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Replica-exchange algorithm and results for the three-dimensional random field Ising model
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The random field Ising model with Gaussian disorder is studied using a different Monte Carlo algorithm.
The algorithm combines the advantages of the replica-exchange method and the two-replica cluster method and
is much more efficient than the Metropolis algorithm for some disorder realizations. Three-dimensional sys-
tems of size 243 are studied. Each realization of disorder is simulated at a value of temperature and uniform
field that is adjusted to the phase-transition region for that disorder realization. Energy and magnetization
distributions show large variations from one realization of disorder to another. For some realizations of
disorder there are three well separated peaks in the magnetization distribution and two well separated peaks in
the energy distribution suggesting a first-order transition.

PACS number~s!: 02.70.2c, 05.50.1q, 05.70.Fh, 75.10.Hk
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I. INTRODUCTION

Despite 25 years of experimental and theoretical eff
phase transitions in systems with quenched random fields
still poorly understood. The simplest theoretical model is
random field Ising model~RFIM!. The RFIM phase transi
tion is believed to be in the same universality class as
phase transitions in diluted antiferromagnets in a unifo
field and fluids in porous media. The three-dimensio
RFIM is known @1–3# to have an ordered phase at suf
ciently low temperature and for weak random fields. As
temperature or the strength of the randomness is increa
there is a transition to a disordered phase. The nature of
transition is not well understood.

In this paper we describe a new replica-exchange a
rithm for simulating the RFIM and present numerical resu
for systems ofL3L3L spins withL up to 24. We show tha
the qualitative features of the transition differ strongly fro
realization to realization of disorder. Our results can be
terpreted as suggesting that the RFIM transition is first or
or that a modified version of the droplet picture holds.

The RFIM is described by the energy

2H/kBT5b(̂
i j &

SiSj1D(
i

hiSi1H(
i

Si , ~1.1!

where the spin variablesSi561 reside on a lattice,b
51/kBT is the inverse temperature, the first sum is ov
nearest-neighbor pairs on the lattice,H is an external field,
andD is the strength of the disorder. The random fields
independent random variables chosen from a distribu
with mean zero and variance one. In this paper, the rand
fields are Gaussian and the lattice is simple cubic.

Currently, it is not known whether the phase transition
the three-dimensional~3D! RFIM is first order or continuous
PRE 621063-651X/2000/62~6!/8782~8!/$15.00
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Experiments on magnetic systems have been plagued
problems of poor equilibration and have yielded confus
results, but it appears that there is no latent heat at the t
sition and this has usually been interpreted as evidence f
continuous transition. Theoretical analyses@4# have also fa-
vored a continuous transition, although in many cases th
an assumption rather than a conclusion, and some re
work @5# suggests a fluctuation driven first-order transitio
The standard picture is that of a continuous transition c
trolled by a zero-temperature fixed point. The scaling the
of this transition@6–8# has three independent critical exp
nents and modified hyperscaling relations. Because the fi
point governing the transition has strong disorder, control
renormalization-group calculations have not been possi
Migdal-Kadanoff renormalization-group calculations ind
cate a continuous transition@9,10# but also mistakenly pre-
dict that theq-state Potts transition is continuous for allq
when, for 3D, it is known to be first order forq>3. Series
analyses initially supported a first-order transition@11# but
more recently point to a continuous transition, at least
weak disorder@12#. Alternatively, it may be that the transi
tion is continuous for weak disorder and then becomes
order for strong disorder with a tricritical point separating t
critical line from the first-order line.

Recent Monte Carlo simulations@13–15# have also been
interpreted as showing a continuous transition but with
jump in the magnetization. These simulations have been
ited to system size 163. The jump in the magnetization ca
be interpreted as a very small value of the magnetiza
exponent but might also signal a first-order transition. Sim
lations of systems up to 643 @16# were interpreted as indicat
ing a first-order transition but were clearly not equilibrated
the transition region. A number of numerical experimen
have also been carried out on the RFIM at zero tempera
using polynomial time ground-state algorithms. Origina
these supported a continuous transition with a small mag
tization exponent@17# but more recent studies on larger sy
8782 ©2000 The American Physical Society
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tems @18# show a jump in the magnetization and are th
suggestive of a first-order transition.

