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Abstract: We consider certain two-dimensional systems with self-dual points including
uniform and disorderedq-state Potts models. For systems with continuous energy density
(such as the disordered versions) it is established that the self-dual point exhibits critical
behavior: Infinite susceptibility, vanishing magnetization and power law bounds for the
decay of correlations.

Introduction

In this note we will consider the Potts ferromagnets and related systems on the square
lattice. The Potts models are defined by the Hamiltonian

H = −
∑
〈x,y〉

Jx,yδσx,σy (1)

with σx = 1, 2, . . . , q andδσx,σy the usual Kronecker delta. HereJx,y is non-zero only
whenx andy are nearest neighbors and it is assumed that these couplings cannot be
negative.

Interest in the disordered version of these systems has recently been revived, in partic-
ular by J. Cardy and coworkers [Ca] who have discovered an apparent close connection
between these problems and systems with random fields. For the two-dimensional dis-
ordered Potts models (among other 2-d systems) it was established in [AW1,AW2] that
for all temperatures, the energy is continuous. Thus, by conventional definitions, the
magnetic ordering transition is continuous. However, as pointed out by Cardy in [Ca] –
as well as in a number of public forums – for these systems it has not been established
that all aspects of the transition meet the conventional criteria of a continuous transition:
Vanishing of the order parameter, power law decay for correlations and infinite sus-
ceptibility. Here we establish that, at least at the self-dual points, these systems behave
critically in the sense of all the above mentioned (with alower boundof a power law for
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decay of correlations). Our results apply to a variety of systems under the hypothesis of
a continuous energy density.

The method is to employ graphical representations (e.g. the random cluster repre-
sentation for the Potts models) and in fact applies to the non-integer cases provided
the model is attractive (q ≥ 1). In essence, the results here are complimentary to one
recently proved in a paper coauthored by one of us [BC]. There it was shown that if (at
some point) the energy density isnot continuous then the discontinuity (a) is unique,
(b) occurs precisely at the self-dual point and (c) coincides with the magnetic ordering
transition. For these cases the picture is, by and large, complete. Unfortunately, for the
continuous cases, our methods do not rule out the possibility that the self-dual point
is simply a critical point in the interior of a critical phase. (Nor does it rule out the
possibility that at the low-temperature edge of this purported phase, the magnetization
exhibits a jump akin to the Thouless effect in one-dimensional long-range systems [T,
AY,ACCN].) Nevertheless, taken together, the two sets of results imply that the self-dual
point is always a point of non-analyticity.

This work will be organized along the following lines: We will start with the uniform
q ≥ 1 random cluster cases which are the simplest illustration of the basic method. Next
we will treat certain straightforward generalizations, e.g. the Ashkin–Teller model and
in the second section we treat the disordered Potts model.

Uniform Systems

The random cluster model.We shall begin by setting notation. Consider the random
cluster model on some finite connected3 ⊂ Z

2. If ω is a configuration of bonds, the
probability ofω, in the setup with “free” boundary conditions is given by

µ
q,R

3f (ω) ∝ RN(ω)qCf (ω), (2)

whereN(ω) is the number of “occupied” bonds of the configuration andCf (ω) is the
number of connected components. Ifq is an integer, this is the representation of the model
described by Eq. (1) – for free boundary conditions – withJi,j ≡ 1 andR = eβ − 1.

For other boundary conditions, the formula for the weights must be modified. Of
primary interest are thewired boundary conditions which, back in the spin-system cor-
respond to setting each spin on the boundary to the same value. Then the formula for
the weights of configurations is the same as in Eq. (2) withCf (ω) replaced byCw(ω)

where the latter counts all sites connected to the boundary as part of the same cluster.
In this note we will restrict attention to the random cluster measures that are (weak,

possibly subsequential) limits of random cluster measures defined in finite volume. Here
the boundary conditions that we will consider – essentially those that are handed down
from the spin–systems – are defined as follows: In volume3, the boundary∂3 is divided
into k disjoint sets. All sites of the individual sets are identified as the same site. Thus
the boundary consists ofk effective sites (components)v1, . . . vk. No interior connec-
tions betweenv1, . . . vk are permitted. (I.e. any configuration with such a connection is
assigned zero weight.) All interior sites connected to the same boundary component are
considered as part of the same connected component. Finally, we will allow couplings
between boundary sites and their neighboring interior sites to take arbitrary values in
[0,∞).And, of course, we will also consider arbitrary superpositions of all of the above.

