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Graphical representations and cluster algorithms for critical points with fields
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A two-replica graphical representation and associated cluster algorithm are described that are applicable to
ferromagnetic Ising systems with arbitrary fields. Critical points are associated with the percolation threshold
of the graphical representation. Results from numerical simulations of the Ising model in a staggered field are
presented. For this case, the dynamic exponent for the algorithm is measured to be less than 0.5.
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Monte Carlo simulations of equilibrium critical points are large clusters that are dynamically frozen. As a result, the
have been revolutionized by cluster methdds-4]. These qualitative gains expected from cluster methgdsaracter-
methods effectively reduce critical slowing for a broad classzed by a small value of the dynamic exponeate not real-
of spin models. However, cluster methods developed thus fazed. Nonetheless, limited quantitative success has been
are efficient only for systems with a high degree of internalachieved for the random field Ising model by hocmeth-
or translational symmetry. In this paper we show how toods that restrict the cluster siz8].
construct graphical representations and associated cluster al- In this paper we present a graphical representation and
gorithms appropriate for ferromagnetic Ising systems in theassociated cluster algorithm with the property that the perco-
presence of fields. We demonstrate the method for the Isinfgtion transition in the graphical representation coincides
system in a staggered field. with the ordering transition in the spin system. Furthermore,

The Swendsen-Wang cluster algoriti2] as applied to at criticality, the large-scale clusters are free to flip. We
the Ising model updates both spin variables and bond variachieve this by using a replica method related to the replica
ables. Starting from a spin configuration, satisfied bonds arglonte Carlo approaches that have been applied with some
occupied with probabilityp=1—e~?#, whereg is the in-  success to spin glassE®-11]. We also note a related cluster
verse temperature. A bond satisfiedif the spins at its two  method[12—14, in which the system is “folded” on itself
ends agree. Clusters of spins connected by occupied bondgq pairs of sites are used to make clusters.
are identified. Each cluster is randomly assigned a new spin The jdea of our algorithm is as follows. Two independent
value and each spin in the cluster takes that value. This congjicas of the system in opposite fields are simulated simul-

stitutes one 'V'O.”te Carlo step. The eff!mency of the met.hoqaneously. Each site of the lattice is therefore associated with
is associated with the fact that the critical point of the IsmgtWO spins, one from each replica, and can be in one of four

model coincides with the percolation point of the graphical _ . .
. ; .. spin states £ +), (——), (+—), and (—+). Sites where
model described by the bond variablés6]. Thus, at criti ihe replicas disagreeH{~) and (- +), are calledactive

cality, spin clusters are coherently updated on all length'. . . .
Y, SP y up g sites. Clusters of active sites are constructed and flipped. Al-

scales. . . :
A fundamental problem is encountered in applying thel0Wed cluster flips interchange+(—) with (—+). Addi-

Swendsen-Wang method when fields are present. Clustef@nal updating is applied independently to each replica to

can be defined in the usual way, but then the fields must bgnsure ergodicity. Since there is no net field on active clus-

accounted for in determining the probability of flipping clus- t€rs these flip freely. It turns out that percolation of active

ters. Fields may be introduced directly via a Boltzmann facClusters signals the onset of long-range order.

tor [7] or via ghost bonds. In either case, large clusters will The plan for the remainder of the paper is as follows. First

tend to be “frozen” in the sense that they almost always takeve construct a joint distribution of the Edwards-Sokab]

one spin value. Because large clusters are frozen, equilibrdype whose spin marginal is two independent Ising models.

tion occurs slowly on large length scales. In addition, theNext we indicate why percolation of the associated graphical

percolation transition of the graphical representation typi+epresentation coincides with the onset of magnetic ordering

cally occurs in the disordered phase so that at criticality therén the spin system. We then describe a cluster algorithm that
simulates this joint distribution and present numerical results
for the Ising model in a staggered field. Finally, we discuss

*Permanent address: Department of Physics and Astronomy, Ungeneralizations of the method.
versity of Massachusetts, Amherst, MA 01003-3720. The Hamiltonian for the Ising model is
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probability thati is connected to the boundary and the onset

Hlo]= _GE‘> Uiﬂj—Z Hioi, (1) of long-range order coincides with percolation. For a more
! detailed argument, sda7].
where the spin variables; take the valuest 1. The first Our replica cluster algorithm simulates two independent

summation is over the bonds of the latti@, more gener- ISing modelso and 7 on the same lattice and in the same
ally, an arbitrary graph The second summation is over the field. Sitesi at which o+ 7 are calledactive sites. Bonds
sites of the lattice and the fields; are arbitrary. The Ising (i.J) connecting like spins in both replicas (= o; and 7;

model on a square lattice in a staggered fi@d equiva- = 7j) are calledsatisfiedbonds. o

lently, the Ising antiferromagnet in a uniform figles ob- ~ Step 1 Satisfied bonds connecting active sites are occu-
tained by settingd;=+H if i is in the even sublattice and Pied with probabilityp=1—e~"". _
H,=—H if i is in the odd sublattice. Step 2 Clusters of active sites connected by occupied

