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Replica-exchange algorithm and results for the three-dimensional random field Ising model
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The random field Ising model with Gaussian disorder is studied using a different Monte Carlo algorithm.
The algorithm combines the advantages of the replica-exchange method and the two-replica cluster method and
is much more efficient than the Metropolis algorithm for some disorder realizations. Three-dimensional sys-
tems of size 2% are studied. Each realization of disorder is simulated at a value of temperature and uniform
field that is adjusted to the phase-transition region for that disorder realization. Energy and magnetization
distributions show large variations from one realization of disorder to another. For some realizations of
disorder there are three well separated peaks in the magnetization distribution and two well separated peaks in
the energy distribution suggesting a first-order transition.

PACS numbgs): 02.70—c, 05.50+q, 05.70.Fh, 75.10.Hk

I. INTRODUCTION Experiments on magnetic systems have been plagued by
. . . roblems of poor equilibration and have yielded confusin
Despite 25 years of experimental and theoretical Effort'Ir:)esults, but itpappea?s that there is no Iate>r11t heat at the tra?n-
phase transitions in systems with quenched random fields atjon and this has usually been interpreted as evidence for a
still poorly undgrstood. The simplest theoretical model 'S,thecontinuous transition. Theoretical analy$é$ have also fa-
random field Ising mode{RFIM). The RFIM phase transi- yored a continuous transition, although in many cases this is
tion is believed to be in the same universality class as thgp assumption rather than a conclusion, and some recent
phase transitions in diluted antiferromagnets in a uniformyork [5] suggests a fluctuation driven first-order transition.
field and fluids in porous media. The three-dimensionalThe standard picture is that of a continuous transition con-
RFIM is known[1-3] to have an ordered phase at suffi- trolled by a zero-temperature fixed point. The scaling theory
ciently low temperature and for weak random fields. As theof this transition[6—8] has three independent critical expo-
temperature or the strength of the randomness is increasedients and modified hyperscaling relations. Because the fixed
there is a transition to a disordered phase. The nature of thigoint governing the transition has strong disorder, controlled
transition is not well understood. renormalization-group calculations have not been possible.
In this paper we describe a new replica-exchange algoMigdal-Kadanoff renormalization-group calculations indi-
rithm for simulating the RFIM and present numerical resultscate a continuous transitidi9,10] but also mistakenly pre-
for systems of. X L X L spins withL up to 24. We show that dict that theg-state Potts transition is continuous for gl
the qualitative features of the transition differ strongly from When, for 3D, it is known to be first order far=3. Series
realization to realization of disorder. Our results can be in-2nalyses initially supported a first-order transitjdri] but
terpreted as suggesting that the RFIM transition is first ordef°r€ recently point to a continuous transition, at least for

or that a modified version of the droplet picture holds. weak disordef12]. Alternatively, it may be that the transi-
The RFIM is described by the energy tion is continuous for weak disorder and then becomes first

order for strong disorder with a tricritical point separating the
critical line from the first-order line.
_ Recent Monte Carlo simulatiorjd3—15 have also been
—HlkgT= S+A2 hS+H , (1.1 . . ) o X
Hiks '6@2]) S5 Z S Z S (.1 interpreted as showing a continuous transition but with a
jump in the magnetization. These simulations have been lim-
where the spin variable§,=*1 reside on a lattice8 |ted' to system size £6 The jump in the magnetization can
; rbe interpreted as a very small value of the magnetization
o ; L) . exponent but might also signal a first-order transition. Simu-
nearest-neighbor pairs on the latti¢e,is an external field, lations of systems up to 8416] were interpreted as indicat-

gndA is the strength of the disorder. The random f|eIQS "’.qung a first-order transition but were clearly not equilibrated in
independent random variables chosen from a distributiony, s transition region. A number of numerical experiments

with mean zero and variance one. In this paper, the randoffjaye aiso been carried out on the RFIM at zero temperature

fields are Gaussian and the lattice is simple cubic. using polynomial time ground-state algorithms. Originally
Currently, it is not known whether the phase transition forthese supported a continuous transition with a small magne-

the three-dlmenSIOHaBD) RFIM is first order or continuous. tization exponenE]_?] but more recent studies on |arger sys-
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FIG. 2. Approximate phase diagram for the RFIM and replicas
for the replica-exchange method. The phase boundary in {Be 1/
—A/B plane is taken to be an elliptical curve starting at the pure
Ising critical point (18=4.512A/B=0) and ending at the zero-
temperature transition (8~ 0,A/B=2.35). The initial conditions
for the 16 replicas lie on this curve and are evenly spaced.in
During the feedback process, each replica is shifted by a small
amount ing andH.