For the case of free and wired boundary conditions, infinite volume limits, ergodicity,
etc. follow in a straightforward fashion from the monotonicity (FKG) properties of the
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q ≥ 1 random cluster measures. (In the disordered cases, some of these points must be
rediscussed and we will do so at the appropriate time.)We will assume general familiarity
on the part of the reader concerning these properties. Most of the relevant material can
be found in [ACCN] or [BC]. However, if available at the time of reading, the authors
highly recommend the forthcoming article [GHM].

The dual model, defined on the lattice3∗ that is dual to3, has weights of the same
form as those in Eq. (2) withR replaced byR∗ = qR−1. The general problem of
boundary conditions for the dual model are a little intricate but for the purposes of this
work, it is sufficient to note that the free and wired boundary conditions are exchanged
under duality.

In these models (with integerq) the relationship between the bond density in the
random cluster model and energy density in the spin-system is straightforward. In par-
ticular, letex,y denote the event of an occupied bond that connects the neighboring pair
〈x, y〉. Then, as shown in [CMI],

〈δσx,σy 〉q,R

3# = 1+ R

R
µ

q,R

3# (ex,y), (3)

where〈−〉q,R

3# denotes thermal expectation in the spin-system in boundary condition
# = f, w (or, for that matter any other boundary condition). Thus, in these cases,
continuity in the energy density is manifested as continuity in the bond density. Hereafter,
we will focus onq ≥ 1 random cluster models and use continuousbonddensity for our
working hypotheses.

Let us finally remark that for almost everyR, the bond density is, in fact, a well
defined concept. This point (which is fairly standard) has recently been detailed in [BC]
so here we will be succinct. Consider the free energy,8(R), defined here by

8(R) = lim
3↗Z2

1

|3| logZ3#, (4)

whereZ3# is the sum of the weights in Eq. (2) and3 ↗ Z
2 means athermodynamic

limi t – a regular sequence of boxes. The function8(R) is convex (as a function of logR)
and hence has a left and right derivative for everyR which agree for almost everyR. At
points of continuity of the derivative, there is uniqueness among the translation invariant
states and the bond density in this state is given by the derivative of8 (with respect to
logR). At points of discontinuity, the upper value for the bond density is achieved in the
wired state and the lower value in the free state.

We are ready for our first result:

Theorem 1. Consider the 2d random cluster models with parameterq ≥ 1. Then if
the self-dual point,R = R∗ = √q is a point of continuity of the bond density, the
percolation density vanishes.

Proof. This result can in fact be obtained as a consequence of Theorem 2.1 in [BC]. For
completeness we will provide a direct proof. Here we will establish the contrapositive
statement; i.e. assume that the percolation probabilityis positive at the self-dual point
and show that this implies a discontinuity in the bond density.

Percolation is defined in reference to the wired measures (and limits thereof). These
measures are ergodic underZ

2 translations, respect thex, y-axis symmetry and have the
FKG property. In short, these measures satisfy all the conditions of the theorem in [GKR]
which forbids coexisting infinite clusters of the opposite type. Thus, with probability
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one, whenever there is percolation, all dual bonds reside in finite clusters. However, if
there is percolation (in the wired state) at the self-dual point, the same cannot be said in
the limiting free boundary condition measure. Indeed, from the perspective of thedual
bonds, this is a wired state. Hence, in this state, the dual bonds percolate and the regular
bonds do not. It is thus evident that the limiting free and wired measures are distinct;
µ

q,R

3f (−) is strictly belowµ
q,R
3w (−). By the (corollary to) Strassen’s theorem (see [L]

p. 75) this implies that the bond density in the wired state is strictly larger than that of
the free state; the self-dual point is thus not a point of continuity for the derivative of8.
ut
Corollary. Under the hypotheses of Theorem 1, there is a unique limiting Gibbs state/
random cluster measure at the self-dual point.

