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Long-range frustrating interactions, even if their strength is infinitesimal, can give rise to a dramatic
proliferation of ground or near-ground states. As a consequence, the ordering temperature can exhibit a
discontinuous drop as a function of the frustration. We have found this phenomenon in an entire class
of models: amphiphilic systems, Mott insulators, and gauge theories of metallic glasses, to name a few.

PACS numbers: 05.70.Jk, 05.40.–a, 64.60.Cn
A wide variety of systems display equilibrium domain
patterns characterized by periodic (or nearly periodic)
variations of an order parameter. These patterns are stabi-
lized by competing interactions. Linear arrays of stripes
and hexagonal arrays of bubbles are ubiquitous in thin
films of magnetic garnets and ferrofluids. Similar mor-
phologies are also seen in Langmuir films, membranes,
semiconductor surfaces, and many other systems in which
an otherwise uniform ground state is thwarted by a com-
peting “frustrating” interaction of one sort or another [1].
Lately, stripe structures have been detected [2] in doped
Mott insulators, including the high Tc superconductors:
the ordered states in these compounds consist of arrays
of charged stripes which form antiphase domain walls be-
tween antiferromagnetically ordered spin domains. In the
absence of a frustrating Coulomb interaction (i.e., for neu-
tral holes), a lightly doped Mott insulator is unstable to
phase separation into a hole-rich “metallic” phase and a
hole-deficient antiferromagnetic phase. Electrostatic re-
pulsions forbid macroscopic charge separation; the com-
promise leads to the formation of stripe morphologies on
an intermediate scale [3,4].

In this Letter, we explore the effect of fluctuations on
the periodic structures in a simple model of uniformly
frustrated O�n� spins. We study the problem using two
complementary approaches: a low temperature, spin-wave
expansion, and a perturbative expansion for large n,
which we carry through to order 1�n2. It is found that
the ordering temperature, Tc�Q�, as a function of the
strength of the frustrating interaction “Q” may, in certain
instances, satisfy the inequality

Tc�Q � 0� . lim
Q!0

Tc�Q� . (1)

In other words, an infinitesimal amount of frustration de-
presses the ordering temperature discontinuously. Specif-
ically, we shall argue on the basis of a low temperature
expansion about stripelike ground states, that, in the ab-
sence of lattice effects, Tc�Q� � 0 for n . 2 and Q . 0.
Lattice anisotropies elevate Tc�Q� from zero, but the dis-
continuity in Tc�Q� persists for 2 , d # 3 and n . 2.
For n � 2, the lower critical dimension is three, and here
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the finite temperature “ordered” phase exhibits power law
decay of correlations; the model with n � 2 has the same
hydrodynamic description as a smectic liquid crystal.

For low frustration Q, the behavior of the system is con-
trolled by the proximity to the “avoided critical tempera-
ture” Tc�Q � 0�. The following picture emerges of the
thermal evolution of the model, as summarized in Fig. 1:
At temperatures somewhat above Tc�Q � 0�, two large
lengths govern the exponential decay of correlations. As
the temperature is lowered below a crossover temperature
T1�Q� � Tc�Q � 0�, the system enters a low tempera-
ture regime characterized by an oscillatory spin structure
function with a single length controlling the exponen-
tial decay of correlations at long distances. T1�Q� is a
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FIG. 1. Schematic phase diagram: Q is the strength of the
frustration. For T . T1�Q� and T2�Q� . T . Tc�Q�, there are
two long lengths governing the fall of correlations. For T ,
T1�Q�, the spin-spin correlation function exhibits long distance
oscillatory structure. The thick black dot marks Tc�Q � 0�,
the ordering temperature in the absence of frustration; this is
what we term “the avoided critical point.” In the continuum
limit, Tc�Q . 0� � 0; lattice effects result in a nonzero, yet
small Tc�Q�.
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“disorder line” in the sense that as T approaches T1 from
below, the wavelength of the oscillations diverges, but
no phase transition occurs. As T is lowered further, the
wavelength decreases until, as T ! Tc�Q�, it smoothly
approaches the period of the ordered phase that appears
below Tc�Q�. However, an additional crossover occurs
at a temperature T2�Q� which lies between Tc�Q� and
T1�Q�, such that for T2�Q� ¿ T ¿ Tc�Q�, there are again
two long lengths characterizing the falloff of correlations,
where the new length is akin to the Josephson length in
the ordered phase of the unfrustrated system. This second
length can be seen only in the context of a 1�n expan-
sion. The existence of multiple correlation and modula-
tion lengths is a common feature of the physics of all the
various frustrated systems alluded to above [1]. A finite
size scaling analysis, which is a simple extension of an ar-
gument presented previously [5] allows us to identify the
longest length in the temperature regime above T1 and be-
low T2 as a “domain” size, R, within which the physics is
essentially that of the unfrustrated system, and to extract
the scaling relation (which is reproduced by the large n re-
sults)

R �
p
Q�j0 , (2)

where j0 � �Tc�Q � 0� 2 T �2n is the correlation length
in the unfrustrated system at temperature T .

