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Monte Carlo Study of the Widom-Rowlinson Fluid Using Cluster Methods
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The Widom-Rowlinson model of a fluid mixture is studied using a new cluster algorithm that is an
adaptation of the invaded cluster method previously applied to Potts models. The algorithm overcomes
the difficulties of treating continuum hard-core systems and has almost no critical slowing down. Our
estimates of@/v and y/v for the two-component fluid are consistent with the Ising universality
class in two and three dimensions. We also present preliminary results for the three-component fluid.
[S0031-9007(97)04175-6]
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Some years ago Widom and Rowlinson [1] introducedprobability density for finding the configuratias, T') is

a simple continuum model that exhibits a phase transition 1 Z{Vl Zé\’z
[2]. The two-component version of this model consists of P(S,T) = Z NN, I'(s, 7). (1)

“black” and “white” particles; particles of the same type 7 is th d partition funct i< the f ity of
do not interact, but particles of differing type experience ISbI ekgrar;]_tpar : I(t)'nl unc :%?‘1 5\21'2) IS the UQa%' Y Of
a hard-core repulsion at separations less than or equ%]e ac .(W ite) particles, anty, (N2) IS the number o
to o [3]. We present a new Monte Carlo method for ack (Wh't.e) paquIes. The objett, .Wh'Ch EXPresses the
simulating the Widom-Rowlinson (WR) model and apply hard-core interaction between particles of different types,
the method to study the demixing transition in two andv"’l.msheS if any point ir§ 'S.W'th'n a distancer qf any
three dimensions. pointinT and is on_e_otherw_lse.. Symmetry C(_)n5|derat|ons
There have been few Monte Carlo studies of the WRENSU'® that the grltlcal point Is along the ling = z;
critical point because of the difficulties of treating hard- e_:_eaftert.wetrestréct. at:_ennon tc; thte calsec Z'tlh: Z2-
core systems and critical slowing down using standard. 0 motivate and Jus ify our cluster aigorithm, we con-
Monte Carlo techniques. We discuss a new algorithr‘r'?‘Ider a different representation of the WR model. In
that overcomes these difficulties using cluster methods otpe gray” representation [10,11] one c_:on5|ders the. par-
the type introduced by Swendsen and Wang [4]. Thélclgs without refgrence to color, but with conflgurat]ons
algorithm employs the invaded cluster (IC) approach [5,6 eighted according to the number of allowed colorings.

to locate the critical point. We find that the algorithm -6t W be a list ofN points, W = (ry.....ry). Clusters
has almost no critical slowing down and that we canOf particles can be defined by the condition that every par-

obtain accurate values of the critical density and th !cle in a cluster is within a distanae of some other par-

exponent ratiog /v andy /v with modest computational ticle in the Clugter. Particles Ih a cluster must all b_e the
effort. same color, so if there a® W) distinct clusters (including

The two-component WR model is expected to be in thesinglg particles), there aﬁé.j(W) allowed colorings.' Star't-
Ising universality class. Our results f@/v and y/v ing with Eq. (1) and working through the combinatorics,

are consistent with this assumption, and our value folV® find that the probability density fo¥’ is given by

the critical density of the three-dimensiondl £ 3) WR p(W) = 1 ﬁ 2CW) @)
model agrees with recent results obtained in Ref. [7]. Z N! '

We also consider a WR model in which there are These densities describe theay measures The appro-
components, any two of which interact via a hard-corepriate gray measure for thecomponent model is defined
repulsion [8,9]. Our algorithm easily extends to theseby the analog of Eq. (2) with 2 replaced jy To return
g-component WR models, and we present results for théo the distribution in Eqg. (1) starting from the gray repre-
three-component model ih = 2, 3. sentation, we select one of t2€™) (or ¢¢™)) allowed

Graphical representations of the WR modelA con-  colorings with equal probability. It turns out that the gray
figuration of the WR fluid consists of two sets of poinfs, measures are a special case of the models studied in [12].
and T, corresponding to the positions of the black andThe connection with the WR models was discussed in [13]
white particles. In the grand canonical ensemble, thend made precise in [10,11].
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Cluster algorithms—We start from a configuration of that this peak value is.—no other value of the fugacity
gray particles and identify the clusters. Each cluster isvould exhibit a critical cluster. Hence, if the distribution
independently labeled black or white with probability2l  for z is very narrow in a finite volume, the IC algorithm is
and all the white particles are removed. In the nextessentially the Swendsen-Wang-type algorithm with small
step, white particles are replaced via a Poisson procedkictuations in the fugacity.
at fugacity z in the free volume permitted by the black Results—We collected statistics for the following
particles. Finally, color identities are erased and we obtaiguantities: the average number of particles in the spanning
the next gray configuration. The fraction of clusterscluster,M; the normalized autocorrelation functidh, (z)
deleted in theg-component WR model id/g. This of the number of particles in the spanning cluster as a
algorithm is the generalization of the Swendsen-Wandunction of “time” + as measured in Monte Carlo steps;
method to the WR model. It is described in more detailthe compressibilityy defined by
and verified in [14] and independently in [15].