Proof. It was proved in [ACCN] (Theorem A.2) that the absence of percolation (for
q ≥ 1) implies that a unique limiting random cluster measure and, for (integerq ≥ 2) a
unique Gibbs state in the corresponding spin-system. So this follows immediately.ut
Let A andB denote disjoint sets inZ2. We will denote by{A ←→ B} the event that
some site inA is connected to some site inB by occupied bonds. Further, ifD contains
bothA andB, we let{A←→ B}D denote the event that such a connection occurs by a
path that lies entirely inD. Forx andy (distinct) points inZ2, let gx,y = g#

x,y(R, q) =
µ

q,R
# ({x ←→ y}) be the probability thatx andy belong to the same cluster. We will call

this object theconnectivity function. For integerq = 2, 3, . . . the connectivity function
is equal to (or proportional to) the spin–spin correlation function. In these cases, the
susceptibility and the average cluster size are also identified. For non-integerq, the
geometric quantities aredefinedto be the objects of interest. These quantities are the
subject of our next theorem which is a direct consequence of Theorem 1. The proof
below borrows heavily from the argument in [A].

Theorem 2. For self-dualq ≥ 1 random cluster models with vanishing percolation
probability, the functiongx,y has a power law lower bound. Explicitly, if0 is the origin
andL is the point(L, 0) on thex axis theng0,L ≥ 1

8L−2. Finally, the average cluster
size is infinite.

Proof. Since there is a unique limiting state then, in particular, the limiting free and
wired measures coincide. Consider theL × L square centered at the origin which we
denote bySL. In every configuration, there is either a left–right crossing by regular
bonds or a top–bottom crossing by dual bonds. By duality, in the limiting measure, these
probabilities are both one half.1 LettingLL denote the left edge andRL the right edge
of the square, this implies that

∑
x∈LL,y∈RL

gx,y ≥ 1

2
. (5)

Hence, for some (deterministic)x∗ ∈ LL andy∗ ∈ RL we have

gx∗,y∗ ≥ 1

2L2 . (6)

1 To ensure that this is strictly true, one must carefully construct the square so that it isexactlyself-dual.
However, for the arguments here, it is actually sufficient to observe that one of the probabilities must be greater
or equal to one half.
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This is, in essence the bound on the correlation function. For æsthetic purposes we will
show that a similar bound holds forg0,L but let us first attend to the susceptibility.
Following the logic of Eqs.(5) and (6), there is anx∗∗ in LL that is connected toRL by
a path insideSL with probability of orderL−1:

µq,R=√q({x∗∗ ←→ RL}SL
) ≥ 1

2L
. (7)

Regarding the pointx∗∗ as being at the center of a square of side 2L and using translation
invariance, we find

µq,R=√q({0←→ ∂S2L}) ≥ 1

2L
, (8)

i.e. XL ≡ µq,R=√q({0 ←→ ∂SL}) ≥ L−1. This immediately implies a divergent
susceptibility/cluster size. Indeed writing

X =
∑
x

g0,x =
∑
L

∑
x∈∂SL

g0,x ≥
∑
L

XL, (9)

this result follows. Finally, let us obtain our bound for the correlation function along
the coordinate axes. Consider the event({x∗∗ ←→ RL}SL

along with its mirror image
reflected along the midline of the square. I.e. a connection betweenLL andy∗∗ by a
path insideSL, wherey∗∗ = x∗∗ + L . If these two connections occur in tandem with a
top bottom crossing ofSL, we achieve a connection betweeny∗∗ andx∗∗. These events
are all positively correlated hence

g0,L = gy∗∗,x∗∗ ≥
(

1

2

)(
1

2L

)(
1

2L

)
. (10)

ut
It is clear that the above generalizes to other random cluster systems. However since

at present there are not too many examples of physically relevant models that satisfy all
of the required conditions, we will be content with a small selection.

The [r,s]-cubic (generalized Ashkin–Teller) model.Consider two copies ofZ2 with two
sets of Potts spins:τi ∈ {1, . . . r} andκi ∈ {1, . . . s}. It is convenient to envision the
model as two layers ofZ2, theτ -layer and theκ-layer with theτ -layer just above the
k-layer. In any case, the Hamiltonian is given by

