

Mean–Field Driven Phase Transitions of the First Type

Joint work:

M. Biskup

M. Biskup & N. Crawford

M. Biskup and L. Chayes, *Rigorous analysis of discontinuous phase transitions via mean-field bounds*, Commun. Math. Phys. **238**, no. 1-2, 53–93 (2003).

M. Biskup, L. Chayes and N. Crawford, *Mean-field driven first-order phase transitions in systems with long-range interactions*, to appear in J. Statist. Phys.

Talk Outline

- Background & Review (MFT–101).
- Comparison to actual systems. (Also, models under consideration.)
- Allusion to technical tools (Infrared Bounds).
- More background (MFT–201).
- Description & statement of complete results.

Sort of analysis started from the outset:

Curie Theory of Magnetism

Weiss Molecular Field Theory

$$-H = \frac{J}{2d} \sum_{r,r'} S_r S_{r'}$$

with r, r' nearest neighbors on d-dimensional lattice, and S_r an Ising spin ($S_r = \pm 1$).

"Too hard"

Look at situation from perspective of single spin. Effective field due to collective interaction.

Allows us to get (some sort of approximate) Mean Field Equation.

With effective "external" field frozen at *m*,

$$\langle S_0 \rangle = \frac{\sum_{S_0} S_0 e^{\beta JmS_0}}{\sum_{S_0} e^{\beta JmS_0}} = \tanh(\beta Jm).$$

But $\langle S_0 \rangle$ should equal *m*:

$$m = \tanh(\beta Jm).$$

Analysis: Expand; $m \ll 1$. $m \approx \beta Jm - \frac{1}{3}(\beta Jm)^3 + \cdots$ (1) $\beta_c J = 1$ (Curie temperature). (2) $m(\beta) \approx K(\beta - \beta_c)^{\frac{1}{2}}$ (Critical behavior).

Now, look @ related spin-system

$$-H = \frac{J}{2d} \sum_{\langle r, r' \rangle} S_r \cdot S_{r'} \qquad \text{But} \quad J$$

Same (elementary) mean field type perspective leads to following equation:

$$\theta = \frac{\mathrm{e}^{\beta K \theta} - 1}{\mathrm{e}^{\beta K \theta} + (q - 1)}$$

$$\theta \propto m \qquad J \propto K$$

But S_r : Model can be defined for any $q \ge 0$; but here q =integer, $q \ge 2$. (q = 3)

(obviously same if q = 2).

Now: do our "analysis".

$$\theta \ll 1 \qquad \theta = \frac{\beta K \theta + \frac{1}{2} (\beta K \theta)^2 + \dots}{q + \beta K \theta + \dots}$$

$$\approx \frac{1}{q} \Big[\beta K \theta + (\frac{1}{2} - \frac{1}{q}) (\beta K \theta)^2 + \dots \Big]$$
(i)
$$\begin{array}{c} \cdot \cdot \frac{\beta_c K}{q} = 1 \end{array}$$
Note sign of coefficient.
(ii)
$$\beta \geqq \beta_c \text{ ; write } \beta K = q + \varepsilon; \quad \varepsilon \text{ small.}$$

$$\theta \approx \theta + \frac{\varepsilon}{q} \theta + \left(\frac{q}{2} - 1\right) \theta^2 + \dots$$

Predicts: θ slightly *negative*.

Impossible:

(a) On physical grounds.

(b) Probabilistic interpretation of θ .

No solutions of MFT (q > 2) with magnetization going continuously to zero.

Fact: Cannot get from start to finish without a discontinuity.

<u>Topics for discussion</u>: • Where (in the context of MFT) does the discontinuity actually occur? [MFT 201]. • Does this sort of thing happen a lot? What does this say about the actual system? • Can system be 1st order even if it "admits" continuous solutions? • Genuine discontinuous thermodynamics (e.g. energy density etc.)?

In some sense, MFT not such a wild "theory".

Certainly, the average magnetization (spacial, of neighbors of origin)

$$\mathfrak{M}_0 = \frac{1}{2d} \sum_{|r|=1} S_r$$

has to equal something. Of course, this something is random.

Express mean-field equations as m = Q(m).

Then, given the value of \mathfrak{M}_0 , the (random) magnetization @ origin, \mathfrak{m}_0 will be: $\mathfrak{m}_0 = Q(\mathfrak{M}_0)$. Quantity \mathfrak{m}_0 is average value of magnetization $given \mathfrak{M}_0$.