The numerical results presented in this paper differ fr
those of previous studies in two significant respects. First
use an efficient algorithm that permits us to reach equi
rium for larger systems than those of past studies. Sec
we fine tune both the temperature and the external field
each realization of disorder to be as close as possible to
transition for that realization.

To understand the motivation for this fine tuning, let
suppose for the moment that the transition is first order
this is the case, then for periodic or helical boundary con
tions we expect that there will be three phases in coexiste
at the transition point. We call the coexisting phases1, 2,
and 0. The ordered phases,1 and2, have long-range orde
and finite magnetization. The disordered, 0 phase has
long-range order, no magnetization, and is characterized
spins that are predominately aligned with their local fiel
The bond energy, defined by the first term on the right-ha
side of Eq.~1.1!, is greater in the 0 phase than the order
phases. The expected phase diagram in theT2H plane in the
vicinity of the point of three phase coexistence is shown
Fig. 1. ForT,Tc andH50 there is phase coexistence of t
1 and2 phases that ends at the thermal first-order transi
at T5Tc andH50 ~the black dot in the figure!. Since the 0
and 1(2) phases differ in both energy and magnetizatio
the disordered phase can be maintained in coexistence
the 1(2) phase by increasing the temperature and incre
ing ~decreasing! the field. The two order-disorder lines co
responding to 01 and 02 coexistence form the arms of th
‘‘Y’’ in the figure.

Since the disorder is independent and homogenous
free energy is self-averaging. Hence, in the thermodyna
limit, the transition occurs at a definite point (Tc ,H50) for
almost all realizations of the random fields. However,
finite systems, the location and qualitative features of
transition will depend on the realization of disorder. In pa

FIG. 1. Proposed phase diagram for the 3D RFIM in theH-T
plane at a fixed strength of disorder. The bold lines are first-or
lines. The black dot is the thermal first-order transition at (Tc ,H
50) where the1, 2, and 0 phases coexist. The open circles
critical endpoints of the two order-disorder first-order lines.
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ticular, for a system of sizeL, with realization of random
fields $hi%, and disorder strengthD, there may be a poin
where three phases coexist at@Tc(D;$hi%), Hc(D;$hi%)]. A
first guess, based on the net field due to the random field
that Tc(D;$hi%) and Hc(D;$hi%) should be displaced from
the average valueT̃c(L) and H50 by an amount of order
DLd/2.

How accurately mustH andT be fine tuned to see thre
phase coexistence if it exists? Suppose first that we want
1 and 2 phases to coexist and that the magnetizations
these phases at the transition differ by 2m. If the external
field deviates from the correct value bydH, the free-energy
difference between the1 and2 phase is 2mdHLd. For both
phases to have a significant probability, the free-energy
ference must not greatly exceedkT. ThusH must be set to
Hc(D;$hi%) to within an accuracy ofkT/2mLd to have both
phases represented.Hc(D;$hi%) will itself fluctuate from
sample to sample asD/Ld/2. Similarly, if the entropy differ-
ence per spin between the the ordered and disordered ph
is s, thenT must be fine tuned to withinkT/sLd to allow to
these phases to coexist. Presumably sample to sample
tuations inTc(D;$hi%) also scale as 1/Ld/2. Thus if a single
value ofH50 andT5T̃c(L) is chosen for all realizations o
the random field, one will almost never see more than o
phase at a time.

II. NUMERICAL METHODS

We use an algorithm that combines the replica-excha
method, first introduced by Swendsen and Wang@19# and the

r

e

FIG. 2. Approximate phase diagram for the RFIM and replic
for the replica-exchange method. The phase boundary in theb
2D/b plane is taken to be an elliptical curve starting at the p
Ising critical point (1/b54.512,D/b50) and ending at the zero
temperature transition (1/b50,D/b52.35). The initial conditions
for the 16 replicas lie on this curve and are evenly spaced inD.
During the feedback process, each replica is shifted by a sm
amount inb andH.