H = −
∑
〈x,y〉

[aδτi ,τj
δκi ,κj

+ bδκi ,κj
+ cδτi ,τj

], (11)

where, as it turns out, we will be interested in the casesa, b, c ≥ 0.
The dual relations for this model (at least for integerr ands) were derived some time

ago in [dN,DR] by algebraic methods. (Of course the special caser = s = 2 was derived
much earlier starting, in fact, with [AT].) More recently, graphical representations for
this model have been discovered [CMI,PfV], (and see also [SS]) in which the duality is
manifest. Consider bond configurationsω = (ωτ , ωκ), i.e. separate bond configurations
in theτ - andκ-layers. As usual, we will start in finite volume. LetN(ωτ ) andN(ωκ)

denote the number of occupied bonds in theτ - andκ-layers respectively. LetN(ωτ ∨ωκ)
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denote the number of edges where at least one of theτ - or κ-layers have occupied bonds
and finally letN(ωτ ∧ ωκ) denote the number of edges where both theτ - andκ-layers
have occupied bonds. The graphical representation is defined by the weights

W(ω) = AN(ωτ∨ωκ)BN(ωτ∧ωκ)C[N(ωκ)−N(ωτ )]rC(ωτ )sC(ωκ ), (12)

whereC(ωτ ) andC(ωκ) are the number of connected components as in the usual random
cluster problems. (And typically must be augmented with some boundary conditions.)
The relationship betweenA, B andC anda, b andc is as follows:

A = [(eβb − 1)(eβc − 1)]
1
2 , (13a)

B = eβ(a+b+c) − eβb − eβc + 1

[(eβb − 1)(eβc − 1)]
1
2

, (13b)

C =
[
(eβb − 1)

(eβc − 1)

] 1
2

. (13c)

In order for the graphical representation to make sense, we requireb, c ≥ 0. However,
this is not the case witha but it turns out that the FKG property – which we will need
– only holds ifB ≥ A [BC] thus we actually require all couplings in Eq. (13) to be
ferromagnetic. Under these conditions for the caser = s, b = c it was shown in [CMI]
that there is a single ordering transition as the temperature is varied.

The dual model is defined straightforwardly: edges of the dual lattice in, say, the
τ -layer that are traversal to occupied bonds are considered vacant dual bonds, those
edges traversal to vacant bonds are the occupied dual bonds and similarly in theκ-layer.
The duality conditions are easily obtained from the weights in Eq. (12) (for the simple
reason that∨ ↔ ∧ under duality) and the result is:

A∗ =
√

rs

B
, (14a)

B∗ =
√

rs

A
, (14b)

C∗ =
√

r

s

1

C
. (14c)

The analog of Theorems 1 and 2 for this system are readily established:

Theorem 3. Consider the(r, s)-cubic model as described withA ≥ B. Let8(A, B, C)

denote the free energy similar to that defined in Eq. (4). Suppose that a self dual point:
(A, B, C) = (A∗, B∗, C∗), is a point of continuity for any first derivative of8. Then the
percolation probability in either layer vanishes. Letgτ

x,y andX τ denote the connectivity
function and average size of clusters in theτ -layer and similarly forgκ

x,y andX κ . Then

gτ
0,L ≥ 1

8L−2, X τ is infinite and similarly forgκ
x,y andX κ .

Proof. It is convenient, but not essential, to restrict attention to the “plane”C = C∗.
Indeed, following the argument below, it can be shown that continuity with respect to
A andB actually implies continuity with respect toC thus, for all intents and purposes,
theC-variable is out of the play. Continuity of the derivative with respect toB implies
that at the point(A, B, C), the density of “doubly occupied” bonds is independent of
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state for any translation invariant state. Add to this continuity of the derivative with
respect toA and (sinceN(ωτ ∨ ωκ) + N(ωτ ∧ ωκ) = N(ωτ ) + N(ωκ)) we may
conclude that the total bond density is the same in every translation invariant state.
However, we claim that this implies the same result for the separate densities. Indeed if
theτ -density were discontinuous, to keep the total density continuous would require a
compensating discontinuity in theκ-density. But these densities are positively correlated;
i.e. the discontinuities must go in the same direction. In particular, we could find a state
(at the point(A, B, C)) where both densities achieved their lower value and another
where they both obtain the upper value.

