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Dynamic and static properties of the invaded cluster algorithm
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Simulations of the two-dimensional Ising and three-state Potts models at their critical points are performed
using the invaded clustélC) algorithm. It is argued that observables measured on a sublattice dfs$inald
exhibit a crossover to Swendsen-W&&yV) behavior for sufficiently less than the lattice site and a scaling
form is proposed to describe the crossover phenomenon. It is found that the energy autocorrelation time
7.(I,L) for anl x| sublattice attains a maximum in the crossover region, and a dynamic ex@némt the
IC algorithm is defined according tmsymapLZ'C. Simulation results for the three-state model yielf
=0.346£0.002, which is smaller than values of the dynamic exponent found for the SW and Wolff algorithms
and also less than the Li-Sokal bound. The results are less conclusive for the Ising model, but it appears that
7'°<0.21 and possibly that, ,.~InL so thatz'°=0—similar to previous results for the SW and Wolff
algorithms.[S1063-651X%99)00902-2

PACS numbdrs): 05.50+q, 02.70.Lq

[. INTRODUCTION remainder of this paper we will continue to focus on the
Ising and three-state Potts models in two dimensions, since
Monte Carlo (MC) methods used to simulate classical these are the two most carefully studied cases.

spin systems, such as Potts models, fall primarily into two We now turn to the invaded clustdC) [7—10] algorithm,
broad classes: local-update algorithms and cluster algaa recent approach based on invasion percolation, for simulat-
rithms. Algorithms with local update rules, such as the Me-ing equilibrium critical points. This algorithm has the unique
tropolis algorithm, provide an efficient means of simulatingproperty that it “self-organizes” to the critical point. There-
these spin systems in noncritical regions. Near a seconqpre, no a priori knowledge of the critical temperature is
order phase transition, however, where long-range Co”elar‘equired; insteadT  is an output of the algorithm. In addi-
tions are present, relaxation times increase rapidly with syS;o, - que to an intrinsic negative-feedback mechanism, the
tem size. This phgnomenon, "”OWU as critical SIOW'.ng down|c algorithm equilibrates very quickly in the sense that ther-
may be characterized by a dynamic exporeatcording to modynamic quantities are measured to be near their equilib-

1z . L
7~L* wherer s the autocorrelation time measured at criti- ;| "y o< within a few MC step@fter starting, say, from
cality (roughly, the time necessary to generate a statlstlcallyé1 completely ordered state

independent configuratiorandL. s the system size. Local- Initial studies[8] seemed to indicate that the IC algorithm

date algorithms typically have values o$lightly greater
P gor ypically have vau 'gntly 9 uffers no critical slowing down for the Ising model. For

than 2 and, therefore, are impractical for simulating IargeS . X ;
systems near a critical point. bothd=2 andd=3, the integrated autocorrelation time

Cluster algorithms, on the other hand, such as th&V@s observed to decrease withwhile 7,, remained constant
Swendsen-WangSW) [1] algorithm, employ nonlocal up- (Within error bar$, wheree is the energy per spin, and is
date moves, flipping clusters of spins of linear extent comthe fraction of spins in the largest clustée omit the usual
parable to the correlation length. This technique significantly‘int” subscript on 7, since we deal almost exclusively with
reduces critical slowing down, and thus makes cluster algointegrated as opposed to exponential autocorrelation imes.
rithms preferable for simulating spin systems near a criticallhe decrease of, with L was also observed for three- and
phase transition. Recent numerical estimates of the SW dyeour-state Potts models in two dimensions, but in these cases
namic exponent for two-dimensional ferromagnetistate  critical slowing was evident in the behavior ef,. In Ref.
Potts models areS~0.25[2] for the Ising @=2) case and [8] the dynamic exponents were estimated ta e 0.28 for
25W~0.52[3] for q=3. gq=3 andz,,~0.63 forq=4, each of which is less than the

Although there currently exists no theoretical means byLi-Sokal bound orzSW for its respective value af.
which the dynamic exponent of a SW-type algorithm may be In this paper, we repeat these studiesder2 andg=3
calculated, there is a rigorous lower bound. The Li-Sokalin two dimensions using larger lattice sizes and an improved
[4-6] bound, as it has come to be known, states #¥¥f  method[3] of estimatingr. We also investigate thie depen-
= al v for g-state Potts models, wheteand v are the usual dence of the “specific-heat-like” quantitg(L)=LC%ar(e).
static critical exponents for the specific heat and correlatioriln the canonical ensembéss the specific heat, but the same
length, respectively. We note that the numerical values givers not true for the IC ensemb)eln addition, we measure
above are consistent with this bound, since, in two dimen<.(l,L), the integrated autocorrelation time for the energy
sions,a/v=0(In) for qg=2 anda/v=2/5 for g=3. For the  per spine(l,L) measured on ahx| sublattice of the whole
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LxL lattice, as well ac(l,L)=I%ar(s(l,L)). While the erased and the whole process is repeated. It can easily be

