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Results from percolation theory are used to study phase transitions in one- 
dimensional Ising and q-state Potts models with couplings of the asymptotic 
form Jx, y ~ c o n s t / I x - y l  2. For translation-invariant systems with well-defined 
limx~ ~ xZJ~ = J +  (possibly 0 or oo) we establish: (1)There is no long-range 
order at inverse temperatures fl with flJ+ ~< 1. (2) If flJ+ > q, then by sufficiently 
increasing Jt the spontaneous magnetization M is made positive. (3) In models 
with 0 < J+ < oe the magnetization is discontinuous at the transition point (as 
originally predicted by Thouless), and obeys M(flc)>1 1/(flcJ +)1/2. (4) For Ising 
(q = 2) models with J+ < ~ ,  it is noted that the correlation function decays as 
( a x % ) ( f l ) ~ c ( f l ) / I x - y l  2 whenever fl<flc. Points 1 3 are deduced from 
previous percolation results by utilizing the Fortuin-Kasteleyn representation, 
which also yields other results of independent interest relating Potts models with 
different values ofq. 

KEY WORDS: 1/r 2 interactions; one dimension; Fortuin-Kasteleyn repre- 
sentation; Ising model; Ports models; percolation; discontinuous transition; 
Thouless effect. 

1. I N T R O D U C T I O N  A N D  S T A T E M E N T  OF M A I N  RESULTS 

The primary subject of this paper is a set of new rigorous results about 
phase transitions in one-dimensional Ising and Potts models with long- 
range interactions. In addition, we demonstrate the utility of some general 
comparison principles of Fortuin ~22) in relating the phase structures of 
Ising, Potts, and percolation models. Since these two topics are of interest 
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for separate reasons, our presentation in this introduction is split into two 
parts. 

The results addressing specific properties of long-range models, which 
include the resolution of some much pondered issues, are based on the 
analogous results derived in Ref. 7 for a class of percolation models. The 
extension is enabled by the Fortuin-Kasteleyn representation (23'36) of Ising 
and Potts systems as dependent percolation models. Our main conclusions 
and some history of the subject are given in the first part of this introduc- 
tion. The FK representation (discussed at length in Sections 2 and 4), the 
Fortuin (22) comparison inequalities, and our related results and 
applications are presented in Section 1.2. 

1.1. Long-Range One-Dimensional Models 

1.1.1. Ising Ferromagnets and Potts Models. It is generally 
recognized ~4~ that, in the context of equilibrium statistical mechanics, one- 
dimensional systems with rapidly decaying interactions are incapable of 
exhibiting long-range order at positive temperatures. A somewhat less 
trivial fact is that long-range order is nevertheless possible even in one 
dimension if the interactions decay sufficiently slowly. The dividing line 
between "rapidly decaying" and "long-range" interactions, as drawn by 
work starting with Refs. 19, 45, 20, 54, and 10, is in essence that of 
1~Ix - yl 2 interactions. 

The majority of the early work on long-range interactions focused on 
Ising ferromagnets: here, each site x of the lattice 77 is assigned a spin 
variable ax, which can take on the values + 1. The interaction between the 
spins is described by the Hamiltonian 

a~ '=- �89  ~ Jx, y ( a x a y - 1 )  (1.1) 
{x,y} 

in which the {Jx, y} are nonnegative (ferromagnetic), and are often taken to 
be translation-invariant, in which case we denote Jx, y = Jx -y .  [The sum 
over {x, y} counts each pair only once.] The order parameter for such 
models is the spontaneous magnetization, which can be expressed in two 
equivalent ways: 

M(/~) = / ~ ,  0f(/~, h = 0 + )  
Oh 

= <ao> +(//) (1.2) 

Here <.--> +(/~) denotes expectation in the infinite-volume Gibbs state at 
inverse temperature /~, with plus boundary conditions, and f(/~, h) is the 
free energy per site for such a system with ~ modified by the addition of 
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the term - h  ~ ~ .  More precisely, the plus state is obtained as a limit of 
finite-volume distributions (proportional to e - ~ )  with ~x set equal to + 1 
on all the spins outside the finite region. 

Among the results presented here are improved conditions for the non- 
vanishing of the order parameter in one-dimensional models, as well as a 
proof of the discontinuity of the order parameter in the special, borderline 
case of l / I x - y ] Z  interactions. We find it beneficial for the study of these 
issues to consider them within a larger class of models. 

Potts spin systems are a generalization of Ising models where each 
spin variable can take on one of q distinct values. The basic feature of the 
interaction is that the energy between any fixed pair of (interacting) spins 
depends only on whether or not the spin values agree. When the inter- 
action always favors agreement, the model is said to be ferromagnetic. 

Two convenient representations for the spin variables are as taking 
values in the set {1,..., q}, or as unit vectors allowed to point only to the 
vertices of a fixed (q-1)-dimensional  "tetrahedron." For the latter 
representation, we will use traditional vector notation ~x ~ ~q-  1 to describe 
the state of a spin. The dot product of any two such vectors assumes only 
two values and satisfies 

(L~ " 6y = (q3,,x,.y- 1) / (q -  1) 

A Potts model is described therefore by a Hamiltonian 

{~,y} {x,y} 
(1.3) 

with ~xy= [ ( q - t ) / q ]  Jx, y -The  case q = 2  coincides with the previously 
defined Ising model. 

The order parameter for a general Potts model is 

Mq(fl) = fl , Of(fi, h = 0 + )  
~h 

= < ~ , ' 6 o > ~ ( f l ) = q _  1 

The free energy f ( f l ,  h) is defined here by adding to the Hamiltonian the 
term - h  Y',x ~l"ax,  in which el is a unit vector in the direction of a fixed 
vertex of the tetrahedron. The symbol < ' "> l ( f l )  represents the thermal 
average in the infinite-volume Gibbs measure constructed with "1 boun- 
dary conditions." The equality between the thermodynamic definition and 
the other two expressions is discussed in Section 2 (Theorem 2.4) and in 
the Appendix (Theorem A.1). 
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We shall generally assume here that even though the Jx, y are long-range, 
the quantity IJI--SUpx Zy Jx, y is finite [since otherwise in the translation- 
invariant c a s e  Mq(/3)~ 1 for all /~>0].  By a general result, M = 0  if 
/~ IJI < 1. Thus, the critical point/3c, defined as the largest/3 below which 
M vanishes, is strictly positive. Whether or not/3 c is finite (i.e., whether or 
not there is a phase transition at nonzero temperature) depends on the 
asymptotic behavior of Jx, y, since in one dimension, finite-range inter- 
actions cannot produce symmetry-breaking. 

1.1.2. Ma in  Results for  Long-Range Models.  Following are 
the three main results of this paper for one-dimensional, long-range 
models. We assume translation invariance and also (for simplicity) that the 
following limit exists: 

J + =  lim x2j~ (1.5) 
x ~  

(it may be 0 or + ~ ) .  To extend some of the results beyond this 
assumption, use may be made of the monotonicity of Mq in/3 and in the 
Jx, which is well known for q = 2 and follows for all q/> 1 from the FK 
representation presented in Section 2. 

a. Presence of Long-Range Order. If /3J+ >q, then mq>O is 
achieved by making any single J= sufficiently large with/3 and all the other 
couplings held fixed. 

b. Absence of Long-Range Order. If/3J+ ~< 1 (which depends only 
on the asymptotic behavior of/3Jx), then Mq = 0 ,  regardless of individual 
Jx values.4 In particular, if X2Jx ~ O, then Mq(fl) = 0 for all/3 < ~ .  

c. Discontinuity of Magnetization. If 0 < J+ < ~ ,  then at some/3c 
in (1/J +, or), Mq(fl) jumps from zero to at least (J+~c) -1/2. 

The above discontinuity can be summarized by the dichotomy 

either Mq=O o r  flJ+M~>~l (1.6) 

For a succinct statement of a and b, let/~* be defined as 

/3*(q) = inf{/3J + I Mq > 0} 

where the inf is over all choices of {/3Jx}. Then 

1 <~/3*(q)<~q (1.7) 

4 Berbeelm recently obtained a result of this sort for Ising models by an independent 
argument which shows that M2(/3) = 0 whenever/~J+ < 1/2. 



Long-Range Ising and Potts Models 5 

It may be interesting to note that (1.6) can be viewed as a renormalized 
version of the lower bound in (1.7). Tracing back the proof, one finds (as 
explained in Ref. 7) that a natural way of thinking about it is to first 
understand why f l J+< 1 implies M = 0 ,  and then to notice that in a 
natural sense flJ+ may be replaced in that argument by its renormalized 
value f lJ+M 2. A similar renormalization (carried out, however, in a very 
different way) first appeared in the work of Anderson, Yuval, and Hamann 
[AYH]. (9'1~ The dichotomy (1.6) also reminds one of a dichotomy 
proposed by Thouless, who was the first to argue for the existence of a dis- 
continuity. We discuss the relation of these dichotomies below. 

A fourth result, established only for the case of Ising (and the 
analogous independent percolation) models, is that for 0 < J + <  oe, the 
two-point correlation function (aoax)(f i)  decays as c(fl)/x 2 for any fl < tic. 
The constant c(fi) must diverge as fl /~ tic, since for any Ising ferromagnet 
the susceptibility Z(fl)=-Z~ (aoax)(f l)  diverges as fl 7 flc.(5o, 6) In view of 
this, the phase transition is not really of first order despite the discontinuity 
in the order parameter. 

1.1.3. Relations to Previous Work.  In the area of long-range 
one-dimensional systems, the literature on Potts and on percolation models 
is of fairly recent origin. (ls'49) On other hand, there is a rich history concer- 
ning one-dimensional gases and Ising models. Much of it focuses on two 
related issues: (1)sharp conditions for the existence of long-range order in 
one-dimensional models, and (2) the nature of the phase transition in the 
borderline models, with ,Ix ,'~ 1/x2. These questions were of interest for a 
number of different reasons. For the general theory of statistical mechanics 
they are of obvious interest, in particular since the 1/x 2 one-dimensional 
models offer examples exhibiting rather unusual behavior. Furthermore, 
such systems arise in the study of time evolution phenomena, such as the 
Kondo problem. Finally, the study of long-range models has involved a 
number of important methods (such as energy-entropy arguments, renor- 
realization methods, and multiscale contour analysis) whose applicability 
extends to a variety of problems. 

