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The Widom-Rowlinson model of a fluid mixture is studied using a new cluster algorithm that is a
adaptation of the invaded cluster method previously applied to Potts models. The algorithm overcom
the difficulties of treating continuum hard-core systems and has almost no critical slowing down. O
estimates ofbyn and gyn for the two-component fluid are consistent with the Ising universality
class in two and three dimensions. We also present preliminary results for the three-component fl
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Some years ago Widom and Rowlinson [1] introduce
a simple continuum model that exhibits a phase transitio
[2]. The two-component version of this model consists o
“black” and “white” particles; particles of the same type
do not interact, but particles of differing type experienc
a hard-core repulsion at separations less than or eq
to s [3]. We present a new Monte Carlo method fo
simulating the Widom-Rowlinson (WR) model and apply
the method to study the demixing transition in two an
three dimensions.

There have been few Monte Carlo studies of the W
critical point because of the difficulties of treating hard
core systems and critical slowing down using standa
Monte Carlo techniques. We discuss a new algorith
that overcomes these difficulties using cluster methods
the type introduced by Swendsen and Wang [4]. Th
algorithm employs the invaded cluster (IC) approach [5,6
to locate the critical point. We find that the algorithm
has almost no critical slowing down and that we ca
obtain accurate values of the critical density and th
exponent ratiosbyn andgyn with modest computational
effort.

The two-component WR model is expected to be in th
Ising universality class. Our results forbyn and gyn

are consistent with this assumption, and our value f
the critical density of the three-dimensional (d ­ 3) WR
model agrees with recent results obtained in Ref. [7].

We also consider a WR model in which there areq
components, any two of which interact via a hard-cor
repulsion [8,9]. Our algorithm easily extends to thes
q-component WR models, and we present results for t
three-component model ind ­ 2, 3.

Graphical representations of the WR model.—A con-
figuration of the WR fluid consists of two sets of points,S
and T , corresponding to the positions of the black an
white particles. In the grand canonical ensemble, th
0031-9007y97y79(14)y2612(4)$10.00
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probability density for finding the configurationsS, Td is

PsS, T d ­
1
Z

z
N1
1

N1!
z

N2
2

N2!
GsS, T d . (1)

Z is the grand partition function,z1 (z2) is the fugacity of
the black (white) particles, andN1 (N2) is the number of
black (white) particles. The objectG, which expresses the
hard-core interaction between particles of different type
vanishes if any point inS is within a distances of any
point in T and is one otherwise. Symmetry consideratio
ensure that the critical point is along the linez1 ­ z2;
hereafter we restrict attention to the casez ­ z1 ­ z2.

To motivate and justify our cluster algorithm, we con
sider a different representation of the WR model.
the “gray” representation [10,11] one considers the p
ticles without reference to color, but with configuration
weighted according to the number of allowed coloring
Let W be a list ofN points,W ; sr1, . . . , rNd. Clusters
of particles can be defined by the condition that every p
ticle in a cluster is within a distances of some other par-
ticle in the cluster. Particles in a cluster must all be th
same color, so if there areCsW d distinct clusters (including
single particles), there are2CsWd allowed colorings. Start-
ing with Eq. (1) and working through the combinatoric
we find that the probability density forW is given by

psW d ­
1
Z

zN

N!
2CsWd . (2)

These densities describe thegray measures. The appro-
priate gray measure for theq-component model is defined
by the analog of Eq. (2) with 2 replaced byq. To return
to the distribution in Eq. (1) starting from the gray repre
sentation, we select one of the2CsWd (or qCsWd) allowed
colorings with equal probability. It turns out that the gra
measures are a special case of the models studied in [
The connection with the WR models was discussed in [1
and made precise in [10,11].
© 1997 The American Physical Society



VOLUME 79, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 6 OCTOBER1997

all

ing

a
;

nd

y

its

ent
e

-
ion

ta-
ror

f

d
are
cal
Cluster algorithms.—We start from a configuration of
gray particles and identify the clusters. Each cluster
independently labeled black or white with probability 1y2
and all the white particles are removed. In the nex
step, white particles are replaced via a Poisson proce
at fugacity z in the free volume permitted by the black
particles. Finally, color identities are erased and we obta
the next gray configuration. The fraction of cluster
deleted in theq-component WR model is1yq. This
algorithm is the generalization of the Swendsen-Wan
method to the WR model. It is described in more deta
and verified in [14] and independently in [15].