True (fully interacting) stat. mech. equations must be:

 $m(\beta) = \langle \mathfrak{m}_0 | \mathfrak{M}_0 \rangle_{\beta} = \langle Q(\mathfrak{M}_0) \rangle_{\beta}; \quad \text{where } \langle - \rangle_{\beta} \text{ denotes thermal aver-} \\ \text{age @ inverse temperature } \beta. \qquad \textbf{8}$

Comparison to Real Systems

Generic random variables have to have some distribution or density.

If the RV was deterministic – i.e. if $\rho(\mathfrak{M}_0)$ were concentrated at a single value then mean field equations would be exact.

$$\mathfrak{m}_0 = Q(\mathfrak{M}_0).$$

If \mathfrak{M}_0 is almost always close to its average value then \mathfrak{m}_0 must also be close to *its* average and they must both be close to *some* solution of the mean field equation.

Q. How can we show this?

Ans. Show that variance is small.

Comparison to Real Systems

If we can show that variance is small:

Deterministic picture

Clear: Notwithstanding all the thermal randomness, $m(\beta)$ would always be "near" a solution of the mean field equations. If these equations do not admit continuous solutions, then the actual system must also exhibit a discontinuity.

Random picture (w/ small variance)

Systems under consideration:

(bad news)

 $-H = \frac{J}{2d} \sum_{\langle r, r' \rangle} S_r \cdot S_{r'}$

Under these conditions, system is *reflection positive*.

May work with techniques of Infrared Bounds.

Good news:

 S_r = anything.

- Magnetic (vector) spins Ising, Potts, *O*(*N*), ...
- Matrices nematic models.
- Continuous fields (i.e. discrete field theories).

And: Dot product can also mean "anything"; simply has to be a positive definite inner product. Also, can add arbitrary external field or weigh the single –spin distribution in any fashion.

Example: BEG model. Can emulate σ_r^2 by generating *new* component τ_r .

Includes many classical systems physical interest. More generalities, subject of [BCC]

Technical discussion

Statement of infrared bounds:

Starting on torus of size *L*,

 W_r any function with

$$\sum_{r} w_r = 0.$$

J. Fröhlich, B. Simon and T. Spencer, *Infrared bounds, phase transitions and continuous symmetry breaking*, Commun. Math. Phys. **50** (1976) 79–95.

J. Fröhlich, R. Israel, E.H. Lieb and B. Simon, *Phase transitions and reflection positivity*. *I. General theory and long-range lattice models*, Commun. Math. Phys. **62** (1978), no. 1, 1–34.

F.J. Dyson, E.H. Lieb and B. Simon, *Phase transitions in quantum spin systems with isotropic and nonisotropic interactions*, J. Statist. Phys. **18** (1978) 335–383.

J. Fröhlich, R. Israel, E.H. Lieb and B. Simon, *Phase transitions and reflection positivity. II. Lattice systems with short-range and Coulomb interactions*, J. Statist. Phys. **22** (1980), no. 3, 297–347.

Then

$$\sum_{r,r'} w_r w_{r'} \left\langle S_r \cdot S_{r'} \right\rangle_{\beta} \leq \frac{n}{\beta J} \sum_{r,r'} w_r D^{-1}(r,r') w_{r'}$$

where D^{-1} is the inverse of the lattice Laplacian

$$D^{-1}(r,r') = \int_{[-\pi,+\pi]^d} \frac{d^d k}{(2\pi)^d} \frac{e^{ik(r-r')}}{1 - \sum_{j=1}^d \cos k_j}$$

Usually take w_r to be plane waves with the result:

$$|\hat{S}(k)|^2 \leq \frac{n}{\beta J} \frac{1}{\hat{D}(k)}$$
; $d \geq 3 \Rightarrow$ condensation
 $(k \neq 0)$ ($k \neq 0$)

Here: Don't have the w_r sum to zero. Write

 $w_r = v_r + (\text{constant})$

To do this we must assume (i.e. prove existence of) state - which is limit of torus states - where relevant observable, here the magnetization, is a sharp observable.

Has the effect of subtracting off background terms. Get:

Now simply use v_r to explore neighborhood of r.