FIG. 3. Magnetization histogram for realization 20 atD50.35.
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two-replica cluster method of Redner, Machta, and Cha
@20,21#. Our method is also closely related to simulated a
parallel tempering@22#. The idea of this approach is to s
multaneously simulateK replicas of the system. All replica
have the same normalized random field$hi% but each replica
has different values of the other parameters. Replicak (k
50, . . . ,K21) has inverse temperaturebk , strength of ran-
domnessDk , and external fieldHk . The replicas form a
sequence so that neighboring replicas in the sequence
nearby in the (b,D,H) parameter space. Neighboring rep
cas exchange magnetization with one another according
procedure described below. One end of the sequence of
licas is at a value ofb, D, and H that can be efficiently
simulated using a known method while the other end of
sequence is at a value of the parameters that we would lik
study. In our case, the replicas lie along the RFIM pha
transition line starting from the pure Ising valuesb0
'0.226 15 andD05H050 as shown in Fig. 2. The replica
are equally spaced inD. The pure Ising replica is simulate
using the Wolff single cluster algorithm@23,24#. ~We have
also experimented with replicas lying along a line of const
bH starting at the RFIM phase boundary, extending into
paramagnetic phase, and ending at a temperature
enough that the model can be efficiently simulated using
ordinary single-spin-flip Metropolis algorithm. This ap
proach, however, is found to be less efficient than the
described above.!

Magnetization is exchanged between neighboring repl
using a generalization of the two-replica cluster meth
Suppose we have two replicas at (b,D,H) and (b8,D8,H8)
with spin configurations$Si% and$Si8%, respectively. A sitej
is consideredactive for this pair of replicas ifSjÞSj8 . A
bond i j between neighboring sitesi and j is satisfiedif Si

5Sj andSi85Sj8 . A cluster of active sites is formed startin
from a randomly chosen active site. New active sites

FIG. 4. Magnetization histogram for realization 21 atD50.35.

FIG. 5. Magnetization histogram for realization 25 atD50.35.
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added to the cluster byoccupyingsatisfied bonds on the pe
rimeter of the cluster with probabilityp(b,b8) where

p~b,b8!512e22(b1b8). ~2.1!

If a bond connecting a site to a cluster is occupied, the sit
added to the cluster and the set of bonds on the perimet
updated. In this way, the cluster grows until no further si
are added. The procedure is very similar to the way clus
are grown in the Wolff single cluster algorithm.

Once a cluster is identified it isflippedwith a probability
that depends on the change in boundary and field energ
as to satisfy detailed balance. Flipping a cluster me
changing the sign of all the spins in the cluster or, equi
lently, exchanging the values of the spins in the cluster
tween the two replicas. The probability to flip a clusterC
with uCu sites depends on the quantityS,

S52@~D2D8!hC1~H2H8!uCu

1~b2b8!~N112N22!#SC , ~2.2!

whereN11 andN22 are, respectively, the number of11
and22 sites that are nearest neighbors of the cluster,hC is
the net random field acting on the cluster,

hC5(
i PC

hi , ~2.3!

andSC is the spin value of the cluster in the unprimed re
lica. If S<0, then the cluster is flipped, otherwise it
flipped with probabilitye2S.

It is straightforward but tedious to show that the choice
p(b,b8) @Eq. ~2.1!#, together with the flipping probability
defined byS, is precisely what is needed to ensure detai

FIG. 6. Magnetization histogram for realization 31 atD
50.3267.

FIG. 7. Magnetization histogram for realization 14 atD50.35.
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balance. The motivation for the choice ofp(b,b8) is most
easily understand by considering the limit where two repli
are at the same values ofb, D, andH. In that casep(b,b)
512e24b and S50. Since S50, clusters are always
flipped just as is the case for the Wolff single cluster alg
rithm. Furthermore, we have shown in Refs.@20,21# that the
active clusters percolate at the RFIM phase transition. If
transition is continuous, clusters of all sizes are flipped. If
transition is first order, there will be two distinct kinds o
clusters; some clusters will be extensive and change
phase of the system while other clusters will have sizes
than or equal to the correlation length. In either case,
clusters identified by the two-replica procedure correspon
the fluctuations that actually occur in the system at the ph
transition and permit large changes in the spin configura
in a single Monte Carlo sweep. When the two replicas do
have equal values of the parameters, then the clusters d
flip freely, but if the replicas are close together in the para
eter space, the acceptance fraction for flipping clusters
remain high.