Because we are interested in efficiently samplin
the transition point of WR models, we will forsake a
Swendsen-Wang approach in favor of an IC-type alg
rithm. The steps involving the coloring and discardin
of clusters are essentially the same, but rather th
repopulating the free volume by a fixed fugacity proces
particles are sequentially added with a uniform distribu
tion throughout the free volume until astopping condition
is fulfilled. For example, one could add particles unt
a fixed particle number is reached. If a stopping rule
chosen that enforces a condition that is characteristic
criticality, then a critical state of the system is sample
automatically. In a finite volume the IC method sample
an ensemble that differs from the canonical ensemble, b
it presumably converges to the correct infinite volum
distribution for all local observables. The validity of the
IC method and its relation to the Swendsen-Wang meth
is discussed briefly below and in detail in Ref. [6].

The signature of the phase transition in the WR
model is percolation of a gray cluster [10,11]. Thu
an appropriate stopping rule for the IC algorithm is th
spanning of a gray cluster—particles are added at rando
in the allowed volume until a cluster spans the system
(In our case, we use periodic boundary conditions an
spanning is said to occur when a cluster wraps the toru
The other modification is that the spanning cluster
erased on each deletion move, thereby ensuring that a n
spanning cluster can form in the repopulation move.

If Ntot is the total number of points that are needed t
satisfy the stopping condition,z ­ NtotyV is an estimator
for the critical fugacityzc. For V ! `, we assume that
the distribution forz becomes sharp. If this assumption is
valid, each move is identical to a move of the Swendse
Wang-type algorithm at the peak value ofz. It follows
8
0
2
8
7

TABLE I. Dependence ofM, r, x, z, sz , andtM on L for the two-component,d ­ 2 WR
fluid. The error estimates represent one standard deviation. The averages are over105 span-
ning clusters.

L M r x z sz tM

40 1511(1) 1.5247(4) 1584(2) 1.7201(7) 0.212 0.5
60 3233(3) 1.5379(3) 3217(5) 1.7247(6) 0.170 0.6
80 5527(5) 1.5450(3) 5289(9) 1.7267(6) 0.150 0.7

120 11 836(12) 1.5516(3) 10 760(20) 1.7265(5) 0.120 0.7
160 20 282(20) 1.5552(2) 17 752(30) 1.7262(4) 0.101 0.7
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that this peak value iszc —no other value of the fugacity
would exhibit a critical cluster. Hence, if the distribution
for z is very narrow in a finite volume, the IC algorithm is
essentially the Swendsen-Wang-type algorithm with sm
fluctuations in the fugacity.

Results.—We collected statistics for the following
quantities: the average number of particles in the spann
cluster,M; the normalized autocorrelation functionGMstd
of the number of particles in the spanning cluster as
function of “time” t as measured in Monte Carlo steps
the compressibilityx defined by

x ­
1
V

X
i

s2
i , (3)

where the spanning cluster is included in the sum a
si is the mass of theith cluster; the estimator for the
critical fugacityz ­ kNtotlyV ; the fluctuations inz, s2

z ­
fkN2

totl 2 kNtotl2gyV 2; and the average number of gra
particles per unit area (volume)r which is an estimator
of the critical density. System size is measured in un
of the particle diameters.

The exponents that depend on the magnetic expon
yh can be obtained from the fractal dimension of th
spanning cluster viaM , LD or from x , Lgyn. The
exponents are related byD ­ yh, gyn ­ 2yh 2 d, and
byn ­ d 2 yh. The dynamical properties of the algo
rithm can be measured by the integrated autocorrelat
time defined bytM ­

1
2 1

P`
t­1 GMstd. This time is

roughly the number of Monte Carlo steps between s
tistically independent samples and enters into the er
estimate forM. In practice, it is necessary to cut off the
upper limit of the sum definingtM when GM becomes
comparable to its error. The increase intM defines a dy-
namic exponentzM via tM , LzM .