ticular, for a system of sizé&, with realization of random

FIG. 1. Proposed phase diagram for the 3D RFIM in ithd . ) . .
plane at a fixed strength of disorder. The bold lines are firSt-Orde:;/I\/ehlgfe{?H}Fe:n?w;slzzrgg;xsitsrt?;gzg" {tr?(f)re |_r|n ?X_?ﬁ_}?] pzmt
lines. The black dot is the thermal first-order transition B¢ ,H P AN

—0) where the+, —, and 0 phases coexist. The open circles aref|rst guess, based on the net field due to the random fields, is

critical endpoints of the two order-disorder first-order lines. that To(A;{hi}) arld H(A:{hi}) should be displaced from
the average valu@ (L) andH=0 by an amount of order

tems[18] show a jump in the magnetization and are thusAL%?2,
suggestive of a first-order transition. How accurately musH and T be fine tuned to see three

The numerical results presented in this paper differ fronphase coexistence if it exists? Suppose first that we want the
those of previous studies in two significant respects. First wer and — phases to coexist and that the magnetizations of
use an efficient algorithm that permits us to reach equilibthese phases at the transition differ by.2If the external
rium for larger systems than those of past studies. Secongield deviates from the correct value B, the free-energy
we fine tune both the temperature and the external field fogifference between theé and— phase is J16HLY. For both
each realization of disorder to be as close as possible to thshases to have a significant probability, the free-energy dif-
transition for that realization. ference must not greatly exce&d. ThusH must be set to

To understand the motivation for this fine tuning, let USH (A;{h;}) to within an accuracy okT/2m L9 to have both
suppose for the moment that the transition is first order. |fphases representet (A;{h;}) will itself fluctuate from
this is the case, then for periodic or helical boundary condisamp|e to sample as/L%2. Similarly, if the entropy differ-
tions we expect that there will be three phases in coexistencgnce per spin between the the ordered and disordered phases
at the transition point. We call the coexisting phases—, s s thenT must be fine tuned to withikT/sL? to allow to
and 0. The ordered phases,and —, have long-range order these phases to coexist. Presumably sample to sample fluc-
and finite magnetization. The disordered, 0 phase has ngations inT,(A;{h;}) also scale as LF2. Thus if a single

long-range order, no magnetization, and is characterized b‘}’alue ofH=0 andT=T,(L) is chosen for all realizations of
spins that are predominately aligned with their local fields} ¢

The bond energy, defined by the first term on the right-han hheagin;jto;ntiflrr?;j, one will almost never see more than one
side of Eq.(1.1), is greater in the 0 phase than the ordere

phases. The expected phase diagram ifthél plane in the
vicinity of the point of three phase coexistence is shown in
Fig. 1. ForT<T, andH=0 there is phase coexistence of the  We use an algorithm that combines the replica-exchange
+ and— phases that ends at the thermal first-order transitiomnethod, first introduced by Swendsen and WEL®] and the

at T=T, andH =0 (the black dot in the figupe Since the 0

and + (—) phases differ in both energy and magnetization, 500
the disordered phase can be maintained in coexistence with

II. NUMERICAL METHODS

the +(—) phase by increasing the temperature and increas- 400

ing (decreasingthe field. The two order-disorder lines cor- g 300

responding to 8 and 0— coexistence form the arms of the = 200
a

“Y” in the figure.