Constancy of the bond density implies no percolation in either layer at a self-dual
point which in turn implies unicity of the state. The rest of the argument follows mutatis
mutandis the proof of Theorem 2.ut

A loop related model.Our final example appeared in the context of loop models in
[CPS]. Letω denote a bond configuration onZ2 and letω̃ denote thecomplimentary
configuration on the dual lattice: If a bond ofω is occupied then so is the traversal bond
and similarly for vacancies. (In other words, the vacant bonds of the dual configuration are
the occupied bonds of the complimentary configuration.) The weights, in finite volume
are given by

V (ω) = LN(ω)sC(ω)sC(ω̃). (15)

We remark that from a technical perspective, unrelated boundary conditions forω and
ω̃ may be implemented. However it is natural to assert that if one is fully wired so is the
other and similarly with free boundary conditions. A derivation identical to the one for
the usual random cluster model shows that the dual model is the same model with the
parameter

L∗ = s2

L
(16)

along with the usual exchange of boundary conditions. For double-free or double-wired
(as well as other) boundary conditions, the FKG property follows easily:

Proposition 4. For free or wired boundary conditions, the random cluster models de-
fined by the weights in Eq. (15) withs ≥ 1 have the FKG property. Further, for these
boundary conditions, ifR1 ≥ R2 and s1 ≤ s2 the measure with parameters(R1, s1)

FKG dominates the one with parameters(R2, s2).

Proof. For the usual random cluster model, the FKG property follows from the FKG
lattice condition [FKG]: Letω1 andω2 denote two bond configurations,ω1 ∧ ω2 the
configuration of bonds occupied in bothω1 andω2 andω1∨ω2 the configuration of bonds
occupied in either. The lattice condition reads:µ(ω1 ∧ ω2)µ(ω1 ∨ ω2) ≥ µ(ω1)µ(ω2)

which follows becauseC(ω1 ∧ ω2) + C(ω1 ∨ ω2) ≥ C(ω1) + C(ω2) [ACCN]. In the
present case, we need only apply this argument twice, once toC(ω) and once toC(ω̃).
The FKG dominance follows by writing the one set of weights as an increasing function
times the other.ut
Remark.It would appear that the model under discussion is very close to theq = s2-
state random cluster model. This follows by noting that for the former,C(ω) andC(ω̃)

are identically distributed. Then, we may writesC(ω)+C(ω̃) = s2C(ω)sC(ω̃)−C(ω) and
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suppose that the “fluctuations”C(ω̃)−C(ω) are (thermodynamically) small. However,
at present there is no hard evidence of such an equivalence. On the other hand, the self-
dual point can in fact be realized as the endpoint of the self-dual line of the symmetric
(r = s,C = 1) cubic model corresponding toA→∞ andB → 0. Here theτ -bonds may
be taken to be the occupied bonds and theκ ’s to be the vacants. The conditionB = 0
ensures that they cannot coincide whileA = ∞ implies one bond or the other actually
is occupied.

Theorem 5. For the model defined by the weights in Eq. (15), the results of Theorem
3 apply; If R = s is a point of continuity for the bond density then the connectivity
function has a power law lower bound and the average cluster size is infinite.

Proof. Follows from the same arguments as the proofs of Theorems 1 and 2.ut
Remark.In this model, the results of [BC] also apply: If there is any point of discontinuity
for the bond density, that point must be the self dual point. (The cases of the Potts model
and the cubic model forr = s were the explicit subject of [BC]; the identical arguments
apply to the current case.) Thus, one way or another in all these systems the self-dual
points are points of “phase transitions”. For largeq, r, and/ors – at least in the integer
cases – it is straightforward to show that discontinuitiesdo occur. (Theorem IV.2 in
[CMI] covers all of these cases.)

The difficulty is the opposite cases: establishing continuity of the energy/bond –
density. For independent percolation (q = 1) this form of continuity is trivial. (By
contrast, establishing that this is the unique critical point and that the percolation density
is continuous involve quite intricate arguments [K,R].) Indeed, to the authors’knowledge,
the only non-trivial uniform system where this has been done with complete rigor is the
Ising magnet, here by exact solution [O]. However, the next section features systems
where the required continuity has been guaranteed by general arguments.

Quenched Potts Models

For the remainder of this paper, we will deal exclusively with theq-state Potts model
on Z

2 as defined by the Hamiltonian in Eq. (1); we will treat the case where theJx,y

are (non-negative) independent random variables. (And ultimately to prove theorems
along the lines of Theorems 1 and 2, we will need to focus on distributions that are
self-dual.) We strongly suspect that with only minimal labor the forthcoming results
could be extended to disordered versions of the various other models discussed in the
previous section. But here we will focus on the minimal case.