The Coulomb frustrated ferromagnet.—As a concrete
example, we consider a system with a short-range ten-
dency to phase separation which is frustrated by a long-
range Coulomb interaction. A simple spin Hamiltonian
which represents these competing interactions is

H0 � 2
X
� �x,�y�

S� �x�S� �y� 1
Q
2

X
�xfi�y

S� �x�S� �y�
j �x 2 �yj

. (3)

Here, S� �x� is a coarse grained scalar variable which
represents the local charge density. Each site �x lies on
a cubic lattice (of size N) and represents a small region
of space in which S� �x� . 0, and S� �x� , 0 correspond to
the positively and negatively charged phases, respectively.
The first “ferromagnetic” term represents the short-range
(nearest-neighbor) tendency to phase separation, while the
second term is the Coulomb interaction. Nonlinear terms
in the full Hamiltonian typically fix the locally preferred
values of S� �x�. One may consider d fi 3 dimensional
variants wherein the spins lie on a hypercubic lattice, and
the Coulomb kernel in H0 is replaced by Qj �x 2 �yj22d .
H0 can be Fourier transformed as

H0 �
X

�k

J� �k� jS� �k�j2, (4)

where the kernel

J� �k� �
1
2

�Qk22 1 r0 1 k2 1 . . .� , (5)

where r0 � 22d, and the ellipsis represents higher order
terms in powers of k. We will neglect these terms for
now, as they are unimportant in the continuum; however,
we will need to include some of these terms when we
treat lattice effects since they are the ones that reduce the
full rotational symmetry of free space to the point group
symmetry of the lattice [6].

We now generalize this model, allowing the spins to
have n components, and replacing all two spin products
in H0 with a scalar product. We treat both the “soft-spin”
version of this model, in which we include the nonlinear
interaction

Hsoft � H0 1 u
X

�x

�S2� �x� 2 1�2 (6)

with u . 0, or the “hard-spin” version, which can be
viewed as the u ! ` limit of the soft-spin model, in
which we instead enforce the local constraint, jS� �x�j � 1.

When n $ 2, we can construct a set of ground-state
configurations which are simple spirals of the form

Sg� �x� � a cos� �kmin ? �x� 1 b sin� �kmin ? �x� , (7)

where �kmin denotes any wave vector which minimizes the
interaction kernel, J� �k�, in H0, and the prefactors satisfy

a ? b � 0; a ? a � b ? b � 1 . (8)

It is readily seen that such states are unstable to transverse
fluctuations. One may expand Hsoft to quadratic order
in fluctuations about the ground state DS� �x� � �S��x� 2

Sg� �x�� and estimate the thermal average of DS2� �x�. For
d � 3 and a vanishing lower cutoff e on jj �kj 2 j �kminjj,

��DS�2�
T

�
�n 2 2�

p
Q

4p2e
2

1
16p

Q1�4 ln jej . (9)

For n . 2, the leading order divergence is O�e21�,
independent of d; for XY spins (n � 2) the leading order
divergence, in 2 # d , 3, is O�ed23�. In d � 3, XY
spins exhibit power law correlations at low temperatures.
As we show, for small Q and n � 2, 3, these simple
spirals are the only possible ground states; for n $ 4 other
types of “multispiral” ground states are possible.

The three-dimensional spherical model.—To make the
phase diagram nontrivial, yet tractable, we may solve the
scalar spin model subject to the single mean spherical
constraint [1,7] X

�x

�S2� �x�� � N . (10)

It is known [8] that, in many respects, the spherical model
[9] is equivalent to the n ! ` limit of the O�n� model.
Here, the effective Hamiltonian is the same H0 defined
above, with r0 ! r , where r is a Lagrange multiplier
determined implicitly from the constraint equation (10).
In order that all modes have a bounded Boltzmann
weight it is necessary that r $ 22

p
Q. By equipartition,

�jS� �k�j2� � T �k2 1 Q�k2 1 r�21, so the mean spherical
constraint reads

1
T

�
Z
j �kj,L

d3k
�2p�3

1
k2 1 Qk22 1 r

, (11)
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where L is an ultraviolet cutoff. If this equation cannot
be satisfied for any value of r $ 22

p
Q, then the system

is at or below criticality.
Observe, from Eq. (11), that for Q . 0, the integral

diverges when r ! 22
p
Q. Thus, the constraint can be

satisfied for any nonzero T : Tc�Q . 0� � 0. By contrast,
when Q � 0 (which is the standard three-dimensional
short-range ferromagnet) Tc is nonzero. Thus a discon-
tinuity in Tc�Q� is seen to exist. However, even though
Tc � 0 for Q . 0, there is a genuine zero temperature
phase transition with the usual n ! ` critical exponents,
e.g., n � 1 and g � 2 in d � 3. As we shall see, lattice
effects elevate Tc�Q� but do not change the critical prop-
erties, nor, in d � 3, eliminate the discontinuity.