Since the disorder is independent and homogenous the 100
free energy is self-averaging. Hence, in the thermodynamic
limit, the transition occurs at a definite point{,H=0) for 0

.. . -1 -0.5 0 0.5 1

a_llr_nost all realizations 01_‘ the random_ fle_lds. However, for magnetization per spin
finite systems, the location and qualitative features of the
transition will depend on the realization of disorder. In par- FIG. 3. Magnetization histogram for realization 20/t 0.35.
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FIG. 6. Magnetization histogram for realization 31 At
=0.3267.
two-replica cluster method of Redner, Machta, and Chayes . o
[20,21]. Our method is also closely related to simulated anc@dded to the cluster byccupyingsatisfied bonds on the pe-
parallel temperind22]. The idea of this approach is to si- fimeter of the cluster with probabilitp(3,8") where
multaneously simulat& replicas of the system. All replicas
have the same normalized random fi¢id} but each replica
has different values of the other parameters. Replid&
=0, ... K—1) has inverse temperatusg , strength of ran-
domnessA,, and external fieldH,. The replicas form a
sequence so that neighboring replicas in the sequence
nearby in the 8,A,H) parameter space. Neighboring repli-
cas exchange magnetization with one another according to

procedure described below. One end of the sequence of re : ,
licas is at a value of3, A, andH that can be efficiently at depends on the change in boundary and field energy so

simulated using a known method while the other end of thé®S to.sat|sfy Qetalled balancg. F_I|pp|ng a_cluster means

sequence is at a value of the parameters that we would like tlcahanglng the sign of all the spins in thg clyster or, equiva-

study. In our case, the replicas lie along the RFIM phase—em'y’ exchanging the values of the spins in the cluster be-

transition line starting from the pure Ising valug?,

~0.226 15 and\(=Hy=0 as shown in Fig. 2. The replicas

are equally spaced ia. The pure Ising replica is simulated _ Y Y

using the Wolff single cluster algorithi23,24]. (We have [(A=A%he+(H-HC]

also experimented with replicas lying along a line of constant +(B—B")(N..—N__)]S.,

BH starting at the RFIM phase boundary, extending into the

paramagnetic phase, and ending at a temperature highhereN,, andN__ are, respectively, the number ef+

enough that the model can be efficiently simulated using theand — — sites that are nearest neighbors of the clusteis

ordinary single-spin-flip Metropolis algorithm. This ap- the net random field acting on the cluster,

proach, however, is found to be less efficient than the one

described aboveg. he= h
Magnetization is exchanged between neighboring replicas &,

using a generalization of the two-replica cluster method.

FIG. 4. Magnetization histogram for realization 21t 0.35.

P(B,B)=1-e 2¢*F. (2.0
If a bond connecting a site to a cluster is occupied, the site is
added to the cluster and the set of bonds on the perimeter is
aygdated. In this way, the cluster grows until no further sites
are added. The procedure is very similar to the way clusters
gre grown in the Wolff single cluster algorithm.
ﬁ{ Once a cluster is identified it ippedwith a probability

tween the two replicas. The probability to flip a cluster
with |C| sites depends on the quantiy

3

(2.2

(2.3

Suppose we have two replicas @&,0,H) and (3’,A’",H")
with spin configurationgS;} and{S/'}, respectively. A site
is consideredactive for this pair of replicas iij;tSj’. A
bondij between neighboring siteésandj is satisfiedif S
=S; andS'=§; . A cluster of active sites is formed starting

and S; is the spin value of the cluster in the unprimed rep-
lica. If =<0, then the cluster is flipped, otherwise it is
flipped with probabilitye™.

It is straightforward but tedious to show that the choice of
p(B,B8") [Eq. (2.1)], together with the flipping probability

from a randomly chosen active site. New active sites arelefined byX, is precisely what is needed to ensure detailed
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FIG. 5. Magnetization histogram for realization 25t 0.35.
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FIG. 7. Magnetization histogram for realization 14+ 0.35.
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FIG. 8. Magnetization histogram for the pure Ising model at the FIG. 9. Bond-energy histogram for realization 20Aat 0.35.

infinite system size critical temperatuf=0.221 65.
are taken to bgB.(A;{h;}),H(A;{h;})]. The feedback pro-