The criticality of the falloff rate Jx ~ 1/x2 follows from the early results 
of Dobrushin, (19) Ruelle (45) and Dyson. ~2~ The former works established 
that there is no long-range order if ,Ix "~ l/x" with s > 2, and the latter 
showed (using hierarchical models) that for any s < 2, long-range order is 
possible, and occurs at sufficiently high values of ft. Thus s = 2 is the critical 
power dividing short- and long-range forces in one dimension. Somewhat 
sharper results were in fact obtained. Dyson's result is that if eventually 
Jx>~X -21oglogx,  then there is spontaneous magnetization at large 
enough values of ft. Later results of Rogers and Thompson (47) amount to 
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the statement that if for every e eventually Jx ~< eX--2 log-1/2 x, then there is 
no long-range order at any temperature. 

Interest in the case s = 2 was greatly stimulated by the discovery of 
Anderson and Yuval ~8) and Hamann (3~ of a close connection between such 
Ising models and the Kondo effect in metals. 5 Furthermore, attention was 
drawn to this case by an argument of Thouless {54) that for Ising models 
with Jx ~ 1Ix 2, the order parameter is discontinuous at the critical point 
(the Thouless effect). Thouless studied the 1Ix 2 case by means of a beautiful 
energy-entropy analysis rooted in a classic argument of Landau and 
Lifshitz. (4~ While it is now understood that, for reasons mentioned below, 
Thouless' argument does not really imply a discontinuity, the notion that 
there is one received strong support from the renormalization group 
analysis of AYH (9'1~ and from Dyson's (2~ proof that there is a discon- 
tinuity in a related hierarchical model. 

The energy-entropy argument made by Thouless (see also Ref. 51) led 
to the dichotomy that for the 1Ix 2 Ising model, at any t either M(fl )  = 0 or 
else 

flJ + M2(fl ) >~ ot (1.8) 

where ~ = ~(fl) is determined by the behavior of the truncated two-point 
function (ax ,  ay)  T + = ( ~ r x C r y )  + - -  M 2 for t ~> to,  according to 

1 
L2 ~" (tTx, try) r ~ L  -2~ (1.9) - -  + a s  L ~ o o  

[xl,lyl ~< L 

Assuming that 

( ~ r x , ~ r y ~ > ~ l / I x - y l  ~ as I x - y l ~  (1.10) 

(0 would be denoted by - 1  +r/ in "conventional" critical exponent 
notation), one has for the quantity in (1.8) 

~ = �89 min{~9, 1} (1.11) 

Thouless concluded from (1.8), under the two assumptions that tc  < ~ and 
that 0 ( t )  does not tend to zero as t "~ t~, that M ( t )  must have a discon- 
tinuity at tic. Note that even had the assumption on ~9 been satisfied in the 
strongest way, ~ would be �89 with which (1.8) falls short of (1.6). 

Surprisingly, some further renormalization group analysis (which 
came much later and was based on Ref. 10) and numerical work suggested 
that ~9(t ) actually tends to zero as t ~ tic .(13) Moreover, some rigorous 

5 More recently, an analogy has been drawn between these problems and macroscopic quan- 
tum tunneling316'~8~ 
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results now show ~55) that in the class of 1/x 2 models the quantity O(flc + O) 
and hence also ~ take arbitrarily small values. It seems, therefore, on the 
basis of what is now known, that the mechanism considered by Thouless 
does not account for the discontinuity phenomenon which he first 
predicted. Nevertheless, he was quite right in that there is a discontinuity, 
and that it can be derived by means of a dichotomy. 

An apparently correct explanation of the phenomena discussed above 
can be found in the renormalization group analysis of AYH (9A~ which led 
to a discontinuity without any assumption about 0. On the rigorous side, 
the mere fact that in the critical, and hence delicate, case s = 2 there is a 
phase transition was finally given a rigorous proof by Fr6hlich and 
Spencer. (25) While that work proved that /?*< 0% it did not present any 
sensible upper bound on/~*, for which one should distinguish between the 
roles of the short-range and the long-range couplings Jx, as emphasized in 
Refs. 9 and 10. Later, studying long-range independent bond percolation 
models, Newman and Schulman (44) proved by an independent argument 
(which involves rigorous renormalization methods) the existence of per- 
colation in 1Ix 2 systems. The results of Ref. 44 yield/?* ~< 1 for independent 
percolation, which corresponds to the q--* 1 limit of Potts models. That 
q = 1 result is in fact optimal, since the results of Aizenman and Newman (7) 
include the opposite inequality/~* >/1. In fact, the comparison inequalities 
discussed in Section 1.2, which show that/~* is a nondecreasing function of 
q (for q >~ 1), while B*/q is nonincreasing, establish links between the Ising 
and the percolation problems studied in Refs. 25 and 44. 

The results of Aizenman and Newman (7) form a percolation version of 
the dichotomy (1.6). That work concerned independent as well as certain 
dependent percolations, and in part was based on a rigorous renor- 
realization-type argument. While the argument is quite different from that 
of AYH (9"1~ (concerning the Ising model), the structure it presents resem- 
bles the "flow diagram" of Ref. 10. In this paper we show how to make the 
results of Ref. 7 applicable to Ising (and more generally Potts) models. 

It may also be mentioned here that by the use of rigorous low-tem- 
perature expansions, Imbrie ~34) proved that 0 = 2  for Ising models with 
very large /~. Evidently, the work of Ref. 13 mentioned above concerning 
the behavior of ~ as/? "~ /3c refers to a truly intermediate phase. 

Let us end this part of the introduction by mentioning the following 
open problem. Show that for all the systems of the kind considered here, 
with interactions decaying asymptotically as 1 / ] x - y l  2, the inequality 
flm2>~ 1 in (1.6) is actually saturated at /~. Such a result, which is 
suggested by the methods of Refs. 7, t0, and 44, would have important 
applications in the study of the intermediate phase mentioned above. 
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1.2. Relations among the Order  Parameters in 
D i f fe rent  Models  

1.2.1. Random Cluster Models.  The percolation results men- 
tioned above apply to systems of which the simplest is the independent 
bond percolation model, in which the bonds (corresponding to all the pairs 
b = {x, y}) are independently occupied with probabilities 

g x y--~- 1 - e x p ( - f l J x _ y ) ~ f l J x _ y  (1.12) 

The occupied bonds are regarded as connecting, and the order parameter 
M({flJ})  is the percolation probability, which is often denoted by Po~ 
({flJ} denotes here the set of all the couplings). 

However, the results of Ref. 7 were formulated so that they apply also 
to a class of dependent percolation models. It turns out that this class 
includes the random cluster models, with parameter values q~> 1, which 
describe the statistics of a diagrammatic expansion of the q-state Potts 
models (for which q is integer). As Fortuin and Kasteleyn 123'36) discovered, 
the random cluster models allow a natural interpolation to noninteger q, 
with the limit q --* 1 corresponding to independent percolation. For our dis- 
cussion of Potts models it is of central importance to identify the geometric 
content of their physical quantities. That is presented in Section 2. Here we 
just introduce the direct definition of the random cluster models. 

A general bond percolation model on the one-dimensional lattice 7/is 
described in terms of bond occupation variables n = {nb}, which take the 
value 1, meaning the bond b = {x, y} is occupied, or 0, meaning that the 
bond is vacant. The model is defined by a probability distribution on the 
occupation configurations of all bonds, which we will typically assume to 
be translation-invariant. In independent percolation the occupation 
variables are mutually independent, and the probability of a configuration 
n for any finite collection of bonds A is the product 

~p(n) = 1-I (1 - e  -~Jx,y) I-I e-~x'y (1.13) 
(x,y}:n~,y- l {x. yI:nx, y=o 

Note that in places where the translation invariance plays no role, we refer 
to the couplings as ]~Jx, y instead of lffJ x_y. In the random cluster models 
(where the bond variables are dependent), we construct the infinite-volume 
measure by suitable limits of ensembles defined with a finite length L. 
Putting aside the question of boundary conditions, the finite-volume 
probability measures of the random cluster model parametrized by q > 0 
are defined by the weights 6 

~q.a(n) = ~),(n) q~C")/Zq.,(.71) (1.14) 

6 The case q = 0 can also be defined (by a limiting procedure) and is of interest, but it will not 
be discussed in this work. 
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where c(n) is the total number of connected clusters in I--L, L] with 
respect to the occupied bonds of n, and Zq,B(A ) is the normalization 
constant, which makes ~r a probability distribution. 

One natural construction of the infinite-volume measure is by starting 
from the measure (1.14) for the variables associated with the set of bonds 
A f =  {b= {x, Y}I [xl, lY[ ~ L }  and letting L ~  ~ .  As we shall see, that 
limit (yielding a probability measure on the set of bonds of the infinite lat- 
tice) exists, and describes--when properly interpreted--the "free boundary 
condition" state of the q-state Potts model. However, the order parameter 
M is detected better in the state constructed with the nonsymmetric plus, 
or a =  1, boundary conditions. The corresponding construction for the 
random cluster model is to take 

2 Z =  {b= {x, y}llxl ~L ,  y ~ Z }  

and regard all the sites of I - L ,  L] that are connected by the occupied 
bonds of , '~ to the complement [--L,  L] c as belonging to the same cluster, 
or equivalently treat all the bonds with both ends in [ - L ,  L] c as occupied. 
With the above interpretation of c(n), the measures defined by (1.14) also 
converge (Section 2), and yield what we call the "wired state." With *=  w 
(wired) or f (free), we denote by #*.a(dn) or Prob*~(...) these two states of 
the random cluster models. (These models have other interesting boundary 
conditions, involving interfaces, which we shall not discuss here.) 

The close relation between the Potts and the random cluster models, 
which we discuss more completely in Section 2, leads to the following 
expression for the order parameter defined for Potts models by (1.2) and 
(1.4): 

Mq({flJ})= Prob~,~(the origin belongs to an infinite cluster) (1.15) 

The relation (1.15) allows us now, following Refs. 23 and 36, to extend the 
definition of the order parameter to all real values of q >/1. 7 

1.2.2. C o m p a r i s o n  Inequal i t ies .  As a preliminary fact, let us 
point out that the random cluster models with q >/1 (and J>~0) satisfy the 
FKG inequality (Ref. 22, Lemma 2) (see Section 2). Hence, some of the 
most basic, and quite useful, inequalities of Ising systems extend to Potts 
and random cluster models. In particular: 

(o) For each q>~l the order parameter Mq({flJ}) is monotone- 
increasing (by which we always mean nondecreasing) in fl and in the Jx, y. 