The pair correlator is given by

G� �x� �
1

�2p�3

Z
d3k �jS� �k�j2� exp�i �k ? �x�

�
T

2p2j �xj

Z `

0
dk

k3�Im	eikj �xj
�
�k2 1 a2� �k2 1 b2�

, (12)

where

a2, b2 �
r 7

p
r2 2 4Q
2

. (13)

When r . 2
p
Q, the integral can be readily evaluated by

applying the residue theorem to the poles lying on the
imaginary axis at k � 6ıa, 6ıb,

G� �x� �
T �b2e2bj�xj 2 a2e2aj �xj�

4pj �xj �b2 2 a2�
. (14)

Note the existence of two macroscopic correlation
lengths—a consequence of charge neutrality: In H0, the
spins portray charges and therefore must sum to zero,Z

G� �x� d3x �

*É Z
S� �x� d3x

É2+
� 0 . (15)

Whenever G is dominated by its long-distance behavior,
the integral can vanish only if G�x� contains positive and
negative contributions, as in Eq. (14). The latter integral
can be made to vanish only if G� �x� contains at least two
length scales. At high temperatures, the length

j1 � jRe	b
j21 � r21�2 �for r ¿ 2
p
Q � . (16)

plays the role of the correlation length of the canonical
short-range ferromagnet (i.e., with Q � 0). Note that
now, however, an additional correlation length appears:

j2 � jRe	a
j21 � Q21�2�j1 . (17)
Thus, j2 ¿ j1 in the limit of weak frustration, Q ø 1.
The analytic continuation of Eq. (14) to low temperatures,
r , 2

p
Q, is

G� �x� �
T

4p
exp�2a1j �xj�

3

"
�a2

2 2 a
2
1� sina2j �xj 1 2a1a2 cosa2j�xj

4a1a2j �xj

#
,

(18)
where a � a1 1 ıa2. The temperature T1, defined by
r�T � T1� � 2

p
Q, marks a dramatic crossover. At low
474
temperatures (T , T1), the system possesses a single
correlation length j � ja1j

21 � 2�r 1 2
p
Q �21�2 and

a single modulation length LD � 2p�ja2j � 4p�2r 1

2
p
Q �21�2; at high temperatures (T . T1), the system

possesses two distinct correlation lengths. When T �
T2

1 , the modulation length diverges as LD � �T1 2

T �21�2. Many quantities of interest (e.g., the specific heat
CV ) albeit analytic, display a crossover at T1�Q�. As Q
tends to zero, the crossover temperature T1�Q� tends to
Tc�Q � 0�. Thus despite the nonexistence, for Q � 01,
of a phase transition at or near Tc�Q � 0�, the system is
governed, in part, by the proximity to the avoided critical
temperature Tc�Q � 0�.

Avoided critical behavior to O�n22�.—We will now
examine corrections to the spherical limit. In a �1�n�
expansion [10], the soft term of constraint, �Hsoft 2

H0�, is taken to be small with u � O�1�n� . 0. The
perturbation theory in u is then selectively resummed
treating 1�n as the small parameter. As our unperturbed
Hamiltonian, we take H0 in Eq. (3) with a temperature
dependent chemical potential, r0 1 2

p
Q, which changes

sign at T � TMF , and is increasingly negative at low T .
The Dyson equation implies

G21� �k� � G21
0 � �k� 1 S� �k� , (19)

where, in the continuum limit, G21
0 � r0 1 k2 1 Qk22,

and �2S� �k�� is the self-energy. Tc, if it exists, is
determined implicitly from the solution of the equation

min
�k

	G21� �k�
 � 0 . (20)

To zeroth order in 1�n,

G21� �k� � r 1 k2 1 Qk22. (21)

Here r � r0 1 S0, where �2S0� denotes the self-
consistently computed O�n0� correction to the self-
energy. At low temperatures,

S0�Q, r� � S0�Q � 0, r � 0� 1
nu
p

s
Q

r 1 2
p
Q

,

(22)

where S0�Q � 0, r � 0� is the value of the O�n0� self-
energy at criticality for the standard three-dimensional
ferromagnet and the second term is the O�n0� self-energy
of a one-dimensional spin chain with a nearest-neighbor
exchange interaction proportional to 1�Q. Since S0 is
manifestly positive and diverges as r ! rmin � 22

p
Q,

Eq. (20) is satisfied only in the limit r0 � 2`; to this
order Tc�Q . 0� � 0. We have extended this analysis
[7] to O�n22�. By evaluating diagrams self-consistently,
one observes that all O�n21� and O�n22� self-energy
contributions are explicitly positive or cancel against more
divergent positive contributions. We outline here how
this is done to O�n21�. In Fig. 2, the �k-independent S0 .

