the minus sign in the general case. 
There are, however, two circumstances where the above situation can be turned 

around: The first is the case in which all the t,j are nonpositive. In that case, 
Equation (18) is exactly what is desired - however, the trouble will reemerge when 
the system is above half filling. This is the problem that was considered by Tasaki. 
Although such circumstances could arise through a complicated many-body effect 
in the atomic wavefunctions, it seems a bit unlikely. The second case, which is of 
somewhat more interest, is when the lattice is bipartite. Here, one can redefine the 
states via 

Ii~> = eg(i)[i~ (19) 
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where co(i) is, for example, + 1 if i is on the black sublattice and - 1 if i is on the 
red. Since, by definition, the t,,j are only nonzero if i and j are of  different color, one 
has the desired relationship 

t '~ t,jc~rcJ.r[ i ~ ) =  ,all ) (20) 

from which the analog of  the corollary to Theorem A holds. All in all, this leaves 
us with 

COROLLARY. On a bipartite lattice with all tia of  the same sign, and U = ~ ,  

Ae, Ah ~< 0. 
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