We now define a joint distribution of two sets of Ising bonds(including single active sitgsare identified. Thekth
spin variablego;} and{r;} and a bond variabléz;;}. The ~ cluster is independently assigned a spin valie £ 1 with
bond variable is defined for each bofidj) and takes values Probability 1/2. If sitei is in clusterk, then the new spin
0 and 1. We say thaf,j) is occupiedif 7,;=1. The statis- values arer;=s, and 7= —sy. In this way all active sites

tical weightX(a,, 7) for the joint distribution is are updated. o _
Step 3 Each replica is independently updated in a way

that preserves detailed balance and ensures ergodicity. This
X(o,T, n)=exp( —,32 oimojT+ B Hi(oi+ ) completes one Monte Carlo step.
(L ' Without step 3, the algorithm is not ergodic, since the sum
XA(o,7,7)By(7). 2) o;+ 7 is locally conserved. Step 3 can be implemented in
many ways. For example, each replica can be separately up-
B is the standard Bernoulli factor dated using the Metropolis algorithm. For the staggered field
model in periodic boundary conditions we can effect further
Bp(7)=pl7(1—p)No~17, (3)  mixing by translating the- replica by a random amount rela-

tive to theo replica. If the translation is an odd vector, all

| 7|=#{(i,j)|7;=1} is the number of occupied bonds, and spins are flipped. Since the Hamiltonian is invariant with
N, is the total number of bonds of the lattice. Thefactor  respect to even translations and odd translations plus spin
enforces the rule that only satisfied bonds are occupied: If foflips it is clear that the translation part of the algorithm sat-
every bond(i,j) such thaty;=1 the spins agree in both isfies detailed balancéNote that Metropolis sweeps are re-
replicas =0 and7;= 7)), thenA(o,7,77)=1; otherwise quired even with random translations because the net stag-
A(o,7,7)=0. Equation(2) is closely related to the “red- gered magnetizatiors=(=; o4g— =i even (o + 7;) is other-
blue” graphical representation of the Ashkin-Teller modelwise a conserved quantilyThe simulations reported here
given in Ref.[16]. It is straightforward to verify that inte- implement step 3 with both a Metropolis sweep and random
gratingX(o, 7, 7) over n yields the statistical weight for two translations.
independent Ising models in opposite fields, The validity of the algorithm is proved by showing that it
is ergodic and that the joint distributiof( o, 7, ) defined in
Eq. (2) is the stationary distribution of the algorithm. Ergod-
icity follows immediately from step 3. To prove stationarity
we observe that the steps 1 and 2 of the algorithm correspond
if the identification is made thgi=1—e A, to conditional probabilitie$15] associated wittX(o,7, 7).

Consider a two-replica spin system in which theeplica  Step 1 is the conditional probability of a bond configuration
has (+) boundary conditions and the replica has(—)  given a spin configuration. Note that the bonds connecting
boundary conditions. The local order parameter is the differinactive sites are not actually specified in the algorithm, but
ence between the magnetization of the two replicas, since bonds are independently occupied this is of no conse-
=((ay)—{7))/2. Observe that magnetization in a single quence. Step 2 is the conditional probability of the spin con-
Ising model in a field is not generally the correct order pa-figuration on the active sites given a bond configuration, a set
rameter because the field induces local magnetization even of active sites, and the spin configuration on the inactive
the disordered phase. By taking the difference between thgites.
magnetization of the two replicas with opposite boundary We simulated the square lattice, staggered field Ising
conditions, this contribution is canceled, leaving only themodel in periodic boundary conditions using the two-replica
spontaneous magnetization induced by the boundary condéluster algorithm described above. Data were collected for
tions. BH=0, 2, and 4 and for size in the range 16—256. Eath