motivations for these experiments are discussed in more dghown that the SW algorithm satisfies detailed balance for
tail in Sec. Ill, the central idea is that we expect the negativéhe canonical ensemble. _
feedback to diminish for length scales L, leading to sub- The IC algorithm uses invasion percolation to generate
system behavior that differs from that of the whole systemthe spin clusters to be flipped. Given an initial spin configu-
We argue in Sec. Ill that, for sufficiently less tharl,, we  ration, the first step is to assign a random order to the bonds
should observe a crossover to SW behavior for observabledf the lattice. The bonds are then examined, and satisfied
measured on a sublattice of sizeUpon investigating the bonds occupied one at a time in this order. If a bond joining
crossover region, we find that(l,L) has a simple scaling two clusters is occupied, they are combined into one. Cluster
form and give an estimate of the length scale at wisidhL) ~ growth continues until some stopping condition is fulfilled.
crosses over to its SW analog, namely, the specific heat fdh this paper, we consider the topological spanning condi-
anl x| system. tion, which dictates that growth be stopped as soon as some
The results are less conclusive in the case of the dynamieluster winds around the system in one of thelirections.
variabler,(l,L), but it appears that crossover to SW behav-AS soon as spanning is detected, clustersiuding the span-
ior does occur and that the crossover length#gil,L) dif- ~ ning clustey are flipped exactly as in the SW algorithm,
fers from that forc(l,L) and is likely the same fay=2 and statistics are collected, bonds erased, and the process re-
g=3. In addition, the crossover phenomenon leads to #eated. _ _
maximum in7(1,L) asl is varied for a giver.. We argue in ~ T0 understand why the IC algorithm self-organizes to the
Sec. Ill that the dynamic exponerf of the IC algorithm is ~ critical point, we defingf to be the ratio of the number of
appropriately defined bWs,maX~LZIC' For the three-state occupleq bonds to the number of satisfied bonds when some
Potts model we give a numerical estimate ¥ that is cluster first spans the system. It h.as. peen afi“e?"lq
smaller than a recent estimdtg] of z° and also less than that, as the system sdgapproatTes |nI|2|ty, the dlst_nbutlon
the Li-Sokal bound orzS". For the Ising model the results _offapprogghes d function atp;=1-e ", V\{here,BC is the
are less conclusive, but it appears 1St 0.21 and possibly inverse critical temperature. Though not a rigorous proof, the

that 7, max~INL so thatz'“=0—similar to the state of affairs argument proceeds as follows. First, we note hats the

for the SW algorithn{2] threshold for percolation on the satisfied bonds of a critical
The remainder of this paper is organized as follows. In.Spin configuratiori11]. Thus, given a spin configuration that

Sec. Il we provide some background on the invaded cluster typical of the critical point, the fractiohof satisfied bonds

algorithm and discuss results of previous IC simulations. | fhat must be occupied to achieve spanning is clospgto

Sec. Il we discuss the crossover phenomenon in greater d econd, we observe that each iteration of the IC algorithm is

tail and propose a scaling form to relate observables me gﬁenrt;glreto Zzolfririitlogn()i{etrg?ioivgf ?I!]geO:'léhg; gvrlit#:nf.on a
sured on sublattices using the IC algorithm to corresponding ... » performing an | ; gor .
guantities for the SW algorithm. We describe our IC simu- r|t|(;al spin conf|gurat|(_)n IS eguwalent fo performing an it-
lations of the Ising and three-state Potts models in Sec. I\?ratlon of the SW algorithm with~p., and thus the system

and discuss the results in Sec. V. Section VI contains ouYVIII remain near the crltlcal_ point.
If, instead, the system is started in the low-temperature

conclusions. phase, the number of satisfied bonds will be larger than is
typical of T;. Therefore, a smaller fractiohwill need to be

Il. INVADED CLUSTER ALGORITHM occupied to achieve spanning. In this case, an IC iteration is
FOR CRITICAL POTTS MODELS equivalent to a SW iteration witp<p,, i.e., T>T., and

In order to understand how the IC algorithm works, Wetherefore the system Is pushed tow_a'Qdfrom below. Simi- .
first review the SW algorithm for Potts models. The ferro- !arly, if the system is started in the hlg_h-temperature phase, it
magneticg-state Potts Hamiltonian is IS pushed tpyvara'c f“’”.‘ above. Thus, in summary, a system
in a noncritical state is pushed toward criticality, while a
system in a critical state remains near criticality witffluc-
H=—> &, ., (2.1  tuating aboufT.
Gpn Because of this negative-feedback mechanism, the IC al-
gorithm self-organizes to the critical point with @opriori
where 0;€{0,1,...g—1} and the sum is over nearest- knowledge ofT.. Instead,T. is obtained as an output of the
neighbor spin pairs(Note that the Ising model is just the algorithm, via the relatiomf>=1—e‘1”c. For example, re-
special casg=2.) sults of IC simulations for the @ Ising model yield an esti-
Given an initial spin configuration, the SW algorithm pro- mate of T~ 1.1355[7] when extrapolated th =<, as com-
ceeds as follows: First, satisfied bonds are occupied witlpared to the exact result for an infinite system,
probability p=1—e~#, with B=1/T, where a bond joining =1.1346... .
two spinsi andj is defined to besatisfiedif and only if o Since every configuration generated by the IC algorithm
=oj. Unsatisfied bonds are never occupied. Next, clusterswustcontain a spanning cluster, it is clear that the algorithm
of spins connected by occupied bonds are identified, andoes not sample the canonical ensemble for a system of finite
each cluster is “flipped,” i.e., independently and uniformly volume. We refer to the stationary distribution sampled by
assigned a new random spin value frg@1,...g—1}. the IC algorithm as the IC ensemble. If we assume that as
(Note that a cluster can consist of a single gplinally, L—o the distribution off approaches & function atp. and
after statistics have been collected, occupied bonds arhat the volume fraction of the spanning cluster goes to zero,
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local observables such as internal energy and magnetizatiatard deviation of f scales as o(f)~L™° with b