The approach in this work will be somewhat different from the usual mathematical
studies of disordered systems: rather than looking at properties that are “typical” of
configurations of couplings, we will construct, from the outset, thequenchedmeasure
– more precisely, the graphical representation thereof. When all the preliminaries are in
place, this has the advantage of allowing a derivation that is essentially indistinguishable
from the uniform cases. The disadvantage is that many of the “basic preliminaries” will
require some attention.

The quenched measure.Let 3 ⊂ Z
2 (or Z

d for the duration of the preliminaries)
denote a finite volume. In what follows, the inverse temperatureβ as well as the value
of q (≥ 1) will be regarded as fixed and hence will be suppressed notationally. Let
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η = {Jx,y | 〈x, y〉 ∈ 3} denote a set of couplings. Let # denote a boundary condition
on∂3. In general we will allow the boundary condition to depend on the realization of
couplings so we will write #(η). (For the case of continuous variablesJx,y we must also
stipulate that #(η) is ameasurablefunction.) We let〈−〉η

3;#(η)
denote the finite volume

Gibbs state (forthis realization of couplings andthis boundary condition.) Similarly,
we may consider the random cluster measuresµ

η

3;#(η)
(−). Our assumption about the

Jx,y is that they are i.i.d. non-negative variables. Letb(−) denote the product measure
for configurations of couplings andEb(−) the expectation with respect to this measure.
Then the quenched measures are defined as theb-averages of the “thermal” averages
according to〈−〉η

3;#(η)
andµ

η

3;#(η)
(−). Explicitly, if F(σx1, . . . σxk

) is a function of
spins (withx1, . . . xk ∈ 3) then the quenched average ofF is given by

〈F 〉3;# = Eb(〈F 〉η
3;#(η)

). (17a)

Similarly, for a bond eventA,

µ3;#(A) = Eb(µ
η

3;#(η)
(A)). (17b)

Most of our attention will be focused on the quenched random cluster measures as defined
in Eq. (17b) – or the infinite volume limits thereof. Our first proposition establishes some
FKG properties of these quenched measures:

Proposition 6. On finite3, let w andf denote the boundary conditions that are, re-
spectively wired and free for allη. Then the measuresµ3,w(−) andµ3,f (−) have the
FKG property (in the sense of positive correlations). Furthermore, for any# = #(η),
the wired measureµ3,w(−) FKG-dominates the measureµ3,#(−).

Proof. For the FKG property, we will just do the wired case; the free case is identical. Let
A andB denote increasing events (defined on the bonds of3). By the FKG properties
of the measuresµη

3;w(−),

µ
η

3;w(A ∩ B) ≥ µ
η

3;w(A)µ
η

3;w(B). (18)

Now we observe that for any increasing eventC, the quantityµη

3;w(C) is an increasing

function ofη. Indeed, ifη1 � η2 (meaningJ 1
x,y ≥ J 2

x,y for each bond in3) then the
random cluster measure with couplingsη1 FKG dominates the one with couplingsη2.
But then

µ3,w(A ∩ B) = Eb(µ
η

3;w(A ∩ B)) ≥ Eb(µ
η

3;w(A)µ
η

3;w(B)) ≥
Eb(µ

η

3;w(A))Eb(µ
η

3;w(B)) = µ3,w(A)µ3,w(B). (19)

The same works for the free case (and various other boundary conditions that are inde-
pendent ofη). Finally, the stated FKG-domination is an obvious consequence of the fact
that for eachη, the measureµη

3,w(−) FKG-dominates the measureµη

3,#(η)(−). ut
As a corollary, we obtain the existence of infinite volume limits as in the usual random

cluster cases:

Corollary. The infinite volume limitsµf (−) andµw(−) exist in the sense that if3k ↗
Z

d is any sequence of boxes with3k+1 ⊃ 3k then the limits ofµ3k,f
(−) andµ3k,w

(−)

exist and are independent of the sequence. These limiting measures are translation
invariant and invariant under exchange of coordinate axes.