0 is the single zeroth order [O�n0�] contribution. To
O�n21� there are two additional diagrams: SA� �k� and the
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FIG. 2. The self-energy corrections: The thin dashed lines
denote bare interaction, the thick dashed lines represent dressed
interactions (i.e., bare interactions screened by a geometric se-
ries of bubble diagrams), and the solid lines denote propagators.

�k-independent SB. Inserting, self-consistently, G� �k� �
�G21

0 � �k� 1 S0 1 SA� �k��21 into the integral expression
S0 �

R d3k
�2p�3 G� �k� automatically generates SB, as well as

higher order diagrams. This integral diverges as r !
rmin. The self-energy SA is positive and thus can only
further thwart any tendency to order. A similar analysis
[7] may be repeated to O�n22�.

All this indicates that to O�n22�, r � rmin is attainable
only at Tc � 0. Unfortunately, the results of the 1�n
expansion are not independent of Q for small Q; we
cannot safely draw conclusions concerning the Q ! 0
limit as there could, in principle, be a change in the
behavior of the system when Q � 1�n. Nevertheless,
the results strongly support the contention that the n ! `

limit is not singular, and that the spherical model captures
the important physics of the system for any large n.

Algebraic crossover.—We have also computed the pair
correlator to O�n21�. At very low temperatures, where
0 , r 1 2

p
Q ø

p
Q, the propagator at intermediate

momenta (1 ¿ j �kj ¿ Q1�4) is

G21� �k� � k2 1 �2S0��n2u�� j �kj 1 r 1 Qk22. (23)

We note that

G�j �xj� � j �xj22 for �J ø j �xj ø LD ø j

G�j �xj� � j �xj21 for j �xj ø �J ,
(24)

where the correlation length �J � n2u��2S0� is defined
in a way analogous to the Josephson length [11] in the
ordered phase of a system with Goldstone modes. Thus
at sufficiently low temperatures, T , T2, the (nonoscilla-
tory) spatial behavior of the correlators is again governed
by two length scales.

Lattice effects.—The fact that the lattice system has
discrete rather than continuous rotational symmetry is
reflected in higher order terms in powers of k, in the
kernel J� �k� in Eq. (5); the lowest order term of this sort
is l

Pd
a�1 k

4
a. The effects of these terms was determined

previously [6] for n ! `; they produce a Tc�Q . 0� .

0, but the avoided critical phenomena, i.e., the fact that
limQ!0 Tc�Q� , Tc�0�, survives for 2 , d # 3. More
generally, if we apply the above spin-wave analysis and
a Lindemann criterion for Tc, then the same calculation
leads to the conclusion that, once again, the large n results
are qualitatively correct for finite n.

Multispiral states.—Whenever n $ 2, any ground-
state configuration can be decomposed into Fourier com-
ponents, Sg� �x� �

PM
i�1	aicos� �k

�i�
min ? �x� 1 bisin� �k

�i�
min ?

�x�
, where �ki
min are chosen from the set of wave vectors

which minimize J� �k�. So long as these wave vectors are
“nondegenerate,” in the sense that the sum of any pair of
wave vectors, �ki

min 6 �k
j
min is not equal to the sum of any

other pair of wave vectors, and “incommensurate” in the
sense that for all i and j, 2� �ki

min 1 �k
j
min� is not equal to

a reciprocal lattice vector, it is straightforward to prove
[7] that the condition �Sg� �x��2 � 1 can be satisfied only
if M # n�2. (These conditions are always satisfied for
Q , 4.) Thus, for n # 3 only simple spiral (M � 1)
ground states are permitted, while for n � 4, a double
spiral saturates the bound.

Metallic glasses.—Metallic glasses have been modeled
by an SO�4� Landau-Ginzburg theory with a uniform frus-
trating background [12]—the fields represent projections
of the mass density onto a 4-sphere. The curvature k

of the 4-sphere is an inherent geometric frustration. It is
straightforward to demonstrate that in the minimal model
there is an avoided critical point: Tc�k . 0� vanishes,
while Tc�k � 0� is finite, lending support to [5].
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