Our method and the original replica exchange meth
@19# on which it is based are similar to parallel temperi
@22#. In all these methods, groups of spins are exchan
between neighboring replicas along a sequence. In par
tempering the whole spin configuration is exchanged and
Boltzmann factor controlling the acceptance of the move
pends on the energy difference between the replicas. In
algorithm, only some of the spins are exchanged and fo
given distance in the parameter space between the rep
the acceptance fraction is larger than for parallel temper
The consequence is that fewer, less closely spaced rep
are needed for the replica-exchange method.

In order to find the phase-transition temperature and
ternal field@bc(D;$hi%),Hc(D;$hi%)# for a given realization
and strength of disorder we use a feedback mechanism. S
ing from an initial value ofb andH we monitor the magne
tization of the system after each Monte Carlo sweep. If
absolute value of the magnetization is less than a lower
off Mlc , the system is interpreted to be in a high-temperat
phase and the inverse temperature is increased by a s
amount eb . If the absolute value of the magnetization
greater than an upper cutoffMuc , the system is interpreted t
be in one of the ordered phases andb is decreased byeb . In
this case, the external field is also adjusted by an amouneH
if the magnetization is positive and by2eH if the magneti-
zation is negative. The average values ofb andH are com-
puted for the period when the feedback procedure is on

FIG. 8. Magnetization histogram for the pure Ising model at
infinite system size critical temperaturebc50.221 65.
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are taken to be@bc(D;$hi%),Hc(D;$hi%)#. The feedback pro-
cedure is then turned off and these values are used for a
equilibrium simulation.

Most of our simulations were for 243 systems. Except as
otherwise noted, the simulations usedK516 replicas equally
spaced inD with the most disordered replica havingD
50.35. Initially the replicas lie on an elliptical curve in th
temperature-disorder plane that starts at the pure Ising t
sition (b50.221 65) and ends at the zero-temperature tr
sition (D/b52.35) as shown in Fig. 2. It was shown in Re
@15# that this curve is a good estimate for the phase bou
ary. The feedback parameters wereMlc52000, Muc
54000,eb51024, andeH51025. The feedback mechanism
was run for 23105 Monte Carlo sweeps and then, with th
temperature and external field determined by the feedb
procedure, data were collected for 83105 Monte Carlo
sweeps. Each Monte Carlo sweep is defined as 500 clu
steps; since the average cluster size was found to be rou
1000, a single Monte Carlo sweep corresponds to attemp
to flip every spin in every replica about once. For each cl
ter step a random integerk was chosen between 0 andK. If
k50, a Wolff move was performed on the pure replica,
1,k,K, a two-replica cluster move was carried out b
tween replicak and replicak21. If k5K, a two-replica clus-
ter move was carried out between replicasK21 andK22.
The procedure described above, totaling 106 sweeps, was
performed for 22 realizations of disorder, a number chose
advance of the experiment, labeled 10 through 31 by the s
of the random number generator that produced$hi%. Each
realization required about 6 days on a 450 MHz Pentium
machine. A number of additional simulations were carri
out for specific realizations of disorder~not all in the range
10 through 31! using parameters that differed in some w
from the above. In particular, we did a careful study of re
ization 1 that is described below.

e FIG. 9. Bond-energy histogram for realization 20 atD50.35.