will approach their infinite-volume critical values in this ~0.46 (0.30) for q=2 (3) as compared with &/

limit. Simulation result§7,8,10 support this hypothesis. For =1 (6/5), respectively. Since the SW algorithm samples

example, results of IC simulations for thel 2sing model  from the canonical ensemble and since we expect SW behav-

yield an estimate for the energy per spinsfs —1.706[7] ior for subsystems of size<L, crossover between the IC

when extrapolated th =9, as compared to the exact result and SW regimes should occur when the temperature uncer-

for an infinite systemg.=—1.707L ... . tainties from the two sources are comparable. Thus, for a
Some finite-volume fluctuations in the IC ensemble, how-givenL, we expect crossover at a subsystem kiagiven by

ever, are very different from those in the canonical ensembld .~ L"".

For example, in the canonical ensemble the quartity) Therefore, in light of the previous arguments, we hypoth-

=L%ar(e) is the specific heat which divergesla¥” at the  esize that the crossover from IC to SW behavior may be

critical point—a logarithmic divergence for the Ising model described by the scaling relationship

in two dimensions. In the IC ensemble, howevefl.) is

observed 7] to increase roughly linearly with for the 2d A1, L) =ASMDFA(I/LY), 3.1

Ising model. These differences can be traced to fluctuations

in the effective temperaturéneasured by) in the equilib-  whereA3Y(1) is any observable measured for the SW algo-

rium state. In the next section, we will examine more closelyrithm on anl x| sublattice immersed in an infinite system,

the roles played by temperature fluctuations and theA'“(l,L) is the same observable measured for the IC algo-

negative-feedback mechanism in determining the propertiesthm on anl x| sublattice of ar. X L lattice,F , is a scaling

of the IC algorithm. function with the property thaF,(x)—1 asx—0, andy
=hv. A word of caution concerning boundary conditions is
IIl. CROSSOVER TO SWENDSEN-WANG BEHAVIOR in order here. We definé\gW(L) to be an observable mea-

sured for the SW algorithm on dnX L lattice with periodic

As described in the preceding section, the negativepoundary conditions. Although we eXpe‘&iW(l)/AgW(l) to
feedback mechanism, inherent in the IC algorithm, drives theypnproach a constant for—c, the constant will in general
system to criticality by effectively adjusting the temperaturenot pe exactly 1 due to the different boundary conditions.
after each iteration. As previously mentioned, this mecha- | this paper, we also seek to define a meaningful dy-
nism leads to differences in thie dependence of several namic exponent'® for the IC algorithm that may be com-
dynamic and static quantities from that observed for the SWhared with exponents for other algorithms as well as with the
algorithm. Now, however, we consider dx| sublattice | j.Sokal bound. It is not obvious how to do this since the
within the L XL lattice. Since the energy of a subsystem ofenergy autocorrelation time, for the entire system was ob-
sizel <L is weakly correlated with that of the whole system, served 8] to decrease with. However, this is not the whole
the negative feedback mechanism is less effective for thgtory since we have argued above that correlations between
subsystem. A “warm” (relative to T;) subsystem in a gyccessive IC configurations should decay more slowly on
“cool” system will be further warmed by the next IC itera- |ength scale$<L. Since we would likeZ'® to describe thé.
tion. As a result, the energy autocorrelation time for the subgependence of the slowest mode, we suggest that it is the

system may be longer than for the whole system.  mayimum value ofr,(1,L) attained for a giverL that is
The observation that an iteration of the IC algorithm ise|evant. Thus we define® according to

equivalent to an iteration of the SW algorithm wigh= f
provides further insight into IC dynamics. In particular, if the o L2 (3.2
distribution off approaches @ function asL—, then any o max

finite subsystem of an infinite system will behave exactly agp, the next section, we describe simulations designed to mea-
it would under SW dynamics. In short, fdrsufficiently  gyrez!C and to test the scaling hypothe$ig. (3.1)] for the

smaller tharL, the subsystem does not “know” it is being gtatic variablec(l,L) as well as for the dynamic variable
updated by the IC and not the SW algorithm. Thus we expect (| ).

that, in the limitL—oo, all static and dynamic quantities
measured on a subsystem of finite sizeill approach the
values measured for the SW algorithm for a subsystem of the
same size. It also follows that, for fixdd there is a cross- We used the invaded cluster algorithm with the topologi-
over from SW to IC behavior at intermediate values.dfor  ca| spanning rule to simulate the two-dimensional Ising and
example, the integrated autocorrelation tim¢l,L) for the  three-state Potts models at their critical points for systems
energy per spin in a subsystem of slzehould initially in-  ranging in size front. =32 toL = 1024. Starting from a com-
crease withl as|* "~ for <L, reach a maximum, and then pletely ordered state, we performed a number of relaxation
decrease akis increased further into the range where thesteps to allow the system to reach equilibriunTagnd then
negative-feedback mechanism becomes significant. collected data for four observables: the energy per spin

