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Graphical representations and cluster algorithms for critical points with fields
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A two-replica graphical representation and associated cluster algorithm are described that are applicable to
ferromagnetic Ising systems with arbitrary fields. Critical points are associated with the percolation threshold
of the graphical representation. Results from numerical simulations of the Ising model in a staggered field are
presented. For this case, the dynamic exponent for the algorithm is measured to be less than 0.5.
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Monte Carlo simulations of equilibrium critical point
have been revolutionized by cluster methods@1–4#. These
methods effectively reduce critical slowing for a broad cla
of spin models. However, cluster methods developed thus
are efficient only for systems with a high degree of inter
or translational symmetry. In this paper we show how
construct graphical representations and associated cluste
gorithms appropriate for ferromagnetic Ising systems in
presence of fields. We demonstrate the method for the I
system in a staggered field.

The Swendsen-Wang cluster algorithm@2# as applied to
the Ising model updates both spin variables and bond v
ables. Starting from a spin configuration, satisfied bonds
occupied with probabilityp512e22b, whereb is the in-
verse temperature. A bond issatisfiedif the spins at its two
ends agree. Clusters of spins connected by occupied b
are identified. Each cluster is randomly assigned a new
value and each spin in the cluster takes that value. This c
stitutes one Monte Carlo step. The efficiency of the meth
is associated with the fact that the critical point of the Isi
model coincides with the percolation point of the graphi
model described by the bond variables@5,6#. Thus, at criti-
cality, spin clusters are coherently updated on all len
scales.

A fundamental problem is encountered in applying t
Swendsen-Wang method when fields are present. Clus
can be defined in the usual way, but then the fields mus
accounted for in determining the probability of flipping clu
ters. Fields may be introduced directly via a Boltzmann f
tor @7# or via ghost bonds. In either case, large clusters w
tend to be ‘‘frozen’’ in the sense that they almost always ta
one spin value. Because large clusters are frozen, equil
tion occurs slowly on large length scales. In addition,
percolation transition of the graphical representation ty
cally occurs in the disordered phase so that at criticality th
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are large clusters that are dynamically frozen. As a result,
qualitative gains expected from cluster methods~character-
ized by a small value of the dynamic exponent! are not real-
ized. Nonetheless, limited quantitative success has b
achieved for the random field Ising model byad hocmeth-
ods that restrict the cluster size@8#.

In this paper we present a graphical representation
associated cluster algorithm with the property that the per
lation transition in the graphical representation coincid
with the ordering transition in the spin system. Furthermo
at criticality, the large-scale clusters are free to flip. W
achieve this by using a replica method related to the rep
Monte Carlo approaches that have been applied with so
success to spin glasses@9–11#. We also note a related cluste
method@12–14#, in which the system is ‘‘folded’’ on itself
and pairs of sites are used to make clusters.

The idea of our algorithm is as follows. Two independe
replicas of the system in opposite fields are simulated sim
taneously. Each site of the lattice is therefore associated
two spins, one from each replica, and can be in one of f
spin states (11), (22), (12), and (21). Sites where
the replicas disagree, (12) and (21), are calledactive
sites. Clusters of active sites are constructed and flipped.
lowed cluster flips interchange (12) with (21). Addi-
tional updating is applied independently to each replica
ensure ergodicity. Since there is no net field on active cl
ters these flip freely. It turns out that percolation of acti
clusters signals the onset of long-range order.

The plan for the remainder of the paper is as follows. F
we construct a joint distribution of the Edwards-Sokal@15#
type whose spin marginal is two independent Ising mod
Next we indicate why percolation of the associated graph
representation coincides with the onset of magnetic orde
in the spin system. We then describe a cluster algorithm
simulates this joint distribution and present numerical res
for the Ising model in a staggered field. Finally, we discu
generalizations of the method.

The Hamiltonian for the Ising model is
ni-
2749 © 1998 The American Physical Society
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H@s#52(
^ i , j &

s is j2(
i

His i , ~1!

where the spin variabless i take the values61. The first
summation is over the bonds of the lattice~or, more gener-
ally, an arbitrary graph!. The second summation is over th
sites of the lattice and the fieldsHi are arbitrary. The Ising
model on a square lattice in a staggered field~or, equiva-
lently, the Ising antiferromagnet in a uniform field! is ob-
tained by settingHi51H if i is in the even sublattice an
Hi52H if i is in the odd sublattice.

We now define a joint distribution of two sets of Isin
spin variables$s i% and $t i% and a bond variable$h i j %. The
bond variable is defined for each bond^ i , j & and takes values
0 and 1. We say that̂i , j & is occupiedif h i j 51. The statis-
tical weightX(s,t,h) for the joint distribution is

X~s,t,h!5expS 2b(
^ i , j &

s it is jt j1b(
i

Hi~s i1t i ! D
3D~s,t,h!Bp~h!. ~2!