More striking are comparison inequalities relating models with dif- 
ferent values of q. The basic technical results are contained in the original 

7 The restriction to q ~> 1 is for technical convenience (see Theorem 2.2). 
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paper of Fortuin (Ref. 22, Lemma 3). What we want to emphasize here is 
that when these general inequalities are applied to the order parameter and 
to other physically natural quantities, they yield a very versatile tool. (In 
particular, they can be used for a simple derivation of some of the other 
results of Ref. 22 and of related works.) The basic statements concern the 
monotonicity of Mq({flJ}) as q and fl vary, with q~>l. To state them 
simply, at any fixed {Jx, y}: 

(i) Mq({flJ}) decreases as q increases with fl fixed (or decreasing) 

(1.16) 

and 

(ii) Mq({flJ}) increases as q increases with fixed or increasing [3/q 

(1.17) 

A slightly stronger, though more cumbersome, version of (ii) is 

(ii') Ifq'>~q (>~1), but for each {x, y} 

[exp(/~'J" y) - 1 ]/q' >1 [exp(/~Jx, y) - 1 ]/q 
then 

(1.18) 

gq( {flJ} ) <~ gq,( {fl'J' } ) 

Some comparisons with q < 1 are also attainable. The above relations 
actually extend beyond the order parameter, to expectation values of all 
"monotone" functions of the bond occupation variables; see Section 4. 

1.2.3. Applications of the Comparison Inequalities. Let 
//c(q) denote the critical point where Mq({~J}) first becomes positive in a 
random cluster model with fixed Jx. y. As immediate consequences of the 
above inequalities, 

t~c(q')>~c(q)>>.~j~c(q'), for all q'>~q>~l (1.19) 

A striking consequence is that if there is a phase transition for some value 
q0 in [1, ~ ) ,  i.e., if 0</3c(qo)< ~ ,  then there is a phase transition for 
every q 1> 1! In particular, an independent percolation transition implies an 
Ising transition, and vice versa. 

In the context of 1Ix 2 models, the first rigorous proof of the existence 
of a phase transition was that of Fr6hlich and Spencer (25) for Ising models. 
By another method, such a result was subsequently derived for independent 
percolation by Newman and Schulman, (44) whose upper bound /~*(1)~< 1 
[for the quantity/3*(q) discussed in Sections 1.1.2 and 1.1.3] turned out to 
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be optimal. ~7) We now see, by (1.19), that these problems are related. In 
one direction, the mere existence of a percolation transition can be deduced 
from the results of Ref. 25, and in the other the results of Ref. 44 yield the 
much improved bound fl*(2)~<2. Similarly, the result of Aizenman and 
Newman (7~ that fl*(1)/> 1 now easily extends to all q/> 1. Thus, we get here 
1 <<. fl*(q)<<, q. The gap that is left is caused by the structure of (1.19). For 
completeness let us remark that this gap is closed in a forthcoming paper of 
Imbrie and Newman, ~55) and that f l*(q)=l  for all real q~>l. That 
improvement is quite relevant for the study of the intermediate phase of 
Refs. 13, 55. 

The comparison inequalities between different q's have a number of 
other applications beyond the context of one-dimensional models. Two of 
these are discussed in Section 4. One concerns dilute (in the "bond" sense) 
Ising, or Potts, ferromagnets. Here we find it convenient to compare 
the diluted q > 1 system to the corresponding diluted q = 1 model, since 
the effect of dilution on independent percolation is to reproduce an 
ordinary percolation model with some new occupation density. This line 
of reasoning leads to a technology for handling dilute ferromagnets which 
is simultaneously rigorous, intuitive, and simple. More details may be 
found in Ref. 5. 

The other application given in Section 4 concerns the phase transitions 
in logarithmic wedges of 7/d (which for d=  2 have the shape of a "stingy 
slice of pie"). Using the comparison inequalities, we extend results obtained 
previously concerning the existence of an intermediate phase for percolation 
and Ising systems in wedges, to Potts wedges with any q/> 1. 

1.3. Organization of the Paper 

The remainder of this paper is organized as follows. Section 2 contains 
the FK representation and some general properties of the finite- and 
infinite-volume states of Potts and random cluster models, with some of the 
proofs relegated to the Appendix. In Section 3 we use this representation 
for a derivation o f  the dichotomy (1.6) from the percolation results of .  
Ref. 7. We include there also a discussion of the correlation function decay 
for long-range Ising models with fl < tic. Section 4 is devoted to the com- 
parison principles and the applications mentioned above. 

2. FORTUIN-KASTELEYN REPRESENTATION OF POTTS 
SPIN SYSTEMS 

In this section, we review the geometric representation of the order 
parameter and the correlation functions of Potts models by means of the 
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random cluster representation due to Fortuin and Kasteleyn. (23'36) We also 
derive the F K G  property of the associated equilibrium states and use it to 
establish some preliminary results on the states obtained in the infinite- 
volume limit. Much of this already appears in Ref. 22. The results of this 
section apply in a quite general setting. 

2.1. Derivation of the Random Cluster Representation 

We start with a finite A c Z a and consider the q-state Hamiltonian 
in the first of the two forms in (1.3). The partition function for such a 
system with free boundary conditions is given by 

~ r  = YrA e - ~e(~A) (2.1) 

where aA is notation for a generic configuration of spins in A and Tr means 
sum over all such configurations. 

Denoting by 7 l f = { { x , y } l x ,  y e A }  the set of all the "bonds" in A, 
which is consistent with the notation used for the random cluster models in 
Section 1.2.1, we have 

e x p [ - - f l ~ ( a A ) ] =  ~ exp[flJx, y(6 . . . .  - 1 ) ]  (2.2) 
{ x , y } ~ 2  r 

The basic idea is now to expand such products, wherever they occur, by 
means of the identity 

exp[flJx, y(6~x,~ - 1)] = (1 - 2~,y) + 2~, y ~ x , ,  (2.3) 

with 2x, y = 1 - e x p ( - f l J x ,  y). The terms in the expansion of the product 
(2.2) are in one-to-one correspondence with a bond function n: _,~f~ {0, 1 }. 
Explicitly, for each term in the expansion we set na = 1 on those bonds b = 
{x, y} for which the corresponding term in the product is 2x, y6 . . . .  ~, and 
nb= 0 if the corresponding term is ( i -  2x, y). Of course, it is worthwhile to 
think of the configurations geometrically. Thus, we will refer to n as a bond 
configuration, the bonds being "occupied," meaning "connecting," if na = 1, 
and "vacant" if na = O. 

Writing (2.2) in the expanded form, we have 

~rA= ~ 1--I 2b I-I (1 - -2b) (Tr  [-I 6 . . . .  ,~ (2.4) 
n =  {rib} b~Ar:nb = 1 b ~ f : n b = O  \ b:nb= 1 / 

We will now evaluate the trace, which depends on the configuration n. For 
each configuration, the set A divides into connected components 
(or clusters). In the corresponding trace in (2.4), the delta functions require 
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that the spins take a constant value within each such component (with 
respect to n); otherwise, the trace is unconstrained. Hence, we pick up a 
factor of q for each connected component of n (where we regard also a 
single disconnected site as a cluster). Denoting by c(n) their number, we 
have 

~ = ~ ~/~(n) q~(") (2.5) 
n 

where Ma(n)-M{aj/(n) is the weight we encountered in (1.13), giving there 
the probability of n in a Bernoulli (independent) percolation model with 
the bond occupation probabilities 

Kx, y=2x, y [ = 1 - exp(-/~Jx, y)] 

A quick comparison of (2.5) with (1.14) shows that the partition 
function ~ r  A is exactly the normalization constant (or the generating 
function) Zq,a(~ r) of the random cluster model. To complete the correspon- 
dence, we shall discuss the relation of the states (in particular, the order 
parameters and the correlation functions) and other than free boundary 
conditions. Let us start with the former. 

The equilibrium (Gibbs) state of a finite system in A with free boun- 
dary conditions is described by a probability measure on the space of spin 
configurations for which the expectation values of observables are given by 

( g ( a )  )~ = TrA e-~(~)g(aA)/~ .~  (2.6) 

By substituting (2.3) in (2.6) and expanding as before, one obtains the 
following expression for the state ( ' ' ' ) A :  

( g ( a )  ) {  = ~ ~q,t~(n) E~(g(a)) (2.7) 
n 

Here, for each n, E~(-) is a very simple average over the spins o-, the spins 
being just constrained to be constant on each connected cluster with the 
values for different clusters being independent symmetric variables, and 
~q.a(n) is the probability distribution for the bond configuration n given by 
the random cluster formula (1.14). 

For other boundary conditions--say, a fixed spin configuration, 
aAc-  {r/y} on A c= Zd\A, with the couplings between A and A c determined 
by the Jx, y--similar representations may be obtained. Indeed, it is seen that 
only a few adjustments have to be made: First, there will be additional 
bonds between A and A ~, corresponding to the interaction with the fixed 
spins in A ~. Hence, the relevant set of bonds is not Af, but .,~+ = {{x, Y}I 
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x e A, y e Zd}. A new feature is that, unless the boundary spins are all in 
agreement, some simple consistency constraints will be placed on the 
collection of allowable bond configurations. Furthermore, for notational 
purpose, we find it convenient to modify the notion of what constitutes 
"connected components." 

Following mutatis mutandis the discussion of the free boundary con- 
dition, one finds that the partition functions ~ and the states ( - . . ) a  are 
still given by Eqs.(2.5) and (2.7), with, however, the following 
modifications: 

1. n = {r tb}  is defined on the bonds of 4 + (rather than Af). However, 
only those configurations n contribute that do not include an occupied 
path connecting two sites in A c with different values ofq. 

2. We modify the definition of c(n) to count only those distinct con- 
nected clusters that are not connected to any boundary site (where the 
spins are fixed). This definition applies in the formulas (1.14) and (2.5) for 
the weights ~Wq,a(n), which are still normalized to form a probability dis- 
tribution and for ~e~ [which again equals the normalizing factor in (1.14)]. 

3. In the expectations E,"(-), which enter in the extended version of 
(2.7), spins in clusters connected to the boundary assume only the value of 
the boundary site(s) to which they are connected (the above constraint on 
n assures that no contradiction is created), while the other spins are 
distributed as in (2.7), i.e., subject only to the constraints to be constant on 
each connected component. 

For the simplicity of some expressions given below, let us add the 
following new convention: 

4. In defining the connected clusters, we regard all the boundary sites 
(in A c) with the same value of  q, as well as those sites of A connected to 
them, as connected. This can be alternatively stated by saying that we treat 
all the bonds having both ends in A c and the same value of 1/as occupied. 