We can estimate the length scale at which the crossovehe ratiof of occupied to satisfied bonds, the fractionof
occurs as follows. In the canonical ensemble, the temperatuspins in the largest cluster, and the susceptibjligiven by
uncertainty of the critical region scales with system diz&s  the sum of the squared cluster sizes divided by the total
ST~L ™ In the IC ensemble, however, temperature fluc-number of spins. In addition to measuring the mean value
tuations are governed by the negative-feedback mechanisamd variance for each observable, we also measured the au-
as described above. In R¢L0] it was found that the stan- tocorrelation function and used this to calculate integrated

IV. DESCRIPTION OF SIMULATIONS
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autocorrelation times. For a given observah)ehe (normal- TABLE I. c=L%ar(e) and o(f) for the IC algorithm for the
ized autocorrelation function at a given time stépcan  2d Ising and three-state Potts models, wherés the energy per
be calculated from a sequence of MC measurements spin,f is the ratio of occupied to satisfied bonds, &nid the lattice

{A(j);j=1, ... n} according to size.
ot _ L c(q=2) c(@=3) o(f)(@=2) o(f)(q=3)
121 [AG) = (A ITAG+1) = (A)] 32 32883 50674 0.051004)  0.069914)
Fa(t)= A , (4] 64  6.0386)  11.2397) 0.036573)  0.055082)
> [AG)— (AT 128  11.872) 26.242) 0.026263)  0.043673)
=1 256 24.038) 63.01) 0.018864)  0.034824)
. 512  48.43) 155.06) 0.013527)  0.027819)
where(A) is the mean value oA. 1024  99.16) 390(2) 0.009774)  0.02231)
The integrated autocorrelation time for the observabie
defined by
1 k
1 2 =22 4.4
ms§+21¢m. (4.2) 7 227 “-4
t=1

and its standard error
Obviously, in practice, the sum must be truncated at some
reasonable value af Following the recommendation of Ref.
[3], we define

Z;UQJE?
k(k—1)

4.9

o(Tm)
A
+Zl T (43 and report the resutt, = 7= o-(7).
For bothq=2 andq=3, one long run was initially per-

and choose the cutoff, to be the smallest integer such that formed for each lattice siz¢, and the blocking method

t5=>rera(t}), where x is a constant whose value will be implemented as just describeéd@hree independent runs were

discussed shortly. If the autocorrelation function has the ScaEerformed for the casg=2, L=1024.) The number of
ing form TA(t) = G(t/ 7ay), Where 7, is the exponential locks used ranged from 100 far=32 down to 10 forL

autocorrelation time, then choosing the cutoff in this manner,_ 1024, and the numben of MC steps per black ranged
L o ) ; from 5x 10° to 1X 10°. In each case) was greater than the
will insure that7a(tx) is proportional tor, . Thus estimates

: . ) N longest observed autocorrelation time for the given system
of z, will not be biased by truncating the sumtatt, . by at least a factor of f0(10* for the smaller lattices

) N \
One also would like the values oj(tx) to approximate  hereby making the assumption of independent blocks, used
Ta as accurately and precisely as possible, and here there i@ ca|culating the error bars, a reasonably good one. The
tradeoff between excluding noise and including as much of,ymper of equilibration steps performed at the beginning of
the signal as possible. In R¢B] it is shown that ifl'a(t) i gach run also exceeded the longest observiy a factor of
roughly a single exponential, then choosing a valuex of 10% in all cases.
the range 4-6 would achieve the optimal compromise for | these initial runs, we collected data for subsystem sizes
n/z in the range 16-1C° that we used in our simulations. | €{1,2,4 ... L/2} as well as for the whole system=L).
However, althougH’A(t) is well approximated by a single | order to estimate'® as defined in Eq(3.2), we sought to
exponential in the case of the SW algorithm, thls is not truéyptain an accurate value fat maL) for eachL. Therefore,
for the IC algorithm[8]. For this reason, and since we are gnce we had learned, from the initial runs, the approximate
willing to accept slightly larger statistical uncertainties in subsystem sizk,. at whichr,(I,L) attains a maximum, we
order to reduce systematic errors, we used10 in all our  then "performed between one and three additional indepen-
calculations. _ o dent runs for each system and collected data for evenly
In light of the discussion in Sec. lll, we also collected spaced values dfnear our rough estimate bf,,,. The entire
data for several subsystem sizes fpr ebchere We concen-  ayneriment required about five months of CPU time on a
trated on the energy per spin, measurifg(l,L)),  single processor of a dual-processor 266MHz Pentium Il
var(e(l,L)), and7,(l,L) for subsystem sizes ranging from | jnx workstation. We used the machine-supplied random
I=1 to|=L/2 for eachL. The subsystems are squares allyymper generator coupled with a shuffling procedure as de-