balance. The motivation for the choice pf3,8’) is most  cedure is then turned off and these values are used for a long
easily understand by considering the limit where two replicagquilibrium simulation.
are at the same values Bf A, andH. In that casep(B,3) Most of our simulations were for 34systems. Except as
=1-e % and 3=0. Since 3=0, clusters are always Otherwise noted, the simulations us€e- 16 replicas equally
flipped just as is the case for the Wolff single cluster algo-spaced inA with the most disordered replica haviny
rithm. Furthermore, we have shown in Ref20,21] that the = 0.35. Initially the replicas lie on an elliptical curve in the
active clusters percolate at the RFIM phase transition. If théemperature-disorder plane that starts at the pure Ising tran-
transition is continuous, clusters of all sizes are flipped. If thesition (8=0.22165) and ends at the zero-temperature tran-
transition is first order, there will be two distinct kinds of sition (A/B=2.35) as shown in Fig. 2. It was shown in Ref.
clusters; some clusters will be extensive and change thEL5] that this curve is a good estimate for the phase bound-
phase of the system while other clusters will have sizes lesgry. The feedback parameters weid;.=2000, M,
than or equal to the correlation length. In either case, the=4000, e;=10 * ande,=10"">. The feedback mechanism
clusters identified by the two-replica procedure correspond twas run for 2< 10° Monte Carlo sweeps and then, with the
the fluctuations that actually occur in the system at the phasiemperature and external field determined by the feedback
transition and permit large changes in the spin configuratioprocedure, data were collected for<80° Monte Carlo
in a single Monte Carlo sweep. When the two replicas do nosweeps. Each Monte Carlo sweep is defined as 500 cluster
have equal values of the parameters, then the clusters do ngfeps; since the average cluster size was found to be roughly
flip freely, but if the replicas are close together in the param-1000, a single Monte Carlo sweep corresponds to attempting
eter space, the acceptance fraction for flipping clusters wilto flip every spin in every replica about once. For each clus-
remain high. ter step a random integ&was chosen between 0 aid If

Our method and the original replica exchange methok=0, a Wolff move was performed on the pure replica, if
[19] on which it is based are similar to parallel tempering1l<k<K, a two-replica cluster move was carried out be-
[22]. In all these methods, groups of spins are exchangetiveen replic&k and replicak— 1. If k=K, a two-replica clus-
between neighboring replicas along a sequence. In paralléér move was carried out between replitds 1 andK — 2.
tempering the whole spin configuration is exchanged and th&€he procedure described above, totalind Bwveeps, was
Boltzmann factor controlling the acceptance of the move deperformed for 22 realizations of disorder, a number chosen in
pends on the energy difference between the replicas. In owdvance of the experiment, labeled 10 through 31 by the seed
algorithm, only some of the spins are exchanged and for af the random number generator that produ¢bgd. Each
given distance in the parameter space between the replicasalization required about 6 days on a 450 MHz Pentium |
the acceptance fraction is larger than for parallel temperingmachine. A number of additional simulations were carried
The consequence is that fewer, less closely spaced replicasit for specific realizations of disordémot all in the range
are needed for the replica-exchange method. 10 through 31 using parameters that differed in some way

In order to find the phase-transition temperature and exfrom the above. In particular, we did a careful study of real-
ternal field[ B¢(A;{h;}),H:(A;{h;})] for a given realization ization 1 that is described below.
and strength of disorder we use a feedback mechanism. Start-

ing from an initial value of3 andH we monitor the magne- 500
tization of the system after each Monte Carlo sweep. If the 200
absolute value of the magnetization is less than a lower cut-

off M, the system is interpreted to be in a high-temperature 5 300
phase and the inverse temperature is increased by a small £
amounteg. If the absolute value of the magnetization is g 200
greater than an upper cutd¥f ., the system is interpreted to 100
be in one of the ordered phases g decreased by, . In

this case, the external field is also adjusted by an amaynt 0

-06 -055 -05 -045 -04

if the magnetization is positive and by ey if the magneti- energy per bond

zation is negative. The average valuesoandH are com-
puted for the period when the feedback procedure is on and FIG. 10. Bond-energy histogram for realization 21Aat 0.35.
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FIG. 11. Bond-energy histogram for realization 25\at 0.35. FIG. 13. Bond-energy histogram for realization 14Azt 0.35.
. RESULTS show three peaks, and 1 shows five peaks. It is possible but