Given a bond configuratios, we can ask for the condi- and BH was simulated for 50 000 Monte Carlo steps, drop-
tional probabilities for the spins. Due to thefactor in the  ping the first 5000. Figure 1 shows the probability that there
statistical weightg;=+1 and ;,=—1 if i is connected to is a spanning clustef as a function of temperatur€ for
the boundary by occupied bonds. On the other hand, due tgeveral system sizes an8H=2. Spanning is defined as
the symmetry of the exponential factor in the statisticalwrapping around the torus in either direction. The vertical
weight, a site that is not connected to the boundary is equallline is the high-precision value of . given in Ref.[18].
likely to be (+—) or (— +). Finally, (+ +) and (— —) spin  Figure 2 is a plot ofS versusc(BH)[T—T.(BH)]L of the
states do not contribute to; . Thusm; is exactlyequal to the data for all values of3H andL. Data collapse is achieved

e~ AHlal=BHIT = constx >, X(o,7,7) (4)
{n}
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FIG. 1. Spanning probability v§ for various system sizes amgH =2.

using T.(BH) from Ref. [18], c(0)=1, c(2)=2.64, and normalized autocorrelation function from time 1-200. The
c(4)=7.30. This figure illustrates that the model is in the system size dependence &f and 7, can be reasonably fit
Ising universality class independent BH. The fact thatS  either asAL? or asA+B log(L). For the whole range df,
—1/2 for large systems anb<T. is due to periodic bound- logarithmic growth gives a better fit visually. Fitting a power
ary conditions. For half of the Monte Carlo steps replicas ardaw for system sizes greater than 40, we find dynamic expo-
magnetized in the opposite directions preventing active clusaentsz,,=0.19+0.09 andz,=0.33+0.09 for BH=4 with
ters from spanning. These results provide a clear numericalearly identical results for the other two field values. The
verification that percolation in the two-replica representationquoted error is the statistical part and does not include sys-
is coincident with the critical point. tematic errors due to finite system size and finite cutoff in
The Table | shows the integrated autocorrelation time fosumming the autocorrelation function. A conservative con-
the absolute value of the magnetization of one repfigand  clusion is that 0(log¥z<0.5. It is clear that the algorithm
the net staggered magnetizatienversus system size. The achieves considerable acceleration over local dynamics,
integrated autocorrelation time is 1/2 plus the sum of thewherez=2. This is perhaps surprising in view of the fact
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FIG. 2. Spanning probability vs c(BH)[T—T.(BH)]L for all system sizes and three valuesgHi.
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TABLE |. Integrated autocorrelation times for the absolute tocorrelation times for the present algorithm show that they

value of the magnetization of a single repligg and the net stag-
gered magnetization of both replicag. For each entry, the one

standard deviation error is 13%.

BH=0 BH=2 BH=4
L Tm Tm Ts Tm T
16 9.3 10.7 8.1 17.1 15.0
24 14.5 14.8 12.6 22.2 19.9
32 17.5 20.4 15.6 28.2 23.6
40 22.1 27.2 23.9 22.4 21.0
48 28.2 31.3 26.6 315 29.4
56 29.6 27.8 22.6 36.1 34.3
64 28.6 34.0 30.6 304 27.3
80 325 34.9 35.6 30.2 29.8
96 35.5 36.2 31.0 36.2 37.2
112 29.6 38.6 36.4 38.8 43.0
128 30.0 35.9 35.9 36.7 40.1
144 35.9 37.4 37.5 37.7 43.0
160 35.3 375 35.0 40.9 47.6
192 42.6 37.0 36.7 42.9 46.3
256 37.8 44.4 48.4 40.1 46.9

are about twice the corresponding integrated autocorrelation
time.

In the case of a staggered field, we have made use of the
symmetries of the problem to incorporate as much mixing as
possible into step 3 of the algorithm. For systems such as the
random field Ising model that do not enjoy translational sym-
metries, local dynamics are all that is available to equilibrate
the average magnetization at each site. Thus the two-replica
algorithm may not be a qualitative improvement over local
dynamics alone. However, significant acceleration may be
achieved by using many replicas. Suppose we h&veaep-
licas {oM|I=1, ... K} all in the same fieldH;}. In each
Monte Carlo step, the replicas are randomly paired and the
two-replica cluster procedure is applied to each pair. Each
replica is also updated independently by some local ergodic
algorithm. The replica summed magnetization at each site
32K oV is conserved except by the local dynamics and so
may relax slowly to equilibrium. This implies that the aver-
age magnetization at any site may reach equilibrium slowly,
resulting in a large exponential autocorrelation time. How-
ever, once the equilibrium values of the magnetization are
reached, the fluctuations of the replica summed magnetiza-
tion are small for largeK and thus couple weakly to the
observables of individual replicas. This may vyield rapid
decorrelation and small values of integrated autocorrelation

that the algorithm uses local dynamics to break conservatiodmes. Note that in the two-replica simulations, we observed
of staggered magnetization. The autocorrelation times for th@exp t0 be about twicer;y.

present algorithm and the ordinary Ising mod@H=0) are
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