Il
N|

Ta(th)

sharing a single corner of the lattice. scribed in Ref[10].
Error bars on all quantities were calculated using the
blocking method. Each run was partitioned iktoontiguous V. DISCUSSION OF RESULTS

blocks ofn MC steps each, and the individual blocks treated

as independent runs. Although this is an approximation, it The first quantity we consider is the static variab(é.)
will be a good one provided that is large compared to the =L%var(e) (see Table)l In the canonical ensemble(L) is
system’s longest relaxation time. As an example of thethe specific heat which diverges, at the critical point, ds In
blocking method, we obtain the value for, say, by first  for q=2 and ad *” with a/v=2/5 for q=3. We see from
calculatingrf,? for each block. We then calculate the mean Fig. 1, however, that the situation is quite different for the IC
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FIG. 1. logc(L) vs logoL for the IC algorithm, plotted for the
2d Ising and three-state Potts models. Hecél)=L%ar(e),
wheree is the energy per spin aridis the lattice size. The solid
(dashedl line is a linear fit to theg=2 (q=3) data for 12&L
<1024 (256<L=<1024) and has slope 1.020.313.

ensemble, as first observed in REf]. We assume that the
asymptotic behavior is given by a power lajL)~L"Y and
fit a line to a plot of logyc(L) vs logoL as shown in Fig. 1.
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TABLE II. Integrated autocorrelation times for the IC algorithm
for the 2d Ising and three-state Potts modedsis the energy per
spin,f is the ratio of occupied to satisfied bondsis the fraction of
spins in the largest clustey,is the susceptibility, and is the lattice
size.

o} L Te T Tm Ty

2 32 0.5461) 0.18287) 0.8573) 0.7982)
2 64 0.4992) 0.127%7) 0.8533) 0.7953)
2 128 0.4482) 0.0845%7) 0.8593) 0.8023)
2 256 0.3843) 0.07Q3) 0.8698) 0.8077)
2 512 0.3083) 0.0653) 0.881) 0.821)
2 1024 0.26(B) 0.0332) 0.901) 0.831)
3 32 0.8322) 0.18355) 1.3034) 1.2084)
3 64 0.8212) 0.17424) 1.4354) 1.3514)
3 128 0.7582) 0.13695) 1.6297) 1.5527)
3 256 0.6383) 0.10718) 1.891) 1.81(1)
3 512 0.5165) 0.0791) 2.133) 2.083)
3 1024 0.40%) 0.0531) 2.395) 2.325)

proximately constant for the range bfvalues used in our
simulations. These results are in agreement with initial ob-
servationg 7] that led to speculation of no critical slowing.
Forg=3, however, we observe critical slowing in the behav-
ior of 7, and 7,. Fits to the data forL,=64 yield z,

Note that where error bars are not visible they are smaller™ 0-1091t0-00_4 (CL=25%) and z,=0.206-0.005 (CL
than the symbol height. As is always the case when trying to-20%), but it seems likely that,,~7, in the asymptotic

ascertain asymptotic behavior from simulations at fitite

limit. We note that the value dof,, is somewhat smaller than

there can be some debate as to which, if any, data poini§€ previous estimate,~0.28[8]. .
should be omitted from the fit because of corrections to scal- Next we considerr.(I,L), the integrated autocorrelation

ing. Here and elsewhere in our analysis, we proceed by drop:

ping points one at a time in order of increasingintil either
(i) a reasonably good fit is obtainedi) the fit ceases to
improve significantly with further cuts, ofiii) we are left

with only three data points. We employ standard, weighted

x? fitting, using the confidence levéCL) as our goodness-
of-fit measure, and consider a fit to be “reasonably good” if
CL=10%.[The confidence level is the probability thayxa

as poor as the measured value would occur, assuming that °
the underlying model is correct and that the measurement °

errors are normally distributefil2]. (Note that the confi-
dence level is denoted by the symlifplin Ref.[12].)]

For the Ising model, a fit to the last four data points (
=128) yieldsw=1.020+0.003 (CL=16%) in agreement
with the observationv~1 reported in Ref(7]. In the case of

ime for the energy per spia(l,L) measured on ahX|
sublattice of the wholé XL lattice. As expected from the

05 I I I I

log;p T
[ ]

-1.0 -

the three-state Potts model, a fit to the last three points gives
w=1.313+0.008, but, because of the poor confidence level
(2%) and the upward curvature visible in the data, this value
should probably just be regarded as a lower bounavdar
g=3. We emphasize that the error bars on these and subse-
guent exponent estimates are purely statistical in nature and
do not reflect the uncertainty of extrapolating to infinite sys-
tem size.

Turning now to the dynamic variablésee Table I, we

1.0

1.5

2.0
log,, L

25

3.0

35

plot the logarithms of the autocorrelation times, 7;, 7,
andr, versus loggl for =2 in Fig. 2 and forg=3 in Fig.
3. Forq=2 we find thatr, and 7; decrease with. (perhaps
in a rather complicated fashipand r,, and =, remain ap-

FIG. 2. logor vs logeL for the IC algorithm, wherer is the
integrated autocorrelation time and<82 <1024 is the lattice size,
plotted for the 2 Ising model for the energy per spin the ratiof
of occupied to satisfied bonds, the fractiorof spins in the largest
cluster, and the susceptibility.
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FIG. 3. logor vs logoL for the IC algorithm, wherer is the
integrated autocorrelation time and<8R <1024 is the lattice size,
plotted for the 2 three-state Potts model for the energy per gpin
the ratiof of occupied to satisfied bonds, the fractiorof spins in
the largest cluster, and the susceptibility