FIG. 10. Bond-energy histogram for realization 21 atD50.35.
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III. RESULTS

A. Energy and magnetization histograms

The main lesson of our paper is that each realization
disorder has its own character. This is best seen by exa
ing the probability distributions of magnetization and ener
for several realizations of disorder. Figures 3–7 show
magnetization histogram for realizations 20, 21, 25, 31,
14, respectively. The magnetization histogram for realizat
20, characterized by two broad maxima roughly symmetr
about the origin, is typical of the majority of realization
Apart from the asymmetry in the two peaks, realization
and those like it are similar to the pure Ising model who
magnetization histogram is shown in Fig. 8 at the infin
system size critical temperature,bc(0)50.221 65. The mag-
netization histogram for realization 21, Fig. 4, also displa
two peaks but now one peak is much sharper than the o
and quite asymmetric about the origin. The magnetizat
histograms for realization 25, Fig. 5 and realization 31, F
6, are qualitatively different, displaying three distinct a
well separated peaks. It should be noted that the feedb
procedure was initially unsuccessful for these realizati
and had to be run again withMlc5Muc55000 to find all
three peaks. Failure of the feedback scheme was evide
by the presence of only one narrow peak in the magnet
tion histogram. In the case of realization 31, the feedb
procedure with the revised parameters failed on the m
disordered replica so Fig. 6 shows the second to last rep
in the sequence atD50.3267. For both realizations 25 an
31, the original run showed three peaked structures at we
disorder giving a strong hint that the same qualitative feat
would be found at stronger disorder. Finally, realization 1
Fig. 7, was unique, displaying a five-peaked structure. Ou
a total of 22 magnetization histograms, 19 show two peak

FIG. 11. Bond-energy histogram for realization 25 atD50.35.

FIG. 12. Bond-energy histogram for realization 31 atD
50.3267.
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show three peaks, and 1 shows five peaks. It is possible
unlikely that some of the two-peak realizations would d
play more peaks with different fine tuning. For example,
used other alternate values of the fine-tuning parameter
search for an additional positive peak for realization 21
none was found.

The bond energy distribution displayed two possib
qualitative behaviors. Figures 9–13 show the bond-ene
histogram for realizations 20, 21, 25, 31, and 14, resp
tively. For comparison, Fig. 14 shows the energy distribut
for the pure Ising model at the infinite system size critic
temperature. For realization 20 and those like it, the bo
energy distribution has a single peak and is qualitatively l
that of the pure Ising model at criticality, except that t
peak is shifted to significantly lower energies. For realizat
21, which has two well separated magnetization peaks, th
are also two well separated peaks in the bond-energy di
bution. Similarly, for realizations 25 and 31 there are tw
peaks in the bond-energy distribution. In a first-order int
pretation of these realizations the1 and2 phases have the
lower energy and the 0 phase the higher energy. On the o
hand, for realization 14, which has five magnetization pea
there is a single broad maximum in the bond-energy his
gram with a significant, low-energy shoulder. Altogether
out of 22 realizations show two well defined peaks in t
bond-energy histogram while the remaining realizatio
show a single peak though sometimes with a significant lo
energy shoulder.

The joint magnetization/bond-energy distribution for re
ization 25 is shown in Fig. 15. For comparison, the jo
distribution for the pure Ising model at the infinite syste
critical temperature is shown in Fig. 16. The three lobes
the distribution correspond to the three peaks in the mag
tization histogram, Fig. 5. It is tempting to interpret realiz

FIG. 13. Bond-energy histogram for realization 14 atD50.35.

FIG. 14. Bond-energy histogram for the pure Ising model at
infinite system size critical temperaturebc50.221 65.
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tions 25 and 31 in the language of first-order transitions
declare the low-energy side lobes as ordered phases an
central lobe as a disordered phase.

The importance of fine tuning the magnetization and te
perature for each realization of disorder is illustrated in Fi
17–20. The magnetization histogram for realization 1 at
fine-tuned parameter values,bc50.268 385 and Hc
50.001 270 49, is shown in Fig. 17. Note, that this value
Hc is not the same as the value that would be obtained
summing the local fields. For realization one, that value
almost 50% larger,2D( ihi /N50.001 787 74. Figure 18
shows realization 1 with the same external field but with
temperature raised by 5% leaving only the disorde
phases. Figure 19 shows realization 1 with the same exte
field but the temperature decreased by 5%. Although,
external field is too negative here, it is nonetheless clear
the two ordered phases are now dominant over the di
dered phase, which has nearly vanished. Finally, if the ex
nal field is set to 0 and the feedback temperature is u
only the negative peak survives, as shown in Fig. 20.