unlikely that some of the two-peak realizations would dis-
play more peaks with different fine tuning. For example, we
The main lesson of our paper is that each realization ofised other alternate values of the fine-tuning parameters to
disorder has its own character. This is best seen by examigearch for an additional positive peak for realization 21 but
ing the probability distributions of magnetization and energynone was found.
for several realizations of disorder. Figures 3—-7 show the The bond energy distribution displayed two possible
magnetization histogram for realizations 20, 21, 25, 31, andualitative behaviors. Figures 9—13 show the bond-energy
14, respectively. The magnetization histogram for realizatiorhistogram for realizations 20, 21, 25, 31, and 14, respec-
20, characterized by two broad maxima roughly symmetricatively. For comparison, Fig. 14 shows the energy distribution
about the origin, is typical of the majority of realizations. for the pure Ising model at the infinite system size critical
Apart from the asymmetry in the two peaks, realization 20temperature. For realization 20 and those like it, the bond-
and those like it are similar to the pure Ising model whoseenergy distribution has a single peak and is qualitatively like
magnetization histogram is shown in Fig. 8 at the infinitethat of the pure Ising model at criticality, except that the
system size critical temperaturg,(0)=0.22165. The mag- peak is shifted to significantly lower energies. For realization
netization histogram for realization 21, Fig. 4, also displays21, which has two well separated magnetization peaks, there
two peaks but now one peak is much sharper than the otheire also two well separated peaks in the bond-energy distri-
and quite asymmetric about the origin. The magnetizatiorbution. Similarly, for realizations 25 and 31 there are two
histograms for realization 25, Fig. 5 and realization 31, Fig.peaks in the bond-energy distribution. In a first-order inter-
6, are qualitatively different, displaying three distinct and pretation of these realizations the and — phases have the
well separated peaks. It should be noted that the feedbadkwer energy and the 0 phase the higher energy. On the other
procedure was initially unsuccessful for these realizationsand, for realization 14, which has five magnetization peaks,
and had to be run again witkl .=M,.=5000 to find all  there is a single broad maximum in the bond-energy histo-
three peaks. Failure of the feedback scheme was evidencggam with a significant, low-energy shoulder. Altogether, 5
by the presence of only one narrow peak in the magnetizasut of 22 realizations show two well defined peaks in the
tion histogram. In the case of realization 31, the feedbackond-energy histogram while the remaining realizations
procedure with the revised parameters failed on the mosthow a single peak though sometimes with a significant low-
disordered replica so Fig. 6 shows the second to last replicanergy shoulder.
in the sequence a=0.3267. For both realizations 25 and  The joint magnetization/bond-energy distribution for real-
31, the original run showed three peaked structures at weakération 25 is shown in Fig. 15. For comparison, the joint
disorder giving a strong hint that the same qualitative featurelistribution for the pure Ising model at the infinite system
would be found at stronger disorder. Finally, realization 14 critical temperature is shown in Fig. 16. The three lobes in
Fig. 7, was unique, displaying a five-peaked structure. Out ofhe distribution correspond to the three peaks in the magne-
a total of 22 magnetization histograms, 19 show two peaks, 8zation histogram, Fig. 5. It is tempting to interpret realiza-

A. Energy and magnetization histograms
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FIG. 12. Bond-energy histogram for realization 31 At FIG. 14. Bond-energy histogram for the pure Ising model at the

=0.3267. infinite system size critical temperatuge=0.221 65.
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FIG. 15. The joint magnetization/bond-energy distribution for

realization 25 atA =0.35. FIG. 17. Magnetization histogram for realization 1+ 0.35

and the phase-transition point determined from fine tungg
tions 25 and 31 in the language of first-order transitions and0-268 385 andd=0.001 270 49.
declare the low-energy side lobes as ordered phases and the
central lobe as a disordered phase. from the fine-tuning procedure. A comparison to Fig. 7

The importance of fine tuning the magnetization and temshows that increasing the disorder has sharpened the five-

perature for each realization of disorder is illustrated in Figspeaked structure of the magnetization histogram. It would be
17-20. The magnetization histogram for realization 1 at thénteresting to carry out a systematic study of stronger disor-
fine-tuned parameter valuesB.=0.268385 and H, der to see if there is a trend toward more “first-order”-like
=0.001 27049, is shown in Fig. 17. Note, that this value oftehavior. However this will require developing a better fine-
H, is not the same as the value that would be obtained b{uning mechanism.
summing the local fields. For realization one, that value is Overall, out of 21 realizationéseeds 10—30at disorder
almost 50% larger,— A3 h,/N=0.001787 74. Figure 18 strengthA=0.35, we found that the average values of the
shows realization 1 with the same external field but with thecritical parameters i¢g.)=0.2663 and H) = 0.0006(com-
temperature raised by 5% leaving only the disorderedpared with initial values before the feedback procedure of
phases. Figure 19 shows realization 1 with the same extern@=0.2670 andH=0) with a standard deviations afg
field but the temperature decreased by 5%. Although, the=0.0037 andoy=0.0031. The standard deviation Hif; is
external field is too negative here, it is nonetheless clear thaonsistent with the anticipated valug,~AL ~%?=0.0030.
the two ordered phases are now dominant over the disor-
dered phase, which has nearly vanished. Finally, if the exter- B. Dynamics of the algorithm