FIG. 5. The integrated autocorrelation timg(l,L) for the en-
ergy per spine(l,L) measured on ahXx| sublattice of anL XL
lattice, plotted vs logyl for L=128,256,1024 for the IC algorithm
in the case of the @ three-state Potts model.

discussion in Sec. Ill, we see thatlds increased for a given @ CL of 50% or greater was obtained afid the values of

L, 7.(I,L) increases, reaches a maximum, and then de7emax@Ndlmaythat were obtained by dropping an additional
creases, as shown in Fig. 4 fqr=2 and in Fig. 5 forq  Point remained within error bars of the current best-fit val-

=3. ues. _ .
To find 7, mae and its locationl ., for a givenL (see We then attempted to determine the dynamic exponent

Table I1l), we fit a parabola to the region of the curve nearZ*, defined in Eq.(3.2, by fitting a line to a plot of
the maximum. In order to do this objectively, we began, forl99107: max{L) Versus logl for =2 andq=3. The results
eachL, by omitting the data point with the smallest value of are shown in Fig. 6 along with resuilts faf" taken from
7, and performing the fit. We then dropped the point with theBaillie and Coddington(2] for =2 and from Salas and

next smallestr, , refit, and continued in this fashion unti) ~ Sokal[3] for g=3. We note that the increase of na(L)
with L for g=2 is the first observation of critical slowing for

5 I I 1 I 1 I
o I=128 TABLE lll. |, and autocorrelation times for theldsing and
o 1=256 three-state Potts models.is the lattice sizel,, and Hfmax are the
+L v L=1024 | location and height, respectively, of the maximum in Figs. 4 and 5.
W and 7" are the integrated energy autocorrelation times for
the SW and Wolff algorithms.
b4

3L T i q L - 7 e SWa AWolft b
= : o ¢ 2 32 8365  1.9623) 4.0165)  1.8153)
e 5 p v 2 64 13.898) 2.3192) 4.901) 2.2256)

i 2 128 21.14 2.6947) 5872 2.65412)
¥ § ° . 2 256  32.13) 3.1336) 6.873) 3.07624)
2 512  51.76) 3.601) 8.0(1)
F 7 2 1024 75.99) 3.902)
v
° . v 3 32 9.537) 4.2068) 13.286) 8.764)
0 : . ' . ' ' 3 64  15.92) 5551)  19.51) 13.0816)
00 05 10 15 20 25 30 35 3 128 25.12) 7170 28.51) 10.53)
log,, ! 3 256  37.03) 9.0037) 40.82) 27.718)
3 512  63.29) 11.465) 58.56)

FIG. 4. The integrated autocorrelation timg(l,L) for the en- 3 1024 901 14.51) 82.22)

ergy per spine(l,L) measured on ahXx| sublattice of anL XL
lattice, plotted vs logl for L=128,256,1024 for the IC algorithm 3 rom Ref.[2] for =2 and Ref[3] for q=3.
in the case of the @ Ising model. bFrom Ref.[2].
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FIG. 6. logyr>" and log 7. for the 2d Ising and three-state FIG. 7. logoo(f) vs logL for the IC algorithm, plotted for the

Potts models:-f"" is the integrated energy autocorrelation time for 2d Ising and three-state Potts modeigf) is the standard devia-

the Swendsen-Wang algorithm on bix L lattice andT'sC,max is the  tion in the ratiof of occupied to satisfied bonds ahds the lattice

height of the maximum in Figs. 4 and 5. The solid lines are linearsize. The soliddashed line is a linear fit to theg=2 (q=3) data

fits to the datasee text for further details for 32<L=<1024 (128<L=<1024) and has slope—0.4781
(—0.3252).

the IC algorithm in the case of the Ising model.

For g=2 the autocorrelation times for the IC algorithm algorithm with 128<L. <1024 (CL=80%). For the Wolff
are nearly the same as for the Wolff algorithm and sma"eralgorithm 2Wolf— 9 57+ 0.01 was reported in Rel2]. While
that; thosebforr:he ?W a'go“th”? by a_lfa<|:torbof aboutsee q there is no guarantee thaf .« is the system’s longest re-
gtatoea”;l))(')wg{rtla?nl/_ C()elﬂznn;ngg Iosb?gm:dr )flo? tf]((:eulrce:. (’;‘a?;)?orlaxation time, it is interesting that® is significantly smaller

SW i- =
g=2. The line shown in the figure, having slop€0.21, is than 2 and also less than the Li-Sokal boureP{=a/»

X : ) =2/5).
the best fit fol.= 64, but it clearly does not describe the data .
' 4 Now we proceed to test the scaling hypothé&g. (3.1)]
very well. The best power-law fit to the SW data for<Sd presented in Sec. Ill. In order to do this, we first need to

<512 (also shown in the figudeyields z'°~0.25 as reported
in Ref.[2]. Although the fit is considerably better than that
for the IC data, the CL is still poor<0.1%), and the better
fit might be primarily due to the absence of data for
=1024 in the SW case.

determine the exponet defined byo(f)~L°. We plot
log,qo(f) versus loggL in Fig. 7 (the data are listed in Table
I) for q=2 andg=3 along with the best-fit lines. A fit to all
six q=2 points yields b=0.4781-0.0006 (Cl=54%),