Because we are interested in efficiently sampling _ 1 ng ®)
the transition point of WR models, we will forsake a Xy =
Swendsen-Wang approach in favor of an IC-type algo-
rithm. The steps involving the coloring and discardingwhere the spanning cluster is included in the sum and
of clusters are essentially the same, but rather tham is the mass of theth cluster; the estimator for the
repopulating the free volume by a fixed fugacity processeritical fugacityz = (N.,)/V; the fluctuations in;, o2 =
particles are sequentially added with a uniform distribu{(Vg,) — (Nw)*]/V?; and the average number of gray
tion throughout the free volume untilsgopping condition ~ particles per unit area (volume) which is an estimator
is fulfilled. For example, one could add particles until of the critical density. System size is measured in units
a fixed particle number is reached. If a stopping rule isof the particle diametes .
chosen that enforces a condition that is characteristic of The exponents that depend on the magnetic exponent
criticality, then a critical state of the system is sampledy. can be obtained from the fractal dimension of the
automatically. In a finite volume the IC method samplesspanning cluster via/ ~ LP or from y ~ LY". The
an ensemble that differs from the canonical ensemble, bxponents are related by = y;, y/v = 2y, — d, and
it presumably converges to the correct infinite volumeB/» = d — y,. The dynamical properties of the algo-
distribution for all local observables. The validity of the rithm can be measured by the integrated autocorrelation
IC method and its relation to the Swendsen-Wang methotme defined byr, = % + Z;;l I'y(z). This time is
is discussed briefly below and in detail in Ref. [6]. roughly the number of Monte Carlo steps between sta-

The signature of the phase transition in the WRtistically independent samples and enters into the error
model is percolation of a gray cluster [10,11]. Thusestimate forM. In practice, it is necessary to cut off the
an appropriate stopping rule for the IC algorithm is theupper limit of the sum defining,, when Iy, becomes
spanning of a gray cluster—particles are added at randorwomparable to its error. The increaserip defines a dy-
in the allowed volume until a cluster spans the systemnamic exponent,, via 7y, ~ L.

(In our case, we use periodic boundary conditions and Our results for the two-componend, = 2 WR fluid
spanning is said to occur when a cluster wraps the torusgre summarized in Table I. From the log-log plot of
The other modification is that the spanning cluster isM versusL shown in Fig. 1, we find thay, = d —
erased on each deletion move, thereby ensuring that a ne8y/» = 1.873 + 0.002, and hence3/v =~ 0.127, a value
spanning cluster can form in the repopulation move. consistent with the exact Ising result gf/v = 1/8. A

If Ny is the total number of points that are needed tdog-log plot of y versusL yieldsy/v = 1.743 = 0.003,
satisfy the stopping condition, = N /V is an estimator consistent with the Ising valug,/» = 7/4. These results
for the critical fugacityz.. ForV — «, we assume that support the hypothesis that the two-compongrt 2 WR
the distribution for; becomes sharp. If this assumption isfluid is in the Ising universality class [16]. The quoted
valid, each move is identical to a move of the Swendsenerrors are associated with the least squares fitting and are
Wang-type algorithm at the peak value of It follows  two standard deviations. We also estimated the statistical

TABLE I. Dependence oM, p, x, z, o, andry on L for the two-componenty = 2 WR
fluid. The error estimates represent one standard deviation. The averages aré’ sman-
ning clusters.

L M P X 4 (o ™

40 1511(1) 1.5247(4) 1584(2) 1.7201(7) 0.212 0.58
60 3233(3) 1.5379(3) 3217(5) 1.7247(6) 0.170 0.60
80 5527(5) 1.5450(3) 5289(9) 1.7267(6) 0.150 0.72

120 11836(12) 1.5516(3) 10760(20) 1.7265(5) 0.120 0.78
160 20282(20) 1.5552(2) 17 752(30) 1.7262(4) 0.101 0.77
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L WR fluid. A least squares fit yields, = 0.7484.

FIG. 1. Log-log plot ofM, the average mass of the spanning

cluster, versud,, the linear dimension of the lattice, for the  Qur results for the two-component, = 3 WR fluid
two-componentd =2 WR fluid. A least squares fit yields 516 summarized in Table 1. Power law fits 8f and
D=2=p/v =187 x versusL yield y, =3 — B/v = 2.479 = 0.001 and

errors iny, and y/» by generating synthetic data sets ¥/» = 1.961 = 0.003, respectively. These values are
consistent with the estimated errors in the measuregonsistent with each other and with the recent estimate

values ofM and y and found similar results. of y, = 2.4815(15) obtained in Ref. [17]. The results

From the data of Table | we have estimated the infinitecOnfirm the expectation that the two-component= 3
volume critical values of the densify, and fugacityz.. R modelis in the/ = 3 Ising universality class.