B is the standard Bernoulli factor

Bp~h!5puhu~12p!Nb2uhu, ~3!

uhu5#$^ i , j &uh i j 51% is the number of occupied bonds, an
Nb is the total number of bonds of the lattice. TheD factor
enforces the rule that only satisfied bonds are occupied: If
every bond^ i , j & such thath i j 51 the spins agree in bot
replicas (s i5s j andt i5t j ), thenD(s,t,h)51; otherwise
D(s,t,h)50. Equation~2! is closely related to the ‘‘red-
blue’’ graphical representation of the Ashkin-Teller mod
given in Ref.@16#. It is straightforward to verify that inte-
gratingX(s,t,h) overh yields the statistical weight for two
independent Ising models in opposite fields,

e2bH[s] 2bH[ t]5const3(
$h%

X~s,t,h! ~4!

if the identification is made thatp512e24b.
Consider a two-replica spin system in which thes replica

has ~1! boundary conditions and thet replica has~2!
boundary conditions. The local order parameter is the dif
ence between the magnetization of the two replicas,mi
5(^s i&2^t i&)/2. Observe that magnetization in a sing
Ising model in a field is not generally the correct order p
rameter because the field induces local magnetization eve
the disordered phase. By taking the difference between
magnetization of the two replicas with opposite bound
conditions, this contribution is canceled, leaving only t
spontaneous magnetization induced by the boundary co
tions.

Given a bond configurationh, we can ask for the condi
tional probabilities for the spins. Due to theD factor in the
statistical weight,s i511 and t i521 if i is connected to
the boundary by occupied bonds. On the other hand, du
the symmetry of the exponential factor in the statisti
weight, a site that is not connected to the boundary is equ
likely to be (12) or (21). Finally, (11) and (22) spin
states do not contribute tomi . Thusmi is exactlyequal to the
r
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probability thati is connected to the boundary and the on
of long-range order coincides with percolation. For a mo
detailed argument, see@17#.

Our replica cluster algorithm simulates two independ
Ising modelss and t on the same lattice and in the sam
field. Sitesi at which s iÞt i are calledactive sites. Bonds
^ i , j & connecting like spins in both replicas (s i5s j and t i
5t j ) are calledsatisfiedbonds.

Step 1. Satisfied bonds connecting active sites are oc
pied with probabilityp512e24b.

Step 2. Clusters of active sites connected by occup
bonds~including single active sites! are identified. Thekth
cluster is independently assigned a spin valuesk561 with
probability 1/2. If sitei is in clusterk, then the new spin
values ares i5sk and t i52sk . In this way all active sites
are updated.

Step 3. Each replica is independently updated in a w
that preserves detailed balance and ensures ergodicity.
completes one Monte Carlo step.

Without step 3, the algorithm is not ergodic, since the s
s i1t i is locally conserved. Step 3 can be implemented
many ways. For example, each replica can be separately
dated using the Metropolis algorithm. For the staggered fi
model in periodic boundary conditions we can effect furth
mixing by translating thet replica by a random amount rela
tive to thes replica. If the translation is an odd vector, allt
spins are flipped. Since the Hamiltonian is invariant w
respect to even translations and odd translations plus
flips it is clear that the translation part of the algorithm s
isfies detailed balance.@Note that Metropolis sweeps are re
quired even with random translations because the net s
gered magnetizations5(( i odd2( i even)(s i1t i) is other-
wise a conserved quantity.# The simulations reported her
implement step 3 with both a Metropolis sweep and rand
translations.

The validity of the algorithm is proved by showing that
is ergodic and that the joint distributionX(s,t,h) defined in
Eq. ~2! is the stationary distribution of the algorithm. Ergo
icity follows immediately from step 3. To prove stationari
we observe that the steps 1 and 2 of the algorithm corresp
to conditional probabilities@15# associated withX(s,t,h).
Step 1 is the conditional probability of a bond configurati
given a spin configuration. Note that the bonds connect
inactive sites are not actually specified in the algorithm,
since bonds are independently occupied this is of no con
quence. Step 2 is the conditional probability of the spin co
figuration on the active sites given a bond configuration, a
of active sites, and the spin configuration on the inact
sites.