. . . while for =3 a good fit (Cl=68%) is obtained for the last
Since it has been suggestiid] that 7" increases loga- o, - poir?ts ¢>g 128), (resulting )in b=0.3252+ 0.0009.

rithmi_cally with L .rathe.r than as a power af, Baillie and These results are consistent with previous estimlaes
Coddington also fit their data to a logarithm with somewhat We now test Eq.(3.) for the variable c'(I,L)

better results (CE 13%). For the IC algorithm, a logarith- —|d ; SW SW
S . ) X =|%ar(e(l,L)). Sincecy (I)~Inl and we expect;™(l)
mic fit is still atrocious, albeit somewhat better than the~c§“"’(|) [recallcSW(I) is the specific heat for an| lattice

power law. Later in this section we consider the possibility . L o . o
that we have underestimated the error bars op,. which,  With periodic boundary conditions ar3"Y(1) is the specific

of course, could result in a poor fit even if the underlying "€at for el‘gl X1 sublattice immersed in an infinite systém
model had been correctly identified. Still, even the generalV® Plot c™(I,L)/logyd versusl/L” in Fig. 8, wherey=b
trend in the data is difficult to discern, indicating that correc-=0-4781 for the Ising model(=1). The observed data col-
tions to scaling are probably significant for the system size4@PSe provides strong support for Eg.1). For q=3, how-
studied here. Therefore, we conclude that high-precision datg/e". it was found in Ref[3] that the asymptotic form
for larger lattices are needed before a more definitive stateko (1)~ 1“" does not describe the SW data very well for the

ment can be made concerning the asymptotic behavior denge of lattice sizes considered here. Therefore, we cannot

s max. expect Eq(3.1) to provide a good description of the IC data
'For the three-state model, however, the picture appears i the asymptotic form is used foe2"(1). Nevertheless, if

be somewhat clearer. Although a slight downward curvaturave plot ¢'“(I ,L)/cg™(l) versusl/LY, using the measured

in the data is visible in Fig. 6, a good fit (G169%) to a  values ofc3"/(I) from Ref.[3] and y=br=0.2711 forq

power law is obtained for 256L<1024, yielding z'° =3, data collapse is apparent in Fig. 9, although perhaps a

=0.346+0.002. This is to be compared with the value of bit less convincing than for the Ising case.

sz:O.SlEr: 0.006 obtained by Salas and Sokal for the SW We note that the curve in Fig. 9 extrapolates to about 0.85



1432 K. MORIARTY, J.
4.0 T T T 1
»
o [=32
35 o [=64 i
v L[=128
v [=256
- 30F o =512 .
S s [=1024
B o
= 25} -
3
5
<
20 | o .
‘D
1.5 -’/ -
Pﬂ
10 1 1 1 1
0 2 4 6 8 10
1y

FIG. 8. ¢'°(1,L)/log,d vs /LY for the IC algorithm, plotted for
the 2d Ising model for 3ZL=<1024 and &I=<L/4. Here,
c'®(1,L)=I%ar(e(l,L)), wheres(l,L) is the energy per spin mea-
sured on an X| sublattice of anL XL lattice andy=bwv, where
b=0.4781 is minus the slope of the solid line in Fig. 7 and1 is
the correlation-length exponent.

on the vertical axis fot/LY=0. As previously mentioned,

we would expect this value to be 1 if SW data were collecte
for subsystems immersed in larger systems so as to repr
duce the boundary conditions applied to the IC subsystem

Thus we conclude that our scaling hypotheldis. (3.1)]
does appear to be valid for the variamé&(l,L) for q=2
andg=3.

30 I I I I I 1 I
o [=32
o [=64
25r v [=128 o
v L=256
= o L=512
5 200 = L=1024 .
bo
':1\ o
o 15} -
< n
v
a
1.0 |- ve -
S
05 1 1 1 1 1 1 1

nyr

FIG. 9. ¢'°(1,L)/c5"(1) vs /LY for the IC algorithm, plotted for
the 2d three-state Potts model for 82.<1024 and &I=<L/4.
Here,c'(l,L)=I%ar(s(l,L)), wheree(l,L) is the energy per spin
measured on ahx| sublattice of anL X L lattice, c5*(1) is the
specific heat for anXx| lattice, y=bw is the crossover exponent,
b=0.3252 is minus the slope of the dashed line in Fig. 7, and
=5/6 is the correlation-length exponent.
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FIG. 10. logd max Vs logL for the IC algorithm, plotted for the
2d Ising and three-state Potts modedig,, is the location of the
maximum in Figs. 4 and 5 antl is the lattice size. The solid
(dashed line is a linear fit to theq=2 (q=3) data for 64<L
<1024 and has slope 0.6176.626.

Although the static quantitg'(1,L) seems to be well
escribed by Eq(3.1) with y=bw, the same is not true for
he dynamic quantity-.(I,L). This is easy to see, since Eg.

;1'3.1) predicts that the locatioh,,, of the maximum in Figs.

[ and 5 should scale d9'; however, the plots of logl max
versus logel shown in Fig. 10 reveal that this is not the
case—at least not if=bv is required. For botlg=2 and
g= 3 the slope of the best-fit line for 4L <1024, shown in
Fig. 10, is approximately 0.62, although the confidence lev-
els are poor. Unlike the situation encountered earlier in this
section, when fittingr, .« to @ power law inL, the points
seem to be scattered randomly about the best-fit line. There-
fore, we suspect that,,, does scale as a power bof but that
our error bars on,,, are somewhat underestimated.