The most relevant for this work are the el boundary conditions 
appearing in (1.4), which generalize the plus boundary conditions of the 
Ising model. In that case, condition 1 is satisfied for all n, and the 
modifications introduced in. 3 and 4 are also particularly simple. The 
corresponding probability measure ~r is exactly the wired state 
#~,t~(dna) of the random cluster model discussed in Section 1.2.1. 

Of particular interest are the following applications of the formula(s) 
(2.7). 

Lemma 2.1. (a) For any Potts model in a finite volume A, the 
magnetization with el boundary condition [see (1.4)] satisfies 
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1 
q -  1 ( (q6~ 'x"-  1))~ 

= #~A(X*-* A") =-- MA({f lJ})  (2.8) 

where x ~ A means, for x a site and A either a site or a set of sites, that x 
is connected to A (in the appropriate sense as discussed above) by a path 
of occupied bonds, a n d / ~ ( . )  is the probability measure of the wired state 
with the given values of q and {flJ}. 

(b) The two-point function with free boundary conditions satisfies 

( .x .%)f i=(q l-~_ l (q6 .... y- 1))] 

= ~ ( x  ~ y)  - ~ ( x ,  y )  (2.9) 

with a similar formula holding for the ~ boundary condition, which 
corresponds to the wired state #~(. ) (with the corresponding interpretation 
of x+-* y). 

Since the proof is by a completely elementary application of (2.7), let 
us skip it here, except for commenting on the peculiar function 
[1 / (q -1 ) ] (q8  ..... - 1 )  appearing in the second form of each of the above 
quantities. The expectation value of that function is a natural measure of 
the bias of the spin ax toward the value ay. When the conditional 
distribution of ax is totally independent of ay the expectation is 0, and 
when they are perfectly correlated the (conditional) expectation is 1. A 
remarkable feature of the formula (2.7) is that it represents the physical 
correlations by means of averages over these two "totally polarized" cases. 

Following are some additional comments on the measures induced on 
the bond configurations n by the states of the Potts model. 

Remarks. 1. Unlike the free or the fixed el (or ~ )  boundary con- 
ditions, the general f ixed spin boundary conditions introduce somewhat 
disruptive constraints, requiring the presence of interfaces. Such general 
boundary conditions are discussed in the Appendix. 

2. Although the random cluster measures may appear somewhat 
forbidding due to the nonlocal nature of the q-dependent factor, these 
measures are nevertheless quite manageable. In the free and the wired 
states, for each bond b the conditional probability of the event n0 = 1, 
conditioned on the occupation status of all the other bonds, is covered by 
only two alternatives: 

822/50/!-2-2 
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Vrob*(nb = 11 {nb'}V~b) 

2b 

2 b + q(1 - 2b) 

if the ends of b are in the 
same *cluster regardless of nb 

otherwise 
(2.10) 

where * = f (free b.c.) or w (wired b.c.). It may be noted that for an infinite 
system the right side of (2.10) is not an everywhere continuous function of 
{n }. On the other hand, that function has certain monotonicity properties, 
about which we say more in the next subsection. 

3. An interesting application of ideas related to the FK represen- 
tation has recently been made by Swendsen and Wang, (53) who present a 
fast Monte Carlo algorithm, which proceeds by alternate updates of spin 
and bond variables. A point of view emphasized by Sokal (52) is that there 
exists a natural joint probability distribution of bond and spin variables 
[whose weights are implicit in (2.4)], with the following properties: 

(a) The marginal distribution of the spin variables is the Potts model 
(2.2). 

(b) The marginal distribution of the bond occupation variables is the 
random cluster model (1.14). 

(c) The conditional distributions of each set of variables, given the 
other, have a particularly simple form. [One of these conditional 
distributions is the E~(.) of (2.7).] 

The Swendsen-Wang algorithm consists of alternate applications of 
the two conditional distributions, and hence the joint distribution is a very 
natural framework for it. For us, however, it suffices to focus primarily on 
the random cluster measures, which we use as an extremely convenient tool 
for the study of the infinite-volume states of the Potts models. We also find 
them of interest as dependent percolation models (in which q becomes a 
continuous parameter). 

2.2. Harris-FKG Inequalities 

In 1960, Harris (32) proved a correlation inequality for the Bernoulli 
percolation problem, which was extended in Ref. 22 to the random cluster 
measures. The analogue of this inequality for the case of ferromagnetic 
Ising spin measures, and in a more general context, was the subject of 
Ref. 24. Such inequalities have also been studied in the context of reliability 
theory. (21m) The general F K G  inequality is stated in the setup of measures 
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on a partially ordered set ~2. In the application discussed here, O is the set 
of bond configurations. 

To fix the notation, we let ~ be the collection of bonds of a set A, and 
O the collection of bond configurations, i.e., functions n: A ~ {0, 1 }. To 
state the F K G  inequality, we first need the notion of increasing events, 
which is induced by the natural partial order on g?: 

D e f i n i t i o n  1. For two configurations n, n '~f2  the relation 

n ' ~ n  (2.11) 

(n dominates n') means that for all b e.3, n; > nb. In other words, the set of 
occupied bonds of n' includes that of n. 

2. A function is said to be increasing if it is nondecreasing with 
respect to this partial order. An event is increasing if its indicator is an 
increasing function. Decreasing functions and events are the negatives and 
complements of increasing functions and events. 

3. For a pair of probability measures on Q, we say that # dominates 
v in the F K G  sense, denoted # ~ v, if for all increasing functions f :  ~ ~ 
the expectation values satisfy 

#(f) ~ v(f) (2.12) 

The above condition implies, of course, a similar inequality for 
probabilities of increasing events, and reversed inequalities for decreasing 
functions and events. 

4. A measure # on (2 is said to have the FKG property if increasing 
events are positively correlated; i.e., # is an FKG measure iff, for every pair 
of increasing (measurable) events A, B c g?, 

#(A c~ B) ~> #(A)-#(B) (2.13a) 

An equivalent statement to (2.13a) is that for all increasing functions f 
that are nonnegative with # ( f )  < 0% the probability measure whose density 
(i.e., the Radon-Nikodym derivative) with respect to # is f ( . ) /#( f )  
dominates #: 

# ( ' f ) ~ # ( - )  (2.13b) 
#(f)  

This property is possessed by any product probability measure on Q, as 
originally discovered by Harris. (32) A much more general sufficiency con- 
dition for a measure to be F K G  was later established in Ref. 24 and is 
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known as the F K G  lattice condition. A closely related sufficient condition 
(but for measures on Nn with a density) was actually obtained earlier in 
Ref. 48. The version of Ref. 24 is as follows: 

Theorem 2.1. (24) Let #(dn) be a probability measure on 12 
(={0 ,  1} ~) of the form #(dn)=f (n)p(dn) ,  where p( . )  is a product 
(Bernoulli) measure and f is a (nonnegative) function which, for all pairs 
n, n' ~ .~, satisfies 

f (n  v n') f (n  ^ n')>~ f (n )  f (n ' )  (2.14) 

where the (lattice operations) v and /x are defined by 

n v n; = max{nb, n;}, n/x n; = min{nb, n;} (2.15) 

for all b e ~3. Then # is an F K G  measure (in the sense of Definition 4 
above). 

Remarks. 1. Measures satisfying the conclusions of the F K G  
inequality (2.12), but not the lattice condition, are not referred to as F K G  
measures in certain circles. Such situations will not be encountered in this 
work. 

2. It is easy to see that measures that satisfy the lattice condition 
stated in Theorem 3.1 also enjoy the property that if we condition on the 
event that a prescribed set of bonds is occupied and/or that another set is 
vacant (i.e., a cylinder event), then the resulting conditional measure is 
itself an F K G  measure. Such measures are sometimes referred to as strong 
FKG measures,(7) a convention to which we will adhere. We note, however, 
that it has recently been shown that the strong F K G  property is actually 
equivalent to the F K G  lattice condition. (12) 

3. It is clear that infinite-volume or other distributional limits of 
F K G  measures are F K G  measures. 

Our primary concern in these matters is the following result: 

Theorem 2.2. (22) For  q~> 1, the random cluster measures defined 
according to the weights (1.14) are strong FKG. 

ProoL Since the random cluster measures given by (1.14) have the 
basic structure assumed in Theorem 3.1, it suffices to show that the 
function 

f (n)  = q~(n) = exp[log q.  c(n)] (2.16) 

satisfies the lattice condition (2.14). For log q~>0, this is implied by the 
statement that for all n, m, k e f2, if m ~-k, then 

c(n v m) - c(m) >~ c(n v k) - c(k) (2.17) 
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(To see the implication, choose k = n/x n' and m = n'.) Using a telescopic 
decomposition of (2.17), it is easy to see that it suffices to prove it for the 
case in which the configuration n has only one occupied bond. 

For  the special case in which n has only the bond b = {x, y}, we get 

- 1 if x and y are not connected in m (2.18) 
~(n v m ) -  c(m)= 0 otherwise 

The right side is easily seen to be an increasing function of m, and hence 
(2.17) is satisfied. | 

Remarks. 1. The above proof applies directly to the random cluster 
or Potts models with free (or even periodic) boundary conditions. 
However, since the lattice was arbitrary, the theorem can also be applied to 
the case of a wired boundary condition, the latter being regarded as a free 
boundary problem on a slightly different lattice (where A c is collapsed to a 
point). It should, however, be noted that not all boundary conditions for 
q-state Potts ferromagnets on finite lattices transform into random cluster 
measures that enjoy the F K G  property. 

2. It is no accident that the proof only applies only to q/> 1. Elemen- 
tary calculations on a small lattice (e.g., an "equilateral triangle") will 
produce pairs of positive events for which (2.12) is violated whenever q < 1. 

3. While the above argument was concerned with a convexity-type 
property of the function e(n), it is worthwhile to note the more elementary 
fact [seen explicitly in (2.18)] that e(n) is a decreasing function ofn. 

In the next subsection we use the above F K G  property to establish 
some of the most basic properties of the Gibbs states of any ferromagnetic 
Potts model. 