Our results for the two-component,d ­ 2 WR fluid
are summarized in Table I. From the log-log plot o
M versus L shown in Fig. 1, we find thatyh ­ d 2

byn ­ 1.873 6 0.002, and hencebyn ø 0.127, a value
consistent with the exact Ising result ofbyn ­ 1y8. A
log-log plot of x versusL yields gyn ­ 1.743 6 0.003,
consistent with the Ising value,gyn ­ 7y4. These results
support the hypothesis that the two-componentd ­ 2 WR
fluid is in the Ising universality class [16]. The quote
errors are associated with the least squares fitting and
two standard deviations. We also estimated the statisti
2613
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FIG. 1. Log-log plot ofM, the average mass of the spannin
cluster, versusL, the linear dimension of the lattice, for th
two-component,d ­ 2 WR fluid. A least squares fit yields
D ­ 2 2 byn ­ 1.873.

errors in yh and gyn by generating synthetic data se
consistent with the estimated errors in the measu
values ofM andx and found similar results.

From the data of Table I we have estimated the infin
volume critical values of the densityrc and fugacityzc.
A linear fit for rsLd versus1yL yields rc ­ 1.5652. A
three parameter fit of the form

rsLd ­ rc 2 AyLx (4)

yields rc ­ 1.5662 with x ­ 0.96. Because the bigges
source of error is the uncertainty in the fitting form rath
than the statistical errors in the raw data, we estimate
error in rc as several times the difference between the
two fits. Hence, we conclude thatrc ­ 1.566 6 0.003.

Within the statistical error the fugacityz is unchanged
for the three largest system sizes. We take these va
and several times the statistical error to estimate
critical fugacity,zc ­ 1.726 6 0.002. To our knowledge,
there are no independent estimates ofrc and zc for the
two-component,d ­ 2 WR fluid.

The autocorrelation functionGMstd decreases rapidly
and oscillates about zero aftert ø 10. Our results for
tM for various system sizes are summarized in Table
The slow increase oftM with L indicates thatzM is small
or zero (tM , ln L). Because of its small value and ou
limited data, we cannot make a more precise statem
Fitting GMstd to a single exponential leads to decorrelati
times similar totM .
9
7
7

2614
TABLE II. Dependence ofM, r, x, z, sz , andtM on L for the two-component,d ­ 3 WR
fluid. The averages are over106 spanning clusters.

L M r x z sz tM

10 313.0(1) 0.740 22(7) 119.5(2) 0.9387(1) 0.138 0.5
20 1745.4(6) 0.744 40(4) 466.1(9) 0.940(1) 0.077 0.5
30 4768(2) 0.745 67(2) 1031(2) 0.9403(1) 0.056 0.5
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FIG. 2. Plot ofr versus1yL for the two-component,d ­ 3
WR fluid. A least squares fit yieldsrc ­ 0.7484.

Our results for the two-component,d ­ 3 WR fluid
are summarized in Table II. Power law fits ofM and
x versusL yield yh ­ 3 2 byn ­ 2.479 6 0.001 and
gyn ­ 1.961 6 0.003, respectively. These values are
consistent with each other and with the recent estima
of yh ­ 2.4815s15d obtained in Ref. [17]. The results
confirm the expectation that the two-component,d ­ 3
WR model is in thed ­ 3 Ising universality class.

In Fig. 2 we showr versus1yL. A linear fit yields
rc ­ 0.7484. A three parameter fit of the form given in
Eq. (4) yieldsrc ­ 0.7478 with x ­ 1.16. We estimate
the error inrc as several times the difference betwee
these two fits and conclude thatrc ­ 0.748 6 0.002.
This value ofrc is in agreement with and improves upon
the recent result in Ref. [7],rc ­ 0.762 6 0.016. These
values forrc are much higher than older estimates ofrc

which were in the range of 0.41 to 0.57 [18].
From the estimates oftM shown in Table II, we see

that tM does not appear to increase withL. It may be
that there is no critical slowing for IC dynamics for the
two-component,d ­ 3 WR model as is the case for the
d ­ 3 Ising model under IC dynamics [6,19].