There are three aspects of our analysis that could lead to
underestimates in the error bars @0, and I 5. First,
there always exists the possibility that the assumption of nor-
mally distributed measurement errors is not valid. Second,
the blocking method, used to calculate error bars on values
of r.(I,L), treats successive blocks as if they were indepen-
dent runs, an approximation that may not be entirely justified
even though the block length was greater thaﬁr;gax in
all cases. Finally, and probably most importantly, the error
bars onr, max andl p, resulting from the weighteg? fit to
a parabola are calculated by assuming that the measurements
of 7,(I,L) at different values of for a givenL are indepen-
dent. This is clearly not a good approximation, since all of
the sublattices extend outward from the same corner of the
L XL lattice. Therefore, all the spins in a givéx| sub-
system are also contained in every larger subsystem, and
thus subsystems for comparable values afe highly corre-
lated.

In any case, it is still clear that Eq3.1) with y=bv
cannot explain the data fet, . Since the logic leading to the
scaling form seems sound, we hypothesize that Bdl)
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FIG. 11. 75(1,L)/72%(1) vs I/LY for the 2d Ising model for
32<L <1024 and &I<L/4. 7'(l,L) is the quantity plotted in Fig.

FIG. 12. 75(1,L)/72%(1) vs I/LY for the 2d three-state Potts
model for 32<L.<1024 and &I<L/4.7°(I,L) is the quantity

4, ’Tf’\g(l) is the integrated energy autocorrelation time for the plotted in Fig. 5,7?{)"0) is the integrated energy autocorrelation

Swendsen-Wang algorithm on &% lattice, andy=0.6176 is the

time for the Swendsen-Wang algorithm on laxl lattice, andy

slope of the solid line in Fig. 10. =0.626 is the slope of the dashed line in Fig. 10.
does hold forr, but that the crossover length fay is dif-
ferent from that forc so thaty#bwv in the case ofr,. This
seems plausible, since there is ariori reason why the oey i s i -
thermodynamic argument by which we arrived yat by sublattice immersed in an infinite systew, (_I,L) is the
must apply to the dynamic quantity, . Nevertheless, if Eq. Same observable measured for the IC algorithm ori>ah
(3.1) still holds for ,, we can obtain the crossover exponentsublattice of anL XL lattice, andF, is a scaling function
y from Fig. 10 as described above. with the property thaF,(x)—1 asx—0. We have argued
To test our scaling hypothesis for,, we plot thatthe crossover exponenshould equal tdhv, wherev is
Ts(l,L)/TS’\SIU) versusl/LY with y=0.6176 §=0.626) for the usual correlation-length exponent abds defined by
g=2 (q=3) in Fig. 11(Fig. 12. The values of,-i‘gvu) are o(f)~L~° with f the ratio of occupied to satisfied bonds.
taken from Ref[2] for q=2 and from Ref[3] for q=3. The  We find that the proposed scaling form witk-bv provides
data collapse is not terribly convincing in either case, but good description of our data for the static variat(g L),
seems too good to completely rule out E8.1) as the cor- but is less successful for the dynamic variablél,L), even
rect asymptotic form. The fact that both curves extrapolate tdf the possibilityy#bv is admitted.
about 1 forl/LY=0 provides further support for the scaling  In addition, we define the dynamic exponedft for the
hypothesis. Still, it appears that additional tests are needed tovaded cluster algorithm in terms of the maximum value

confirm or disprove Eq(3.1) for 7, . T, max attained for a giverL according tOTS’maX’VLZIC. For
q=3 we find thatz'°=0.346+0.002, which is smaller than
recent numerical estimates af"/ and 2V and also less
than the Li-Sokal bound or®"W. For =2 we also observe
Using the invaded clustefiC) algorithm with the topo-  critical slowing, but thel dependence of, . iS less clear.
logical spanning rule, we simulated the critical Ising andj; gppears from our simulations tha2€<0.21 and possibly
three-state Potts models in two dimensions for systems rangnat 7y ma—INL(Z€=0), but high precision data for larger
ing in size fromL =32 toL =1024. In accord with previous |attices are needed before a more definitive statement can be

and dynamic quantities is very different from that observedgsjng model. ’

for the Swendsen-Wan@W) algorithm which samples from
the canonical ensemble. In particular, the quantfy)
=LY%ar(e) is not proportional to the specific heat and the
integrated autocorrelation time, for the energy per spin
decreases witl.. However, we find that the corresponding  We are grateful to Yongsoo Choi for providing the origi-
quantities7,(I,L) andc(l,L), measured for a subsystem of nal code for the invaded cluster algorithm, and to Robert
sizel, exhibit a crossover to SW behavior fbsufficiently =~ Guyer for useful discussions concerning the analysis. This
less tharl. work was supported in part by NSF Grant No. DMR-
To describe the crossover phenomenon, we propose tH#32898 and NSA Grant No. MDA 904-98-1-0518.

scaling formA'S(I,L)=ASW(1)FA(I/LY), where ASY(1) is
any observable measured for the SW algorithm on >ah

VI. CONCLUSION
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