We considered several realizations at stronger disor
Figure 21 shows the magnetization histogram for realiza
1 at disorderD50.433 at the value of external field an
temperature determined from the fine-tuning procedu
Comparing Fig. 21 to Fig. 17, we see that the three-pea
structure is conserved and the peaks become sharper a
strength of the disorder is increased. In this experiment,
used 16 replicas with maximum disorder strength,D50.5.
However, the fine-tuning procedure failed for the two mo
disordered replicas and only yielded the minus phase. In g
eral, the feedback procedure was less stable for stronger
order. Figure 22 shows realization 14 at disorderD50.5 at
the values of the temperature and external field determ

FIG. 15. The joint magnetization/bond-energy distribution
realization 25 atD50.35.

FIG. 16. The joint magnetization/bond-energy distribution
the pure Ising model at the infinite system size critical tempera
bc50.221 65.
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from the fine-tuning procedure. A comparison to Fig.
shows that increasing the disorder has sharpened the
peaked structure of the magnetization histogram. It would
interesting to carry out a systematic study of stronger dis
der to see if there is a trend toward more ‘‘first-order’’-lik
behavior. However this will require developing a better fin
tuning mechanism.

Overall, out of 21 realizations~seeds 10–30! at disorder
strengthD50.35, we found that the average values of t
critical parameters iŝbc&50.2663 and̂ Hc&50.0006~com-
pared with initial values before the feedback procedure
b50.2670 andH50) with a standard deviations ofsb
50.0037 andsH50.0031. The standard deviation ofHc is
consistent with the anticipated valuesH;DL2d/250.0030.

B. Dynamics of the algorithm

We have studied the dynamics of the replica-excha
algorithm and compared it to the Metropolis algorithm
There are two ways of comparing the algorithms. First, ti
can be measured by Monte Carlo sweeps. This approach
vors the replica-exchange algorithm since a single Mo
Carlo sweep involves flipping spins in many~here 16! repli-
cas and since growing clusters is computationally more
tensive than flipping single spins. The second approach i
compare actual running time for the two algorithms on t
same computer. This approach ignores the possibility that
one algorithm is better optimized and it is not an appropri
way to measure fundamental quantities such as the dyna
exponent, however it does give a practical comparison an
useful for deciding which algorithm to choose for a give

re

FIG. 17. Magnetization histogram for realization 1 atD50.35
and the phase-transition point determined from fine tuningbc

50.268 385 andHc50.001 270 49.

FIG. 18. Magnetization histogram for realization 1 atD50.35
andb50.267 041 (5% warmer thanbc determined for realization
1! andHc50.001 270 49.
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8788 PRE 62J. MACHTA, M. E. J. NEWMAN, AND L. B. CHAYES
system size. For 243 systems with 16 replicas with maximum
disorderD50.35 on a 450 MHz Pentium III machine, w
find that the replica-exchange algorithm runs at about 0
sec/sweep and that our implementation of the Metropolis
gorithm runs at about 0.0088 sec/sweep. As is the case
the equilibrium properties of the system, we find great d
ferences in the dynamics depending on the realization of
order. These differences are much more pronounced for
Metropolis algorithm. We measured the integrated autoc
relation time for the magnetization for realization 20 for bo
algorithms with the resulttMetropolis56000 and t replica

51100 when measured in Monte Carlo sweeps. The adv
tage of the replica exchange algorithm is lost however w
these times are converted to running times;tMetropolis553 sec
and t replica5616 sec. The joint energy/magnetization his
gram for realization 20 is smooth and without gaps sugg
ing that there are no global energy barriers separating reg
of phase space. At the other extreme is realization 31
which the joint energy/magnetization distribution is split in
three pieces separated by gaps where the probability is
small. Using the parameters for realization 31, determined
fine tuning forD50.3267, we did a long Metropolis run o
100 million Monte Carlo sweeps starting from random init
spins. The simulation stayed mainly in the ‘‘0’’ state wi
two excursions to the ‘‘1 ’’ state. The ‘‘2 ’’ state was never
visited. On the other hand, two Metropolis runs of 20 millio
sweeps starting from all spins up and all spins down wen
the ‘‘0’’ and ‘‘ 2 ’’ states, respectively, and stayed there f
the entire simulation. Figure 23 shows the magnetizat
time series from the replica exchange algorithm for reali
tion 31 for 800 000 sweeps. Although it is difficult to es
mate the autocorrelation time from this series, it is clear t

FIG. 19. Magnetization histogram for realization 1 atD50.35
andb50.269 727 (5% colder thanbc determined for realization 1!
andHc50.001 270 49.