nal field is set to 0 and the feedback temperature is used, \ya have studied the dynamics of the replica-exchange

only the negative peak survives, as shown in Fig. 20. algorithm and compared it to the Metropolis algorithm.
We considered several realizations at stronger d'sordeﬁ’here are two ways of comparing the algorithms. First, time

Figure 21 shows the magnetization histogram for realizatiorban be measured by Monte Carlo sweeps. This approach fa-
1 at dlsorderA=O.433 at the value qf eX‘eF”a' field and vors the replica-exchange algorithm since a single Monte
temperature _determlnepl from the fine-tuning procedurecg, 4 sweep involves flipping spins in matiyere 16 repli-
Comparing Fig. 21 tOdF'g'dlz]’ we SEe éhat the tf;ree—peake%s and since growing clusters is computationally more in-
structure is conserved and the peaks become sharper as fGgjye than flipping single spins. The second approach is to
strength of the disorder is increased. In this experiment, We,mpare actual running time for the two algorithms on the
used 16 rep"Cf?s W'th. maximum d|sorQer strengihz 0.5, ggme computer. This approach ignores the possibility that the
However, the fine-tuning procedure failed for the two most, g 5150rithm is better optimized and it is not an appropriate

disordered replicas and only yielded the minus phase. In gefly,y 1 measure fundamental quantities such as the dynamic

eral, the feedback procedure was less stable for stronger diékponent, however it does give a practical comparison and is

order. Figure 22 shows realization 14 at disqrder 0.5 at_ gseful for deciding which algorithm to choose for a given
the values of the temperature and external field determine

60

-0.3 50
9
§ -0.32 5 40
:
By —
o 7o S 20
g -038} &
b5} o4 . 10

’ . .‘ L) 0 J’\hM A
-04 -0.2 0 0.2 04 -1 -0.5 0 0.5 1
magnetization per spin magnetization per spin

FIG. 16. The joint magnetization/bond-energy distribution for ~ FIG. 18. Magnetization histogram for realization 1t 0.35
the pure Ising model at the infinite system size critical temperatur@and 8=0.267 041 (5% warmer thaB. determined for realization
B.=0.22165. 1) andH.=0.001 270 49.
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FIG. 19. Magnetization histogram for realization 1/a¢0.35 FIG. 21. Magnetization histogram for realization 1 At
andpB=0.269 727 (5% colder tha#, determined for realization)1 -0 433 at temperature and external field determined from fine tun-
andH.=0.001270 49. ing, 8,=0.289 176 and4,=0.001 580 05.

system size. For 24systems with 16 replicas with maximum e simulation samples each of the states many times. The
disorderA=0.35 on a 450 MHz Pentium Ill machine, we cqnclusion is that for most realizations of disorder, at size
find that the replica-exchange algorithm runs at about 0.5643 there is no great practical advantage to using the replica
sec/sweep and that our implementation of the Metropolis algychange algorithm but that for cases where well separated
gorithm runs at about 0.0088 sec/sweep. As is the case fopgions are present in the joint distribution, only the replica

the equilibrium properties of the system, we find great dif-exchange algorithm is able to reach equilibrium within rea-
ferences in the dynamics depending on the realization of dissgnaple simulation times.