2.3. The Basic S ta tes  for  Pot ts  and R a n d o m  Cluster  M o d e l s  

We now present, or review, some basic results on the properties of 
both spin models and random cluster systems in the infinite-volume limit. 
For' translation-invariant systems obeying the summabitity condition 
]J] < oo, the existence of the limit for the free energy density (1/]AI)log Z 
and its independence of the boundary conditions are implied by standard 
arguments (see Ref. 46). Typically, the questions of existence and uni- 
queness of the limit for states are somewhat more delicate. Our main pur- 
pose here is to establish that for certain canonical boundary conditions the 
limits always exist, and to clarify the relations of their properties with the 
order parameter. 
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When the order parameter M=Mq({f lJ})  does not vanish, for q 
integer, then the Gibbs states of the Potts spin models exhibit (at least) a 
q-fold symmetry-breaking, since 

( ~ "  ax)m = M(q6~,m- 1 ) / ( q -  1) 

This nonuniqueness is eliminated by the passage to the induced random 
cluster measure (where the long-range order parameter is manifested by 
percolation; see below). Can the random cluster model itself still manifest 
more than one phase? The answer is--yes! Such a phenomenon is observed 
at the critical point of nearest neighbor models in d ~> 2 dimensions with q 
large enough, where the Potts models have q + 1 phases in coexistence: q 
ordered and 1 disordered, t38'42) The existence of a disordered phase, which 
is distinct from a q-fold average of ordered phases, is manifested by the 
existence of a difference for the random cluster model between the wired 
and the free boundary conditions. Hence, even for that reduced model the 
infinite-volume limit requires some attention. 

The basic facts on the existence of the infinite-volume limits are sum- 
marized in the following statement, parts of which appear in Ref. 22. We 
refer here to ferromagnetic models, without any assumption of translation 
invariance or other restrictions on {J~,y}. By the infinite-volume limit we 
mean that the subset A c 2U for which the corresponding states are defined 
eventually covers any finite region in 7/a. The states are probability 
measures on {1,..., q } ~  for the Potts models, and on {0, 1} z~ for the 
random cluster measures, where ~a is the set of bonds of Z a. 

Theorem 2.3. (a) For  random cluster models with q>~l the 
infinite-volume limit exists for states with both the wired and the free boun- 
dary conditions. 

(b) For  Potts models, with integer q, the infinite-volume limit for the 
states ( - - - )1  and the free boundary condition states ( - . . ) f  exist. 

(c) For  integer q, the magnetization equals (at each site x) the 
percolation probability: 

( e , "  ax )1 = #w( x ~ or) (2.19) 

where ktw(-) is the wired state of the corresponding random cluster model 
and x ~ ~ means that the cluster of x is infinite. 

Proof. (a) For  each subset A c Z a, let us extend the free and the 
wired states associated with A to the entire collection of bonds, by 
declaring (or constraining) in the wired case all the bonds of 2U with both 
ends in A c as occupied, and in the free-b.c, ease all the bonds with at least 
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one bond in A c as vacant. For any pair of ordered subsets A c A' the free 
and the wired measures associated with A can be obtained from those of A' 
by relaxing these constraints. Since both the wired and the free states are 
F K G  measures (by Theorem 2.2), we find [see (2.13b)] that the measures 
have the following monotonicity properties: 

# ] , ( ' ) ~  #~( ) ,  /~ , ( ' )  ~ PfA(') (2.20) 

The existence of the infinite-volume limits, for either the free or the wired 
b.c., follows now by standard arguments: the expectations of monotone 
functions (in the sense discussed in Section 2.2) converge by monotonicity, 
and the collection of such functions generates through finite linear com- 
binations all the local functions (of the bond variables {nb}). 

(b) To prove the convergence of the states of the Potts model, we use 
the previous result and the relations based on (2.7). The finite-volume 
states with either the free or the ~ (or more generally ~b.c. = ek, k = 1 ..... q) 
boundary conditions can be described as averages over very simple 
measures, parametrized by the bond configurations n = {nb}. For a given n 
the spins are fixed on each connected cluster, their values for different 
clusters being independent random variables which are uniformly dis- 
tributed on the q values, except for the "marked" cluster connected to the 
complement of A, where the spin is ~b.o. (for the free b.c. in A no site is con- 
nected to At). If we now focus on any finite subset A c 2U, the expected 
value of any local function can be computed by first conditioning it on the 
decomposition of A into connected clusters (one of which is "marked"), 
which depend on n in all of .3. Since the set of bond variables that deter- 
mine the partition of A keeps changing with A, it is convenient to 
introduce a new system of bond and site variables, which are increasing 
functions of {nb}, indicating whether a given site is connected to A c and 
whether a given pair belongs to the same cluster. The "conditional" expec- 
tations E*(.)  of observables depending on the spins in A [see (2.7)] can be 
expressed (independently of A) as functions of the new variables associated 
with the set A. While the distribution of these variables does depend on A, 
it inherits the monotonicity properties of the distribution of {n} [expressed 
by (2.20)1, and hence converges as A ~ 2U, by similar arguments to those 
used in part (a). It follows that the states of the spin systems also converge. 

(c) At first sight, it may seem that (2.19) requires no justification 
beyond (2.8) and the above results on the existence of the infinite-volume 
limits. However, hidden in the statement is an interchange of limits, which 
does require a justification. The point is that convergence of the measure 
does not immediately imply the continuity (as n ~ or) of the probabilities 
of nonlocal events like {x ~ oo }. Thus, an additional argument is required. 
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(Physically, the problem is known as that of the short-long-range order 
versus the long-long-range order.) 

Let now A,--, 77 d be an increasing sequence of finite regions. The 
percolation density in the limiting state is 

~W(x<--~- 0(2))= m~oolim l i r a  g~.(x+--, A~,) (2.21) 

while the order parameter is 

(~1" ~x) l  = lira #~.(x,--, A;) (2.22) 
n~oo 

Letting am, n = #~.(X ~ A;,), we have for all m ~ n 

an, n ~ am, n ~ am, m (2.23) 

Taking the limit n --* oo and then m ~ oo in (2.23) gets us 

( e l "  ~x) l  <~w( x ~ 0(3) ~ (e l  ~ ~x ) l  (2.24) 

which proves (2.19). | 

The significance of the order parameter Mq({flJ}) is summarized in 
the following statement, whose proof is given in the Appendix, along with 
some related results. 

T h e o r e m  2.4. For translation-invariant Potts models, with integer q: 

(a) The expressions for Mq({flJ}) in (1.4) are all equal; i.e., the 
magnetization in the state ( . . - )1  agrees with the thermodynamically 
defined order parameter. 

(b) Mq({flJ})=O if and only if for the given values of {flJ} the 
Gibbs state is unique. 

Moreover, for random cluster models with real values of q >~ 1: 

(c) If Mq({flJ})= 0, then the free and the wired boundary condition 
states #r(. ) and #w(. ) coincide in the infinite-volume limit. 

3. PROOFS OF THE M A I N  RESULTS FOR 1Ix  2 MODELS 

3.1. The Dichotomy for M 

In this section we establish one of the main results of this paper: 

T h e o r e m  3.1. For translation-invariant Potts and random cluster 
models in dimension d = l ,  with q~>l, the order parameter M q ( { f l J } )  

satisfies the dichotomy (1.6). 
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As was pointed out in the introduction (Section 1.1.1), this dichotomy 
implies: 

1. The order parameter vanishes unless the inverse temperature fl 
and the long-range couplings satisfy f lJ+> 1 [hence fl*~> 1, fl* being 
defined by (1.7)]. 

2. If a system with 1/X 2 coupling (i.e., with 0 < J+ < oo) has a phase 
transition, then the order parameter is discontinuous at the critical point, 
with a jump of at least (J+flc) 1/2. As was discussed in the introduction, 
the existence of phase transitions for all such systems follows from the 
results of Ref. 25 or Ref. 44 and the comparison inequalities presented in 
the next section. 

Actually, all we shall do here is show that Theorem 3.1 is implied by 
the general percolation result of Ref. 7, by using the framework presented 
in the preceding section. For a physical explanation of the phenomenon, 
the reader is referred to the brief summary in the introduction and to the 
more detailed discussion in Ref. 7. 

The main result of Ref. 7, whose simplest application is to the indepen- 
dent models, is formulated so as to apply to all bond percolation models 
that have the strong FKG property. To achieve the generality, the theorem 
is stated in terms of quantities that have a somewhat cumbersome 
appearance. (In essence, the bond densities and the order parameter M are 
replaced by their highest conditional values.) Following are their definitions, 
for a translation-invariant model on 27, which is described by a probability 
measure #(dn) on the space of bond configurations n = {nb}. 

1. For each z, we denote 

K+ = sup {#(n(o,_,}=llnb=mbforallb~a{O,z})} (3.1) 
{mb} 

where #(-[.-.)  is a conditional probability. The model is said to be regular 
if K + < 1 for all z. The quantity fi + is defined by 

fl+ = lira sup Kz + -Izl 2 (3.2) 
I z l  ~ o o  

2. F o r H > 0 , 1 e t  A u = [ - - H , H ]  and let 

M H = sup {#(0 ~ A~Hlnb = m b 
{mb} 

for all bonds with both ends in A~/)} (3.3) 
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and let the quantity M+ be defined as 

M+ = lim M/~ 
H~cx3 

(3.4) 

Following is the result of Ref. 7. 

T h e o r e m  3 .2 .  (7) If a one-dimensional bond percolation model has 
the strong F K G  property, is regular, and satisfies 

/~+ -M~+ < 1 (3.5) 

then the percolation probability in this model vanishes (i.e., M =  0). 

In order to apply the above result to the models discussed here, we 
need to identify the quantities/~ + and M+.  

kemma 3.1. For the wired state #w(.) of a translation-invariant 
random cluster model with q ~> 1 

/~+ = /~ . J+  (3.6) 

with J+ defined by (1.5), and 

M +  = ]~w(0 ~ (3o) ~ mq( {flJ} ) ( 3 . 7 )  

Proof. Ignoring a certain subtlety, to which we return immediately, 
the relations (3.6) and (3.7) can be easily explained by noting that the 
suprema in the expressions (3.1) and (3.3) are attained by the con- 
figurations mb--~ 1, i.e., the corresponding finite-volume wired boundary 
conditions. The reason for this is that the events whose conditional 
probabilities define K + and MM are monotone-increasing, while the state 
has the strong F K G  property. Hence, the conditional probabilities of these 
events are monotone-increasing functions of {rob}. 

To apply the above argument, one should first clarify the structure of 
the conditional probabilities. The reason for caution is that the measure we 
are concerned with has itself only been defined as a limit. Since 

#w(.) = lim ~t~L (.) 
L ~ o o  

a correct way to regard the conditional expectation of a local function f(n),  
conditioned on the values of {rib} for b in A c (i.e., on what is often denoted 
as the o--algebra MAc), is in terms of the following limit: 

#w(flnAc)= lim lim /zwAL(flnAc~,~k) (3.8) 
k ~ o o  L ~ o o  
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That is, the conditioning on all the bonds of the infinite region A c may 
naturally be regarded as conditioning on a very large region in a finite but 
much larger system. [Technically, the right-hand side of Eq. (3.8) is a.s. 
well defined, and the equality holds, by virtue of Doob's Martingale con- 
vergence theorem.] The important point now is that the above F K G  
domination argument does apply to the finite-volume wired b.c. measures 
which appear on the right side of (3.8). 