Result:

$$\frac{1}{2d} \left| \sum_{r:|r|=1} \langle S_r - \vec{m} \rangle_{\beta} \right|^2 \leq \frac{n}{\beta J} \int_{[-\pi, +\pi]^d} \frac{d^d k}{(2\pi)^d} \frac{\left[1 - \hat{D}(k)\right]^2}{\hat{D}(k)} \cdot \frac{1}{\beta J} \int_{[-\pi, +\pi]^d} \frac{d^d k}{(2\pi)^d} \frac{\left[1 - \hat{D}(k)\right]^2}{\hat{D}(k)} \cdot \frac{1}{\beta J} \int_{[-\pi, +\pi]^d} \frac{d^d k}{(2\pi)^d} \frac{\left[1 - \hat{D}(k)\right]^2}{\hat{D}(k)} \cdot \frac{1}{\beta J} \int_{[-\pi, +\pi]^d} \frac{d^d k}{(2\pi)^d} \frac{\left[1 - \hat{D}(k)\right]^2}{\hat{D}(k)} \cdot \frac{1}{\beta J} \int_{[-\pi, +\pi]^d} \frac{d^d k}{(2\pi)^d} \frac{\left[1 - \hat{D}(k)\right]^2}{\hat{D}(k)} \cdot \frac{1}{\beta J} \int_{[-\pi, +\pi]^d} \frac{d^d k}{(2\pi)^d} \frac{\left[1 - \hat{D}(k)\right]^2}{\hat{D}(k)} \cdot \frac{1}{\beta J} \int_{[-\pi, +\pi]^d} \frac{1}{\beta J} \int_{[-\pi$$

From perspective of MFT: Not the whole story.

E.g. when the transition is of the first type, where does it occur?

Define: Mean field free energy *function*.

 $\Phi(m)$

 $\Phi(m)$ = free energy that MFT *would* have if magnetization were constrained to equal *m*.

¿<u>How</u>? (0) Landau.

(1)
$$-H_{\rm MF}^{(N)} = \frac{J}{N} \sum_{r,r'} S_r \cdot S_{r'};$$

find (limiting) constrained free energy.

(2)
$$G(\vec{h}) = \log \int_{\Omega} dS e^{S \cdot \vec{h}}$$

S(*m*) defined by Legendre transform.
 $\Phi_{\beta}(m) = -\frac{1}{2}\beta Jm^2 - \mathbf{S}(m).$

 $\Phi_{\beta}(m)$

Find *m* which minimizes $\Phi_{\beta}(m)$; that is the MF magnetization. Φ_{β} evaluated @ minimizing *m* defines the *MF free energy*; entropy & energy make sense separately.

$$\Phi'_{\beta}(m) = 0$$

are exactly the mean field equations that were discussed in MFT–101.

Typical evolution of a MF 1st order transition.

Clear:

Would like to implement these ideas in the context of real systems.

1

Statement of Main Result (Theorem)

- $-H = J \sum_{\langle r, r' \rangle} S_r \cdot S_{r'}$ on *d*-dimensional cubic lattice.
- $\Phi_{\beta}(m)$ = associated mean field free energy function.

•
$$I_d = \int_{[-\pi, +\pi]^d} \frac{d^d k}{(2\pi)^d} \frac{[1 - \hat{D}(k)]^2}{\hat{D}(k)}$$
; our small parameter.

 $F(\beta) = \min_{m} \Phi_{\beta}(m)$ the mean field free energy.

• $\mu = \mu(\beta)$ = actual magnetization of the real *d*-dimensional system.

And κ some constant that depends on the details of the spin-space.

Then:

$$\left| \Phi_{\beta}(\mu) - F(\beta) \right| \leq \kappa I_d$$

Has implications:

Typically, actual magnetization must follow mean field magnetization.

Not only do we learn that actual magnetization must be near *a* solution to the mean field equations, it must be near *the* solution to the mean field equations.

At points of MF first order transition:

So if we plot (allowed values of) magnetization vs. β ,

Current & Future Directions

(I) Get rid of assumption $d \gg 1$.

(a) Yukawa – type couplings

$$J_r = J_0 e^{-\lambda |r|}$$

requires $d \ge 3$ and λ sufficiently small.

(b) Power law couplings

can reduce requirement that d > 2.

(II) Quantum systems & Gauge systems.

A three dimensional 3–state Potts model.

Talk Summary

• Write down
$$-H = \sum_{\langle r,r' \rangle} J_{r,r'} S_r \cdot S_{r'}$$
. (Interaction must be R.P.)

- Compute $\Phi_{\beta}(m)$ see if transition is 1st order.
- Dimension large or λ small or ...

$$\int_{[-\pi,+\pi]^d} \frac{1}{(2\pi)^d} \frac{\left[1 - \hat{J}(k)\right]^2}{\hat{J}(k)} d^d k \ll 1.$$

Then actual systems follows MF system: 1st order, with (asymptotically) correct gap, latent heat, ...

¿Continuous transitions? NO.