A linear fit for p(L) versusl/L yields p. = 1.5652. A In Fig. 2 we showp versusl/L.. A linear fit y@elds_
three parameter fit of the form pe = 0.7484. A three parameter fit of the form given in

Eq. (4) yieldsp. = 0.7478 with x = 1.16. We estimate
p(L) = p. — A/L* (4) the error inp. as several times the difference between
these two fits and conclude that. = 0.748 + 0.002.
yields p. = 1.5662 with x = 0.96. Because the biggest This value ofp. is in agreement with and improves upon
source of error is the uncertainty in the fitting form ratherthe recent result in Ref. [7h. = 0.762 = 0.016. These
than the statistical errors in the raw data, we estimate thealues forp,. are much higher than older estimatesgof
error in p. as several times the difference between thesghich were in the range of 0.41 to 0.57 [18].
two fits. Hence, we conclude that = 1.566 * 0.003. From the estimates of,; shown in Table Il, we see
Within the statistical error the fugacity is unchanged that 7,; does not appear to increase with It may be
for the three largest system sizes. We take these valuéisat there is no critical slowing for IC dynamics for the
and several times the statistical error to estimate théwo-componentd = 3 WR model as is the case for the
critical fugacity,z. = 1.726 = 0.002. To our knowledge, d = 3 Ising model under IC dynamics [6,19].
there are no independent estimatesppfand z. for the The quantityo, decreases witll. as o, ~ L™“ with
two-componentd = 2 WR fluid. a=05ford=2anda =08 ford =3. Thed =2
The autocorrelation functiod'y () decreases rapidly value ofa is the same as was found for the= 2 Ising
and oscillates about zero after= 10. Our results for model in the IC ensemble while fat = 3 it is somewhat
v for various system sizes are summarized in Table Ilarger than the results obtained for #tie= 3 Ising model
The slow increase ofy, with L indicates that,, is small  [19], wherea = 0.69 = 0.01. The fact thato, — 0 as
or zero ) ~ InL). Because of its small value and our L increases ensures that the IC ensemble is close to the
limited data, we cannot make a more precise statementanonical ensemble.
Fitting I'y;(¢) to a single exponential leads to decorrelation Our results for the three-component WR fluiddrn= 2
times similar tory,. are summarized in Table Ill. Using the same finite size

TABLE Il. Dependence oM, p, x, z, o, and7y, onL for the two-componenyy = 3 WR
fluid. The averages are ovéd® spanning clusters.

L M p X z o ™

10 313.0(1) 0.74022(7) 119.5(2) 0.9387(1) 0.138 0.59
20 1745.4(6) 0.74440(4) 466.1(9) 0.940(1) 0.077 0.57
30 4768(2) 0.74567(2) 1031(2) 0.9403(1) 0.056 0.57
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TABLE lll. Dependence oM, p, x, z, o,, and7y on L for the three-component = 2
WR fluid. The averages are ovéd’ spanning clusters.

L M P X Z o, ™

40 1480(2) 1.6124(8) 1543(4) 1.965(3) 0.364 0.88

80 5325(7) 1.6352(6) 4987(13) 1.960(1) 0.280 1.2
120 11211(18) 1.6418(6) 9810(30) 1.953(1) 0.237 1.7

160 19013(32) 1.6455(6) 15869(50) 1.949(1) 0.213 1.9

TABLE IV. Dependence oM, p, x, z, o, and 7 on L for the three-component = 3
WR fluid. The averages are ovéd® spanning clusters.

L M P X Z (o ™

10 299.6(3)  0.7914(2) 109.8(2) 1.1789(8) 0.230 0.58
20 1639(2) 0.7947(2) 409.1(9) 1.1717(6) 0.145 0.74
30 4407(6) 0.7947(1) 874(2) 1.1670(5) 0.117 0.83

scaling analysis we used for the two-component WRhave obtained accurate values of the critical density and
fluid, we find thatD = y, = 1.842 = 0.004 and hence fugacity for Widom-Rowlinson models id = 2 and 3.
B/v = 0.16. This result fory, is consistent with our The two-component Widom-Rowlinson model appears to
observed value of//v = 1.681 = 0.008. These results be in the Ising universality class. However, the three-
are not consistent with the corresponding value for thecomponent/ = 2 model deserves further study and might
three-stated = 2 Potts model where, = 28/15. Even not be in the three-state Potts universality class.
more surprising, our estimated value pf for the WR This work was supported by NSF Grants No. DMR-
fluid is less than the minimum value of, for anyd =2 9632898 and No. DMR-9633385.
Potts model with a continuous transition,(= 1.86603 ———
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determine the relation between thestate Potts and [ D. Ruelle, Phys. Rev. Let27, 1040 (1971). .

. - . . [3] Alternatively, one of the components can be integrated
g-component Widom-Rowlinson universality classes. We
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