Of direct concern to us are the following two cases: 

1. f ( n ) = I [ n { o . z } =  1], A =  {{0, z}} 

2. f ( n )  = I[0 ~ AHc], A = A/4 

where I [ .  ] are indicator functions. In case 1, even without the domination 
argument, the explicit formula (2.10) implies 

K + = 1 - e -~J~ (3.9) 

which immediately gives us (3.6). For case 2, the above domination 
argument easily yields 

w 0 M u  = #A,( ~--~ A ~/c) (3.10) 

As we saw in the proof of Theorem 2.3, the quantity on the right converges 
(when H ~ ~ )  to the infinite-volume order parameter, i.e., M+ is given by 
(3.7). II 

Proo f  o f  Theorem 3.1. The claim made in the theorem is now a 
direct consequence of Theorem 3.2 and Lemma 3.1. | 

In view of the discontinuity, one naturally wants to know the value of 
the order parameter at the critical point. For completeness, let us mention 
the following general result, proven by a well-known argument. 

L e m m a  3.2. For (ferromagnetic) systems with q ~> l, at any fl, M is 
continuous from above, i.e., 

Mq({ f l J } )  = lim Mo({(fl + e)J}) (3.11) 
e ~ 0  + 

Proof. The semicontinuity expressed by (3.11) follows, by a classical 
argument, from the fact that M(f l )  is representable as an infimum of a 
family of continuous increasing functions: M ( { f i J } ) = i n f a M ' ~ ( { f i J } )  
(where A are finite subsets of Zd). II 

3.2. The  H i g h - T e m p e r a t u r e  Behavior  of  Cor re la t ion  Funct ions 

For any translation-invariant Ising ferromagnet it is known that the 
susceptibility X(f l )=Zx ( a o a x ) ( f l )  diverges as flTflc (i.e., ~--1 is con- 
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tinuous at/3c). In light of this, Theorem 3.1 proves that the transition in the 
1/[x-y[2 Ising model is neither purely discontinuous (i.e., not first order) 
nor purely continuous. Here we restrict attention to the Ising case (q = 2) 
and examine the decay of the two-point function for/3 </~c. We prove that 
if Jx,,~c/x ~ with s >  1, then (aoax)~  c ' ( B ) / l x l  s throughout the high-tem- 
perature regime. For long-range interactions, such a decay is the analog of 
the exponential decay found in the high-temperature phase of short-range 
models. This result means that the s > 1 Ising models have no high-tem- 
perature intermediate phase analogous to the low-temperature intermediate 
phase discussed in Refs. 13, 55 for which the exponent of power-law falloff 
changes with temperature. 

Our discussion will again rely on the results presented in Ref. 7 for the 
case q = 1. The present restriction to q---2 is dictated by the fact that the 
basic properties of the model that are used in the proof have been 
established for only these two cases. The properties are: 

1. The two-point function ~(x, y ) =  (OxOy) obeys the Hammersley- 
Simon inequality ~31'5~ 

r(x, y) <~ ~ r(x, u) J,,vr(v, y) (3.12) 
u ~ A , v ~ A  c 

2. The susceptibility Z(/3) is finite for all fl < tic. 

The first condition is expected to hold for all random cluster models 
with 1 ~< q <~ 2 (though so far it has been proven only for q = 1, 2); but it 
presumably fails for q large enough. A relevant observation here is that a 
natural extension of (3.12) implies that Z diverges as/31"/3c -8 However, it is 
known for nearest neighbor models that for integer q sufficiently large 
(presumably q > 2 is sufficient in high dimensions) Z -1 is discontinuous at 
the transition point. (38'42) It is worth noting that the special case of (3.12) 
with A =  {x} (as in Griffiths' third inequality (28)) has been proven by 
Soka1152) for all 1 <~ q <~ 2. The second condition for Ising and percolation 
models with Jx <~ C/[xl 2 is implied by either the analysis of Ref. 7 or by the 
more general proofs of Refs. 2 and 3. 

In contrast to the previous subsection, where in order to apply the 
previous results we had to rely on some work to demonstrate the connec- 
tion between percolation and magnetization, here we can just quote some 
lemmas from Ref. 7, which are applicable to any model obeying the above 
two assumptions. (Nevertheless, it may still be amusing to note that, by 

8 The argument is presented in Ref. 6. In an earlier work, Simon tS~ showed that such a 
conclusion follows, for finite-range models, from Lieb's ~39) improved version of (3.12). 
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(2.9), the two-point correlation is identical, in the high-temperature phase, 
with the connectivity function.) 

Without any further ado, let us state here the result. 

T h e o r e m  3.3. For the translation-invariant, one-dimensional ferro- 
magnetic Ising model with couplings satisfying 

Jx Ix] ~ --" const (3.13) 

with a constant in (0, oe) and s >  1, whenever M(/?) =0,  then 

c(~)/Ixl  s <. ( ~ o ~ )  <~ c'(~)/IxJ s (3.14) 

with c(/~)>0 and c'(~)< oe. In models for which (3.13) can be replaced by 
only a single-sided inequality, the corresponding part of (3.14) is satisfied. 

ProoL As mentioned above, once it is known that the susceptibility 
stays finite for all inverse temperatures /~ below the threshold for spon- 
taneous magnetization, this theorem is implied by an extension of Simon's 
analysis (5~ to long-range interaction. The entire argument is given in Sec- 
tion 5 of Ref. 7 (see especially Lemmas 5.1 5.3 there). The distinction made 
there between the cases s ~> 2 and 1 < s < 2 is irrelevant for us, since the 
recent result of Ref. 3 provides an independent proof of the above condition 
2, which along with the Simon inequality (3.12) is all that is required for 
the argument of Ref. 7. | 

Finally, it may be mentioned that at the transition point, for a l / I x [  2 

system with q ~> 1, the two-point function does not decay to zero (in the 
state ( . . . )1 ) ,  since by a simple F K G  argument 

(,~o" ,~x) l >i Mq( {~J} ) 2 (3.15) 

and Mq > 0 by our main discontinuity result and the semicontinuity of 
Lemma 3.2. 

4. C O M P A R I S O N  M E T H O D S  FOR POTTS A N D  R A N D O M  
CLUSTER MODELS 

In this section we turn to the second part of the paper, presenting 
various applications of the comparison inequalities discussed in Section 1.2. 

4.1. The Comparison Principles 

Let us start with the derivation of the comparison principles of 
Fortuin. The following result is actually more general than the inequalities 
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(1.16) and (1.17). For  completeness, we enclose here a proof  (which is 
essentially that  of Ref. 22, Lemma  3). 

T h e o r e m  4.1 .  (22) Let  /~*(.) and #A*(') be two free or two 
wired-b.c, states of r andom cluster models, with parameter  values 
(q, {~Jb}) and (q ' ,  {/~ 'J ;}) ,  in some (finite or infinite 9 subset) A c Z a. 
Then  the following dominat ion  relations (in the sense of F K G )  apply: 

~q'>~q, q'>~l] ~ , . ~ . ) ~ # ~ . ( . )  (4.1) 
(a) ~fl,j,x.y<~fljx, y ~ t"At 

and 

q'>~q, q'>~ l 
(b) , , .  ,>~ j ~ * ( ' ) ~ < ~ L * ( - )  

~ [exp(/~ Jx, ~) - 1 ]/q ~ [exp(/~Jx y) - 1 ]/q 
(4.2) 

where the conditions on {Jx, y} in (4.1) and in (4.2) are assumed to hold 
for all bonds. We note  that  the condit ion in (4.2) is implied by the simpler 
requirements 

fl'J'x, y/q' >~ flJx, y/q (4.3) 

ProoL We give the proof  for the case of free boundary  condit ions 
and A finite. The wired-b.c, case reduces to the free one by identifying all 
sites in A c, and the infinite A case is handled by the obvious limit 
procedure.  

Not ing  that  the probabil i ty measure described by (1.13)-(1.14) can be 
written in the form 

#(" ) = q~(") 1~ ( eaJx' ' - 1 )-Ix, yl /normal izat ion 
{x,•} 

we find that  # ( . )  can be represented as 

with 

(4.4) 

#(.) = ~ ' ( . f ) /# ' ( f )  (4.5) 

[qq/l C(n) Fexp(~Jxy)--I~ "rl{x'y} 
f ( n ) =  l-I [_exp(/?'s', y ~ -  1 / {x.y} 

(4.6) 

9 If q < 1 and A is infinite, #,~(. ) should be understood as some subsequence limit of finite- 
volume states. The standard argument for the uniqueness of the limit is inapplicable due to 
the failure of the FKG inequalities for q < 1. 
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The number of connected clusters c(n) has the following monotonicity 
properties: 

1. c(n) is monotone-decreasing (meaning nonincreasing) in n (since 
the addition of a bond can only decrease the number of connected 
clusters). 

2. The function g(n) = c(n) + Zb nb is monotone-increasing (since the 
addition of a bond can decrease c(n) by not more than one). 

Using the above two statements, one can easily see that in the first 
case, i.e., under the assumptions in (4.1), the function f ( . )  is monotone- 
increasing, while in the case (b) it is decreasing, as a function of n. Since for 
q'~>l the measure /f(-)  has the FKG property (by Theorem2.2), the 
domination relations claimed in (4.1) and (4.2) follow now, by the principle 
embodied in the inequality (2.13b). 

The fact that for q' ~> q the inequality (4.3) implies the one seen in (4.2) 
is an elementary observation. The quickest way to see it is by employing 
the positivity of the coefficients in the power expansion of e x (one may also 
deduce it from the convexity ofeX). 

Both of the above comparisons hinged on the fact that at least one of 
the measures had a q value exceeding unity (and thus had the FKG 
property). However, by using (4.1) and (4.2) in combination, one can 
obtain FKG dominance relations also for other combinations. 