362 L. Chayes, K. Shtengel

Proof. The argument is exactly as in the standard proofs and is a consequence of the
following observation: If31 ⊂ 32 then for any fixedη, the restriction ofµη

32,w
(−)

to 31 is FKG dominated by the wired measure in31. Thus the same statement holds
for the quenched average of these measures. A similar sort of domination, but in the
opposite direction is established for the free measures. The remainder of the proof is
now identical to the derivations for uniform random cluster models (with occasional
use of translation invariance and coordinate symmetry ofb(−)). Such proofs have been
written in many places (see e.g. [CMI], Theorem 3.3) and need not be repeated here.ut

We now demonstrate that absence of percolation is the correct criterion for unique-
ness. Our working definition of percolation is fairly standard:

Definition. Let3 ⊂ Z
d be a finite set that contains the origin. We define

P∞ = lim
3↗Zd

µ3,w(0←→ ∂3). (20)

We say there is percolation ifP∞ is not zero.

Remark.It is obvious, by the considerations of the corollary to Proposition 6 that this
limit exists. Further, ifP∞ vanishes, there is no percolation by any other criterion.
Finally it is not difficult to show thatP∞ is exactly the spontaneous magnetization in
the spin-system.

Next we establish the quenched analog of Theorem A.2 in [ACCN].

Proposition 9. If P∞ = 0 there is a unique limiting quenched random cluster measure
and a unique limiting quenched Gibbs measure.

Proof. Our proof will in essence be to show that any sequence of finite volume measures
converges to the free measure. LetA denote any local increasing event. Let3 denote
a large (finite) box – the bonds of which determine the eventA. Now consider a much
larger box4 along with some boundary condition #(η); the measureµ4,#(−) may be
thought of as “well along the way” towards the construction of some infinite volume
measure.

Since the percolation probability is assumed to vanish, it is clear that if4 is sufficiently
large, then, forε > 0,

µ4,#(∂3←→ ∂4) ≤ ε2. (21)

Thus ifD3,4 = {η | µη

4,#(η)(∂3←→ ∂4) > ε}, thenb(D3,4) < ε.

Now for anyη ∈ D3,4, with µ
η

4,#(η)-probability greater than 1− ε, there is a “ring”
(separating surface) of vacant bonds in the region between∂3 and∂4. Conditioning
to the “outermost” such ring gives us a measure which, in the interior of the ring, is
equivalent to free boundary conditions on the ring. For anyη, this in turn is dominated
by the measure with free boundary conditions on∂4 and dominates (in3) the measure
with free boundary conditions on∂3. Thus, forη ∈ D3,4,

(1− ε)[µη
3,f (A)] ≤ µ

η

4,#(η)(A) ≤ (1− ε)[µη
4,f (A)] + ε, (22)

and hence

(1− ε)[µ3,f (A)] ≤ µ4,#(A) ≤ (1− ε)[µ4,f (A)] + 2ε, (23)
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where the extraε comes from theη /∈ D3,4. From Eq. (23) it is easy to see that all
sequences of finite volume quenched measures converge to the limiting free measure.

The argument for the uniqueness of the quenched Gibbs state follows from the above
by noting that the thermal average of any local spin-function can be expressed as ex-
pectations of random cluster functions (which themselves are finite combinations of
increasing events.) This proves (a) the existence of a limiting〈−〉f (and for that matter a
limiting 〈−〉w) and (b) that if the magnetization vanishes that this is the unique limiting
state. ut

The final result we will need is the ergodic property for the free and wired quenched
random cluster measures.

Theorem 10. The measuresµw(−) andµf (−) are ergodic underZd translations.

Proof. We will do the wired case, the free case is nearly identical. LetA andB denote
local events assumed, without loss of generality, to be increasing. Letr ∈ Z

d and let
Tr(B) denote the eventB translated byr. We will show that limr→∞ µw(A∩Tr(B)) =
µw(A)µw(B).

By FKG and translation invariance we have, for anyr,

µw(A ∩ Tr(B)) ≥ µw(A)µw(B). (24)

Now consider|r| large – far larger than the scale of the regions that determine the events
A andB. Let s ≤ |r| be chosen so that3s , the box of sides centered at the origin
and its translate byr, which we denote byTr(3s), are disjoint but within a few lattice
spacings of each other. Finally, let us consider anL that is very large compared with
r; we will approximateµw(A ∩ Tr(B)) by µ3L,w(A ∩ Tr(B)). By the FKG property,
µ3L,w(A ∩ Tr(B)) is less than the corresponding probability given that all bonds on
the outside of3s andTr(3s) are occupied. But given these occupations, the measure
inside3s is equivalent to wired boundary conditions on3s and similarly forTr(3s).
Now for eachη, the wirings make these interior measures independent. Thus we have