The quantitysz decreases withL as sz , L2a with
a ø 0.5 for d ­ 2 and a ø 0.8 for d ­ 3. The d ­ 2
value ofa is the same as was found for thed ­ 2 Ising
model in the IC ensemble while ford ­ 3 it is somewhat
larger than the results obtained for thed ­ 3 Ising model
[19], wherea ­ 0.69 6 0.01. The fact thatsz ! 0 as
L increases ensures that the IC ensemble is close to
canonical ensemble.

Our results for the three-component WR fluid ind ­ 2
are summarized in Table III. Using the same finite siz
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TABLE III. Dependence ofM, r, x, z, sz , and tM on L for the three-component,d ­ 2
WR fluid. The averages are over105 spanning clusters.

L M r x z sz tM

40 1480(2) 1.6124(8) 1543(4) 1.965(3) 0.364 0.88
80 5325(7) 1.6352(6) 4987(13) 1.960(1) 0.280 1.2

120 11 211(18) 1.6418(6) 9810(30) 1.953(1) 0.237 1.7
160 19 013(32) 1.6455(6) 15 869(50) 1.949(1) 0.213 1.9

TABLE IV. Dependence ofM, r, x, z, sz , and tM on L for the three-component,d ­ 3
WR fluid. The averages are over105 spanning clusters.

L M r x z sz tM

10 299.6(3) 0.7914(2) 109.8(2) 1.1789(8) 0.230 0.58
20 1639(2) 0.7947(2) 409.1(9) 1.1717(6) 0.145 0.74
30 4407(6) 0.7947(1) 874(2) 1.1670(5) 0.117 0.83
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scaling analysis we used for the two-component W
fluid, we find thatD ­ yh ­ 1.842 6 0.004 and hence
byn ø 0.16. This result foryh is consistent with our
observed value ofgyn ­ 1.681 6 0.008. These results
are not consistent with the corresponding value for th
three-state,d ­ 2 Potts model whereyh ­ 28y15. Even
more surprising, our estimated value ofyh for the WR
fluid is less than the minimum value ofyh for any d ­ 2
Potts model with a continuous transition (yh ø 1.86603
for q ­ 3.332). A full scale study including additional
q values and larger systems should be undertaken
determine the relation between theq-state Potts and
q-component Widom-Rowlinson universality classes. W
also find thatr approachesrc as 1yL and find rc ­
1.657 6 0.001; similarly, sz , L20.4. A log-log plot of
tM versusL yields the estimatezM ­ 0.58; for this case
z is sufficiently large for us to conclude thatz . 0.

Our results for the three-component,d ­ 3 WR fluid
are summarized in Table IV. The corresponding thre
state, d ­ 3 Potts model is believed to have a first
order transition, and it is likely that this behavior hold
for the three-componentd ­ 3 WR fluid. On the other
hand, both the observed values ofM and x are well
described by power laws. This situation also holds fo
the three-state Potts model for computationally accessi
system sizes and reflects the fact that the transition is ve
weakly first order. More study is needed to determin
the order of the transition for this case of the WR
model. The IC method finds the transition temperatu
for Potts models independently of whether the transitio
is first order or continuous [6]. Hence, we believe tha
extrapolated values ofz yield the transition value of the
fugacity,zc ø 1.16, and thatr ø 0.795 lies between the
density of the two coexisting phases at the transition. W
also findsz , L20.25 andzM ­ 0.62.

We have shown that cluster methods may be effective
used to study the Widom-Rowlinson model. To ou
knowledge, the IC algorithm is the first example of a
algorithm that performs efficiently near the critical poin
of a continuum system with hard-core interactions. W
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have obtained accurate values of the critical density a
fugacity for Widom-Rowlinson models ind ­ 2 and 3.
The two-component Widom-Rowlinson model appears
be in the Ising universality class. However, the thre
componentd ­ 2 model deserves further study and mig
not be in the three-state Potts universality class.
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