Example.  For q and q' both less then 1, 

{ l>~q',q } ~#A*(')  ~ # * ( ' )  (4.7) 
fl'J'x, y ) f lJ~,  y/q for all bonds 

where the second condition could also be replaced by 

exp(f l ' J ; ) -  1 ~> [exp(flJb)- 1]/q 

[The proof is by comparison to #"(-) with fl"J'~,y=fl'J'y and q"= 1.3 

4.2. The Phase Structure of q-State Potts Spin Systems 

In this subsection, we apply the domination principles (4.1) and (4.2) 
for results (some of which were previously approached by separate and 
more complex arguments) on the phase structure of various Potts spin 
models and independent percolation. One important conclusion can be 
summarized in the following sentence: The existence, or absence, of distinct 
high- and low-temperature phases in any q-state Potts (ferromagnetic) spin 
model or Bernoulli percolation implies that the same is true for any other 
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value of q in the corresponding system. This statement extends also to the 
random cluster problems with noninteger values of q, which offer an inter- 
polation between different Potts models. 

The following is a more complete expression of the above principle. 

T h e o r e m  4.2. (o) In any ferromagnetic q-state Potts model on 
Z a, with a Hamiltonian ~ of the form (1.3), if for some value of fl the 
order parameter M(fl)= {61" ~o>l(fl) does not vanish, then for all f l '> fl, 
M(fl') t> M(fl) > 0. Hence, a transition temperature/~s is well-defined. 

(i) For a fixed set of ferromagnetic couplings {Jz, y}, denote the 
values of the inverse transition temperatures for Potts models with different 
values of q by tic(q) (allowing for 0 and ~) .  Then 

flc(q')>~flAq)>~q flc(q ') forall q'>>.q>>, l (4.8) q' 

(ii) Analogous results hold for independent percolation and for the 
random cluster models with all real values of q >~ 1. 

Proof. The first statement is, of course, welt known for the Ising 
systems (q = 2), for which it follows from the Griffiths inequalities. (26'37) Its 
analog for percolation (q-- 1) is obvious; it is in this spirit that the result 
can be established for general Potts models. 

By Theorem 2.3 the magnetization equals the percolation probability 
in the wired state of the corresponding random cluster model. Since the 
event {0~--~ oo} is increasing, its probability follows the monotonicity 
properties of the state. The rest of the argument consists of just 
straightforward applications of the domination inequalities (4.1) and 
(4.2). 

Remarks. It may be noted that the above argument does not involve 
any hypothesis of translation invariance. Similar (but somewhat weaker) 
results can be obtained for the random cluster models when 0 < q <  1 
[using, e.g., (4.7)]. 

We devote the remainder of this section to three amusing applications 
of Theorem 4.2. 

4.2.1. O n e - D i m e n s i o n a l  M o d e l s  w i t h  Jx, v ~ C / l x - y l ' .  As 
explained in the introduction, Theorem 4.2 allows one to relate the results 
previously derived for Ising models by Fr6hlich and Spencer (25) and for 
percolation by Newman and Schulman (44) (the relation is discussed in Sec- 
tion 1.2.3). Adding to those the converse bounds on the percolation 
problem of Aizenman and Newman, ~7) we get, by means of Theorem 4.2, 
the following conditions for the existence of spontaneous magnetization. 
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Theorem 4.3. For the translation-invariant, one-dimensional Ising 
or Potts ferromagnets at inverse temperature fl with (finite) couplings 
satisfying 

lim sup ft. x2j~, <~ 1 (4.9) 
X ~ ( X 3  

there is no long-range order, regardless of the individual Jx values. 
However, if 

lim inffl, x2 j x > q (4.10) 
X ~ O ( 3  

then the spontaneous magnetization is made positive by sufficiently 
increasing any single coupling Jz (say Jl). 

Remark. The independent percolation (q = 1) case of the second part 
of the theorem was explicitly stated in Ref. 44 only for z = 1. However, the 
result for general z follows easily from the renormalization group methods 
used there. In particular, we note that the probability 2(L, Jz) that all sites 
in a block of length L are connected by paths within that block may be 
driven arbitrarily close to one by choosing both Jz and L large. 

4.2.2.  D i lu te  and R a n d o m  Fer romagnets .  The most amusing 
application of the comparison inequalities is to the study of the phase 
diagrams of dilute and random Ising and Potts ferromagnets. While for 
models with interactions the dilution introduces new effects and nontrivial 
shifts in the transition points, for independent percolation the effect of 
(bond) dilution is just an easily calculable shift of the critical density. In 
Ref. 5 we apply these ideas and obtain simple derivations of rather sharp 
bounds on the critical temperatures of dilute and random ferromagnets 
when the dilution density is close to the natural threshold, at which the 
lattice is effectively divided into finite noninteracting clusters. 

4.2.3. S t i n g y  Pot ts"  Pies. Grimmett (29) addressed the following 
question. Let ~ denote the "pizza slice" 

~= {x~_21xl >0, Ixd ~< f(x , )}  (4.11) 

for some (strictly positive) function f, and consider the percolation problem 
restricted to 5y. For what functions f can we hope to find percolation? 

Grimmett showed that if f ( z )  has the asymptotic behavior 

f ( z )  ~- a log z (4.12) 

then percolation does occur in the slices, but the threshold bond density 
p*(a) tends to 1 as a -~ 0. This result was extended to higher dimensions by 

822/50/1-2-3  



32 Aizenman et  al. 

Hammersley and Whittington (Ref. 33, Section7). Although the above 
seemed to be quite a definitive statement, when Hammersley and Whit- 
tington studied the analogous question for self-avoiding walks, they found 
that, provided limz~ oo f(z)  = 0% for this system the relevant notion of a 
critical temperature, i.e., the connectivity constant, was unchanged from 
that of the full lattice. ~33) The curious contrast between these two facts was 
resolved by Chayes and Chayes, (17) who also extended the results to Ising 
systems. The resolution amounts to the statement that the logarithmically 
growing slices exhibit an intermediate phase characterized by the absence 
of spontaneous magnetization (or percolation) and nonexponential falloff 
of correlations. Indeed, Grimmett had been looking at the "low- 
temperature" transition point, while Hammersley and Whittington, in 
examining the connectivity constant, had pinpointed the high-temperature 
transition. 

With the FK representation and the above domination lemmas, these 
results are now easily extended to the q-state ferromagnetic nearest 
neighbor models on stingy wedges in all dimensions. 

T h e o r e m  4.4. For the wedges of 2U (d>~2), 

~= {Xe7/dlx,>~O,O<.lx21 ..... Ix~l ~<f (x l )}  (4.13) 

the ferromagnetic q-state Potts models, with the nearest neighbor couplings 
Jx, y=61x_yt,1, have vanishing spontaneous magnetization at all tem- 
peratures if 

lim I f(z)] a- l/log z = 0 (4.14) 
z ~ c O  

On the other hand, if the limit in (4.14) is positive, i.e., f(z)~- 
a[logz]l/(a 1) as z--* ~ ,  then there is spontaneous magnetization at low 
enough temperatures, with the transition point satisfying fi*(a)~ oo for 
a ~ 0. Regardless of the previous considerations, provided that 
lim~ ~ ~ f (z)  = 0% the asymptotic rate of exponential decay of untruncated 
correlations is identical to that of the free boundary full lattice systems (at 
the same temperature). This implies, for small enough a, the existence of an 
intermediate phase in the logarithmically growing wedges. 

Remarks. 1. Before we delve into the proof, a few of the above 
terms should be defined. 

(a) Since not all the boundary disappears in the infinite-volume 
limit, the boundary conditions that are naturally used for the definition of 
the spontaneous magnetization consist of free boundary at the edge of the 
wedge and the ~1 boundary condition at the intersection of the wedge with 
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the hyperplanes Xl = n. Magnetization, or lack thereof, was established by 
obtaining estimates on this <oo >~ that were uniform in n. 

(b) By untruncated correlations, we simply mean <ax '%> com- 
puted with free boundary conditions. The asymptotic rate of exponential 
decay is described by the correlation length {, defined as 

( - 1  ) -~  
~ = zlim -~ - log (~  o �9 %> , (4.15) 

where 3= (z, 0,..., 0). On the full lattice Z d, standard arguments, based on 
the inequality 

n - - 1  

( ~ o ' ~ . >  >~ [1 (o~'~x~+~> (4.16) 
k = O  

imply that the limit in (4.15) exists, and that furthermore 

<~o .~>  ~ e m/~ (4.17) 

(These arguments can be found in many references; e.g., Refs. 6 and 14.) By 
the representation (2.9) and the FKG property, (4.16), and hence also its 
consequences, hold for all ferromagnetic Ports models. 

2. For translation-invariant systems, it has now been established that 
such intermediate phases do not occur in any Ising ferromagnet or 
independent percolation models (for d = 2  nearest neighbor models by 
Ref. 35 for percolation, and by the exact solution for the Ising model; and 
for more general cases by Refs. 2 and 43 for percolation and Refs. 1 and 3 
for Ising systems). 

Proof. Applying the domination lemmas to the results of Refs. 17 
and 29 yields the low-temperature behavior of the wedges immediately. 
However, the lemmas cannot be applied to extend the high-temperature 
results; these, though quite straightforward, must be established separately. 
Thus, essentially all that is needed to prove Theorem 4.4 is to show that if 
the pizza slice, or wedge, is not infinitely stingy [i.e., if f (z) ~ oo], then the 
correlation length inside the slice is the same as in the full lattice. While the 
previous results do not apply here, their proof does. 

Let <-.. >y and <.-. > denote the free-b.c, states in the wedge 5 e and, 
correspondingly, in Z< Using the inequality (4.16) for the state <.-. >s~, we 
have 

lim inf <r "~e/a~\l/~>---/inf <~e- ~e+a\ m',,~ (4.18) 
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for all v>~0 and u > 0 .  Taking in (4.18) first the limit v--* ov (using the 
monotonicity in volume of the free-b.c, state) and then u --* 0% one finds 
that the lower bound converges to the full lattice quantity e -~ [provided 
f ( z ) ~  ov as z ~  oe]. Since also ( a o . ~ x ) s ~ <  ( ~ o ' 6 x ) ,  it easily follows 
that the wedge correlation functions also satisfy (4.15) and (4.17) with the 
correlation length r of the full lattice! Evidently, the high-temperature 
critical points coincide. 

The previous results for independent percolation can be used to 
control the temperature where spontaneous magnetization occurs. 
Indeed, if 

f ( z ) / [ l o g  z] l/a-1 ~ 0 (4.19) 

then the absence of a percolative phase (33) rules out the possibility of spon- 
taneous magnetization for the q-state models. On the other hand, if 
the left side of (4.19) is uniformly bounded away from zero, the fact that 
percolation can occur in the wedge (this follows from the d =  2 result 
of Ref. 29 by the simple embedding argument of Ref. 33) implies, by 
Theorem4.2, positive spontaneous magnetization below a certain tem- 
perature. Finally, for wedges with f ( z ) / ( log  z) l/a- 1 tending to a small con- 
stant (with percolation threshold in the wedge pushed close to unity(33)), 
the domination bounds ensure that the spontaneous magnetization for a 
q-state Potts model does not occur until well below the transition tem- 
perature of the full lattice. That ensures the existence of an intermediate 
phase. 