FIG. 20. Magnetization histogram for realization 1 atD
50.35, bc50.267 041, andH50.
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the simulation samples each of the states many times.
conclusion is that for most realizations of disorder, at s
243, there is no great practical advantage to using the rep
exchange algorithm but that for cases where well separ
regions are present in the joint distribution, only the repl
exchange algorithm is able to reach equilibrium within re
sonable simulation times.

IV. DISCUSSION

One of the chief motivations for this paper was to det
mine the nature of the RFIM phase transition. Unfortunate
our results fail to settle this question. What would we ha
expected from the different scenarios for the phase tra
tion? If the transition is first order we should find thre
phases in coexistence at the transition point. The hi
temperature phase would have little magnetization an
large bond energy while the two low-temperature pha
would have large absolute values of magnetization, one p
tive and the other negative, and small bond energies. T
situation is exactly what is seen in roughly 10% of realiz
tions. For systems much smaller than 243, three phase coex
istence is not seen simply because the magnetization d
bution is too broad to display three distinct peaks. O
hypothesis is that, as system size becomes large, the fra
of systems displaying three phases increases and that, in
thermodynamic limit, the transition atD50.35 is first order.
However, the existence of realization 14 with its five peaks
difficult to reconcile with this viewpoint.

If the transition is continuous and follows the dropl
model scenario@6,8,25# we would expect two peaks in th
magnetization histogram corresponding to two states o

FIG. 21. Magnetization histogram for realization 1 atD
50.433 at temperature and external field determined from fine
ing, bc50.289 176 andHc50.001 580 05.

FIG. 22. Magnetization histogram for realization 14 atD50.5 at
temperature and external field determined from fine tuning.
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single critical phase. The width of each peak should scal
L2g/n and the separation between the peaks should sca
L2b/n. The majority of our disorder realizations display tw
peaks and an alternative to the first-order transition hypo
esis is that, as system size increases, the fraction of rea
tions with two peaks in the magnetization histogram a
proaches 100%. Although the original droplet mod
envisioned two states with roughly the same energy and
fering by flipping a critical cluster of spins, it is possible
imagine more complicated droplet pictures where there
sometimes more than two states in the critical phase
therefore more than two peaks in the magnetization hi
gram. However, our five realizations that display more th
one peak in the bond-energy histogram are difficult to r
oncile with the droplet model since one expects the sta
however many there are, to be nearly degenerate in b
energy.

Ultimately, the essential difference between the first-or
scenario and the droplet model continuous-transition s
nario is whether there are distinct phases at the trans
point or whether the peaks in the magnetization histogr

FIG. 23. Magnetization time series for realization 31 forD
50.3267.
.
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are different states that are part of a single critical pha
This comes down to the question of whether the peaks in
magnetization histogram move toward the origin asL→` or
remain at finite values. Unfortunately, the consensus is
the magnetization exponent, if it is not actually zero, is ve
tiny so that the decrease in magnetization with system
would be far too weak to observe in simulations.

V. CONCLUSIONS

We have studied the phase transition of the random fi
Ising model by Monte Carlo simulation of systems of si
243 using a new cluster algorithm. We find major qualitati
differences between the behavior of different realizations
disorder. Some realizations display a broad two-peaked m
netization histogram consistent with a continuous transiti
while a small fraction display a three-peaked structure c
sistent with a first-order transition. Our main conclusion
that more work needs to be done to determine the natur
the transition. It would be very useful to study larger syste
sizes and stronger disorder to determine whether there
trends in the qualitative features of the phase transition. D
the fraction of ‘‘first-order’’ systems increase as disorder
system size increases? It will require improvements of
algorithm including the fine-tuning technique or substantia
more computer power to resolve these questions.
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