order. These differences are much more pronounced for the
Metropolis algorithm. We measured the integrated autocor-
relation time for the magnetization for realization 20 for both
algorithms with the result7Verolis=6000 and rPlica One of the chief motivations for this paper was to deter-
=1100 when measured in Monte Carlo sweeps. The advanwnine the nature of the RFIM phase transition. Unfortunately,
tage of the replica exchange algorithm is lost however whemur results fail to settle this question. What would we have
these times are converted to running timgéetorolis=53 sec  expected from the different scenarios for the phase transi-
and 7'°P®®=616 sec. The joint energy/magnetization histo-tion? If the transition is first order we should find three
gram for realization 20 is smooth and without gaps suggestphases in coexistence at the transition point. The high-
ing that there are no global energy barriers separating regioismperature phase would have little magnetization and a
of phase space. At the other extreme is realization 31 folarge bond energy while the two low-temperature phases
which the joint energy/magnetization distribution is split into would have large absolute values of magnetization, one posi-
three pieces separated by gaps where the probability is vetive and the other negative, and small bond energies. This
small. Using the parameters for realization 31, determined bgituation is exactly what is seen in roughly 10% of realiza-
fine tuning forA =0.3267, we did a long Metropolis run of tions. For systems much smaller thar? 2three phase coex-
100 million Monte Carlo sweeps starting from random initial istence is not seen simply because the magnetization distri-
spins. The simulation stayed mainly in the “0” state with bution is too broad to display three distinct peaks. One
two excursions to the 4 state. The “— state was never hypothesis is that, as system size becomes large, the fraction
visited. On the other hand, two Metropolis runs of 20 million of systems displaying three phases increases and that, in the
sweeps starting from all spins up and all spins down went téhermodynamic limit, the transition &= 0.35 is first order.

the “0” and “ —" states, respectively, and stayed there for However, the existence of realization 14 with its five peaks is
the entire simulation. Figure 23 shows the magnetizatiorifficult to reconcile with this viewpoint.

time series from the replica exchange algorithm for realiza- If the transition is continuous and follows the droplet
tion 31 for 800000 sweeps. Although it is difficult to esti- model scenarig6,8,29 we would expect two peaks in the
mate the autocorrelation time from this series, it is clear thathagnetization histogram corresponding to two states of a

IV. DISCUSSION
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FIG. 20. Magnetization histogram for realization 1 At FIG. 22. Magnetization histogram for realization 14\at 0.5 at

=0.35, 5.=0.267 041, andH=0. temperature and external field determined from fine tuning.
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are different states that are part of a single critical phase.
This comes down to the question of whether the peaks in the
magnetization histogram move toward the origirLas « or
remain at finite values. Unfortunately, the consensus is that
the magnetization exponent, if it is not actually zero, is very
tiny so that the decrease in magnetization with system size
would be far too weak to observe in simulations.

|-_4.o:|! wl &' .1,.&,‘; .n P ."

magnetization per spin

0 2 4 6 8
MC sweeps x 105

V. CONCLUSIONS

We have studied the phase transition of the random field
Ising model by Monte Carlo simulation of systems of size
243 using a new cluster algorithm. We find major qualitative
differences between the behavior of different realizations of
single critical phase. The width of each peak should scale agisorder. Some realizations display a broad two-peaked mag-
L~*"* and the separation between the peaks should scale astization histogram consistent with a continuous transition,
L A" The majority of our disorder realizations display two while a small fraction display a three-peaked structure con-
peaks and an alternative to the first-order transition hypothsistent with a first-order transition. Our main conclusion is
esis is that, as system size increases, the fraction of realizgaat more work needs to be done to determine the nature of
tions with two peaks in the magnetization histogram ap-the transition. It would be very useful to study larger system
proaches 100%. Although the original droplet modelsizes and stronger disorder to determine whether there are
envisioned two states with roughly the same energy and difirends in the qualitative features of the phase transition. Does
fering by flipping a critical cluster of spins, it is possible to the fraction of “first-order” systems increase as disorder or
imagine more complicated droplet pictures where there argystem size increases? It will require improvements of the
sometimes more than two states in the critical phase andigorithm including the fine-tuning technique or substantially
therefore more than two peaks in the magnetization histomore computer power to resolve these questions.
gram. However, our five realizations that display more than
one peak in the bond-energy histogram are difficult to rec-
oncile with the droplet model since one expects the states,
however many there are, to be nearly degenerate in bond We thank Pozen Wong and Robert Swendsen for useful
energy. discussions. This work was supported by NSF Grant Nos.

Ultimately, the essential difference between the first-ordeDMR-9978233(J.M.) and DMS-9971016L.C.) and NSA
scenario and the droplet model continuous-transition scecrant No. MDA904-98-1-0518(L.C.). J.M. thanks the
nario is whether there are distinct phases at the transitiopeople at Santa Fe Institute for their hospitality during a visit
point or whether the peaks in the magnetization histogranin which some of this work was carried out.

FIG. 23. Magnetization time series for realization 31 fr
=0.3267.
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