Remark.  The proof of the equality of ~(5 ~) and ~(~d) also implies 
the following. Let 

TL= {x~ Zdlxl >0,  0~< Ix21,..., Ixdl ~<L} 

Then ~(TL) ~ ~(Z d) as L ~ ~ .  This is quite different than the situation for 
critical points, since, e.g., f lc(TL)= ~ for all finite L. Indeed, it is an 
interesting open problem even for independent percolation <4) to show that 
f lc ([ - -L ,  L]  x 7/d) - ~  flc(~ d+l ) as L -~ oo (for d~> 2). Further discussion and 
an affirmative solution of such an issue for the nearest neighbor Ising 
models and d >  2 can be found in Ref. 1. 

A P P E N D I X  

At the end of Section 2 we summarized in Theorem 2.4 the significance 
of the order parameter M as an indicator of the structure of the Gibbs 
states of Ports models. These facts are certainly well known for the Ising 
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model. For completeness we present here the proofs of these statements in 
general, and add some useful facts. These results may already be known to 
various specialists, and some of them are contained in the paper of 
Fortuin. (22) We split here the proof of Theorem 2.4 into two parts, which 
are covered by Theorems A.1 and A.3. 

T h e o r e m  A.1. For translation-invariant Potts models, with integer 
q, the expressions for Mq({flJ}) in (1.4) are all equal, i.e., the 
magnetization in the state <..->1 agrees with the thermodynamically 
defined order parameter. 

Proof. Since the argument is well known for Ising models, we only 
present the flow of the key steps. Let fro(h) be the finite-volume free energy: 

fm(h) :~A[ log<exp(h~A~'qx)>~ (A.1) 

with A = A , .  - [ - m ,  m ]  a. Then 

aim(h)_ 1 
Oh [AI E <el~ 

X E A  

(A.2) 

where <-.. )A(h) is the finite-volume equilibrium state with the ~ boundary 
conditions and an external field h~]. 

By standard arguments, the functions f,,(h) are convex in h, and are 
pointwise convergent, as m ~ 0% t a f t ( h ) .  Restricting h to be positive, and 
avoiding the at most countable set of values at which f~ ( .  ) is not differen- 
tiable, we have 

aim(o) 
<~1"~o>]~< Oh 

Of,,(h) afoo(h) Ofoo (0 + ) 
Oh (m~o~)) Oh (h~o+) ah (A.3) 

For the other direction we note that for h ~> 0 the states <..->~(h) 
have the same monotonicity properties in A as the h = 0 ~ states. (The 
simplest way to see that is by representing the external field by a coupling 
to a Griffiths ghost-spin, as in Ref. 27.) In particular, the finite-volume 
magnetization is bounded below by that of the infinite-volume state 
<... >l(h). Thus, 

afm(h)/Oh ~ af~(h)/ah (A.4) 
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Taking the limit h--, 0 + and then m-*  0o, we get 

#foo (el" ~ 0 ) 1 ~ " ~  ( 0+ ) (A.5) 

The two relations (A.3) and (A.5) establish the claimed equality. 

Remark. An alternative way to present the argument is to note that 
by general arugments #foo/#h(O +) equals the maximum magnetization over 
all the Gibbs states. Using our F K G  arguments, we can show that the 
maximum is attained in the state ( " ' ) 1  [see par t ( i )  of Theorem A.2 
below]. 

Before we turn to the second part of Theorem 2.4, let us present a 
handy construction. Let p(da) be an equilibrium (Gibbs) state for a Potts 
model in Z a with the Hamiltonian (1.3) and a finite [JI- By the Dobrushin-  
Lanford-Ruelle (19'41) characterization of the Gibbs states, for each finite 
A c 7/a the restriction of p( . )  to the spins in A is an average, with respect to 
the probability measure p(d~1), of the finite-volume equilibrium measures 
fgA(" [~/) corresponding to the boundary conditions crx=~/x for all x e A  c, 
i.e., 

p(d~A) = f fr I~/) p(dq) (A.6) 

Mindful of the above representation, we shall now associate with each 
Gibbs state p the following family of probability measures on the sets of 
bond configurations in .~+ = {{x, y} IxEA, y e  77d}: 

#A(dn~+ ) = ~ #5(dn~+ ) p(d*t) (A.7) 

where the integration is over ~/ [-as in (A.6)], and f~3(.) are the probability 
distributions of the system of bonds in z~ +, which were introduced in 
Section 2.1 [in the paragraph following (2.7)]. 

Next, we consider for each Gibbs state p the measures ~ on the 
random cluster system in all of 7/a obtained as (subsequence) limits of PA 
with A --+ Z d. (Although this will not be needed for our purposes, it can be 
shown that the family /~A is consistent whenever p is an equilibrium spin 
measure, and hence there is no problem of convergence or of uniqueness of 
the infinite-volume measurerS.) We shall refer to such measures as 
equilibrium measures of the random cluster model. It should, however, be 
noted that the conditional distributions ~3(dn~+) involve for general ~/new 
types of constraints, which are not observed when dealing with either the 
free or the wired boundary conditions (see Section 2.1). 
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We note further that, as discussed in Section 2.1, for a given q, there is 
a map associating to each function of the spins in A, f(aA), a function 
jT"(n) of the bonds in 4 + such that the expected value of the former in any 
equilibrium state fgA(daA It/) coincides with the expectation of the latter in 
the bond state ~A(dns+), i.e., 

f f (a  A) fgx(da A ]q)= f)7"(n~+) ~"A(dn~+ ) (A.8) 

for each set of couplings {fiJ} and each boundary spin configuration t/. In 
particular, various connectivity functions for the measure(s)/5 are directly 
expressible in terms of the spin correlation functions of the given 
equilibrium state p. 

The following general result expresses the relation of the states 
introduced above to the two canonical random cluster measures #w(.) and 
~r(.). 

T h e o r e m  A.2. Let # be an equilibrium measure of the random 
cluster model, corresponding to some integer value of q, and some 
couplings {flJ}, with supx{Zy Jx, y} < oo. Then 

(a) p ( . ) ~ p w ( . )  (in the F K G  sense) (A.9) 

(b) If for all x~Y_ a, #(x*--~ oo)=0,  then # ( - )=# f ( . )  (A.10) 

Furthermore, (b) is satisfied when # is the wired state for any real q ~> 1. 

Proof. (a) As an equilibrium state, ~(-) is a limit of the measures of 
(A.7) constructed in ,~+ by suitable averages over ~3(.) ,  while the wired 
state is constructed as the limit of the finite-volume wired states #~(.) 
(Theorem2.3). Since the measures ~ ( . )  are obtained from #~(.) by 
conditioning on a decreasing event, and p~(-) are F K G  measures, for each 
A we have 

~ ( - ) ~ # ~ ( . )  (A.11) 

The limit A ~ yd leads to the claimed inequality (A.9). 

(b) Let #(.)  be an equilibrium state with a vanishing percolation 
probability. We shall show that for any local event B, depending on only 
the bonds in some finite region V, and any e > 0, 

]#(B) -- #f(B)[ ~< 2e (A.12) 

Let A ~ V be a finite, but large region (which we later make tend to Zd). 
Since there is no percolation in the state p, there is another finite region 
A ' ~  A such that with probability greater than 1 -  e none of the connected 
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clusters of sites in 7 / d \ A  ' reaches A. Denoting the above event by D, we 
can express the probability of B by the following combination of its 
conditional probabilities: 

#(B)=#(BID)+ [1 -#(D)][#(BIDC)-#(BID)] (A.13) 

While the second term on the right side of (A.13) is clearly bounded in 
magnitude by e, we claim that the first one is approximately equal to #f(B). 

To evaluate the conditional probability of B, conditioned on the event 
D, it is natural to first condition it further on the connected clusters of all 
the sites of 7/a\A ', and in particular on the subset of A' connected to 
Za\A ', which is of the form A'\G, for some GDA. The pivotal point is 
now that the conditional measure is concentrated on all the bond con- 
figurations for which no site in G is connected to G C, and further that the 
relative weights of the different configurations that satisfy this constraint 
are such that the resulting probability distribution is exactly the free-b.c. 
state in G. (A detailed proof of this fact involves the use of another region 
A" much larger thanA' .)  Thus, #(BID) is a mixture (over the G's) of 
#~(B). However, we have seen in Theorem 2.3 that the free-b.c, states 
converge to a limit. Hence, by choosing A large enough, we may guarantee 
that 

[#~(B)-#f(B)[ ~<t; for all G~A (A.14) 

Combining (A.14) with (A.13), we obtain the claimed (A.12). Taking e ~ 0, 
we see that the measures #(.) and #f(.) coincide on all local events, and 
hence they are equal. 

Since the above argument applies (with # = #w) regardless of whether 
q is an integer (though it does make use of the condition q >/1), it implies 
also the last statement of the theorem. | 

A particularly interesting application of the above theorem is the proof 
of the following statement, which forms the second part of Theorem 2.4. 

Theorem A.3. For Potts models (with integer q) the vanishing of 
the magnetization in ( . . . )  1, or of the percolation density in #w(. ), implies 
uniqueness of the Gibbs state and of the equilibrium measure in the 
corresponding random cluster model. 

Proof. Either of the hypotheses implies (by Theorem 2.3) that there 
is no percolation in the wired state #w(.), and thus also in any of the 
equilibrium states of the bond model, which are dominated by #w(. ). As we 
say in Theorem A.2, that implies that all the equilibrium states of the bond 
system are equal to #f(dn). Furthermore, the proof of Theorem2.3 
[part (b); see also (A.8)] also implies that each Gibbs state of the Potts 
model equals the free-b.c. Gibbs state pf(da). It follows that both the bond 
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model and the spin system (if q is integer) have unique equilibrium 
states. | 

Remark. Theorem A.2 can be extended to a larger class of bond 
measures # for both integer and noninteger q. For  example, the 
finite-volume q-b.c, can be replaced by specifying finitely or infinitely many 
subsets of A c which are not allowed to be connected to each other by the 
occupied bonds of A +. For  the sake of simplicity, we will not pursue this 
issue or the corresponding strengthening of part  (c) of Theorem 2.4. 
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