µ
η
3L,w(A ∩ Tr(B)) ≤ µ

η
3s,w

(A)µ
η

Tr(3s),w
(Tr(B)). (25)

However as functions ofη, the two objects on the right of Eq. (25) are independent –
they take place on disjoint sets. It is clear thatµ

η

Tr(3s),w
(Tr(B)) averages toµ3s,w

(B)

and thus

µ3L,w(A ∩ Tr(B)) ≤ µ3s,w
(A)µ3s,w

(B). (26)

LettingL→∞ we get

µw(A ∩ Tr(B)) ≤ µ3s,w
(A)µ3s,w

(B), (27)

and hence

lim
r→∞µw(A ∩ Tr(B)) ≤ lim

s→∞µ3s,w
(A)µ3s,w

(B) = µw(A)µw(B). (28)

This completes the proof for the wired case; the free case works the same way. Here we
use decreasing events forA andB. ut
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Main results. We are ready for the disordered analogs of Theorems 1 and 2. However,
in this case, we will not need to hypothesize the required continuity: this is the central
subject of [AW1,AW2]. Let us first briefly discuss duality in the disordered case. In the
general setup, let

J ∗(J ) = log

[
1+ q

eJ − 1

]
. (29)

(I.e. eJ − 1= q/[eJ ∗ − 1]). Then what is needed, in the discrete case, to haveβ = 1 a
point of self-duality is thatb(Jx,y = J ) = b(Jx,y = J ∗(J )). (A similar statement holds
for continuous or other distributions.) Indeed, if this is the case we see that the probability
of bonds and dual bonds of equivalentstrengthare the same. Then, in finite volume, the
probabilities of two coupling configurations that are equivalent under duality (including
the usual exchange of boundary conditions) are equal.

Sometimes it is convenient to parameterise the distribution and allowβ to vary. For
example, suppose there are two bond valuesJ1 andJ2 with b(Jx,y = J1) = b(Jx,y =
J2) = 1/2. Since temperature is back in the problem, we may assume, without loss of
generality thatJ1 = 1 and writeJ2 = λ with 0 ≤ λ ≤ 1. Then, in theλ, β plane it is not
hard to see that the model with parametersλ, β is equivalent under duality to the one
with parametersλ∗, β∗ where

β∗ = log

[
1+ q

eλβ − 1

]
(30a)

and

λ∗ =
log

[
1+ q

eβ−1

]

log
[
1+ q

eλβ−1

] . (30b)

The system is self-dual(λ = λ∗, β = β∗) when(eβ − 1)(eλβ − 1) = q.

Theorem 1′. Consider a disordered Potts model of the type described at a self-dual
point. Then there is a unique limiting state with zero magnetization.

Proof. The proof is the same as the proof of Theorem 1 which we will recapitulate
for continuity. If the magnetization (percolation probability) were non-zero then in the
free boundary state, the percolation probability for dual bonds would be non-vanishing.
Proposition 6 and Theorem 10 allow us to use the result in [GKR]. Thus the free and
wired states would be distinguished. But these are FKG ordered states so it would
follow that the bond (and hence energy) density would differ in the two states implying
a discontinuity in the energy density (or bond density). This however, is contradicted
by the results of [AW1,AW2]. Proposition 9 connects the absence of magnetization to
uniqueness.ut
Theorem 2′. Under the hypotheses of Theorem1′, in the limiting state the quenched
correlation function satisfies

〈δσ0,σL
− 1

q
〉 ≥ 1

8

1

L2 .



2D Disordered Ferromagnets 365

Further the quenched susceptibility, defined as

X =
∑
y

〈δσ0,σy −
1

q
〉

is infinite.

Proof. Again this follows exactly the proof of Theorem 2 once we can conclude that
the probability of a square crossing is one half. Although this follows from self-duality
on “general principles” it is comforting to consider the squareL× L square,SL in the
middle of a finite (but much larger) square with wired boundary conditions on the top
and right and with free boundary conditions on the left and bottom. Then the quenched
crossing probability is manifestly exactly one half and the thermodynamic limit can be
taken, which gets us to our unique state, and we conclude that the probability in the
limiting state is one half.ut
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