We simulated the square lattice, staggered field Is
model in periodic boundary conditions using the two-repl
cluster algorithm described above. Data were collected
bH50, 2, and 4 and for sizeL in the range 16–256. EachL
andbH was simulated for 50 000 Monte Carlo steps, dro
ping the first 5000. Figure 1 shows the probability that the
is a spanning clusterS as a function of temperatureT for
several system sizes andbH52. Spanning is defined a
wrapping around the torus in either direction. The vertic
line is the high-precision value ofTc given in Ref. @18#.
Figure 2 is a plot ofS versusc(bH)@T2Tc(bH)#L of the
data for all values ofbH and L. Data collapse is achieve
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FIG. 1. Spanning probability vsT for various system sizes andbH52.
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using Tc(bH) from Ref. @18#, c(0)51, c(2)52.64, and
c(4)57.30. This figure illustrates that the model is in t
Ising universality class independent ofbH. The fact thatS
→1/2 for large systems andT,Tc is due to periodic bound
ary conditions. For half of the Monte Carlo steps replicas
magnetized in the opposite directions preventing active c
ters from spanning. These results provide a clear nume
verification that percolation in the two-replica representat
is coincident with the critical point.

The Table I shows the integrated autocorrelation time
the absolute value of the magnetization of one replicatm and
the net staggered magnetizationts versus system size. Th
integrated autocorrelation time is 1/2 plus the sum of
e
s-
al
n

r

e

normalized autocorrelation function from time 1–200. T
system size dependence ofts and tm can be reasonably fi
either asALz or asA1B log(L). For the whole range ofL,
logarithmic growth gives a better fit visually. Fitting a pow
law for system sizes greater than 40, we find dynamic ex
nentszm50.1960.09 andzs50.3360.09 for bH54 with
nearly identical results for the other two field values. T
quoted error is the statistical part and does not include s
tematic errors due to finite system size and finite cutoff
summing the autocorrelation function. A conservative co
clusion is that 0(log)<z,0.5. It is clear that the algorithm
achieves considerable acceleration over local dynam
where z>2. This is perhaps surprising in view of the fa
FIG. 2. Spanning probabilityS vs c(bH)@T2Tc(bH)#L for all system sizes and three values ofbH.
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that the algorithm uses local dynamics to break conserva
of staggered magnetization. The autocorrelation times for
present algorithm and the ordinary Ising model (bH50) are
roughly a factor of 5 larger than for the Swendsen-Wa
algorithm; however, further study is needed to determ
whether the two algorithms share the samez. On the other
hand, in the presence of a staggered field, autocorrela
times for both the Swendsen-Wang algorithm and the tw
replica algorithm without translations are much larger th
the values obtained here. Rough estimates of exponentia

TABLE I. Integrated autocorrelation times for the absolu
value of the magnetization of a single replicatm and the net stag-
gered magnetization of both replicasts . For each entry, the one
standard deviation error is 13%.

bH50 bH52 bH54
L tm tm ts tm ts

16 9.3 10.7 8.1 17.1 15.0
24 14.5 14.8 12.6 22.2 19.9
32 17.5 20.4 15.6 28.2 23.6
40 22.1 27.2 23.9 22.4 21.0
48 28.2 31.3 26.6 31.5 29.4
56 29.6 27.8 22.6 36.1 34.3
64 28.6 34.0 30.6 30.4 27.3
80 32.5 34.9 35.6 30.2 29.8
96 35.5 36.2 31.0 36.2 37.2

112 29.6 38.6 36.4 38.8 43.0
128 30.0 35.9 35.9 36.7 40.1
144 35.9 37.4 37.5 37.7 43.0
160 35.3 37.5 35.0 40.9 47.6
192 42.6 37.0 36.7 42.9 46.3
256 37.8 44.4 48.4 40.1 46.9
, J
n
e

g
e

on
-

n
u-

tocorrelation times for the present algorithm show that th
are about twice the corresponding integrated autocorrela
time.

In the case of a staggered field, we have made use of
symmetries of the problem to incorporate as much mixing
possible into step 3 of the algorithm. For systems such as
random field Ising model that do not enjoy translational sy
metries, local dynamics are all that is available to equilibr
the average magnetization at each site. Thus the two-rep
algorithm may not be a qualitative improvement over loc
dynamics alone. However, significant acceleration may
achieved by using many replicas. Suppose we have 2K rep-
licas $s ( l )u l 51, . . . ,K% all in the same field$Hi%. In each
Monte Carlo step, the replicas are randomly paired and
two-replica cluster procedure is applied to each pair. E
replica is also updated independently by some local ergo
algorithm. The replica summed magnetization at each
( l 51

2K s i
( l ) is conserved except by the local dynamics and

may relax slowly to equilibrium. This implies that the ave
age magnetization at any site may reach equilibrium slow
resulting in a large exponential autocorrelation time. Ho
ever, once the equilibrium values of the magnetization
reached, the fluctuations of the replica summed magnet
tion are small for largeK and thus couple weakly to th
observables of individual replicas. This may yield rap
decorrelation and small values of integrated autocorrela
times. Note that in the two-replica simulations, we observ
texp to be about twicet int .
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