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Phase transitions of fluid mixtures of the type introduced by Stillinger and Helfand are studied using a
continuum version of the invaded cluster algorithm. Particles of the same species do not interact, but particles
of different types interact with each other via a repulsive potential. Examples of interactions include the
Gaussian molecule potential and a repulsive step potential. Accurate values of the critical density, fugacity, and
magnetic exponent are found in two and three dimensions for the two-species model. The effect of varying the
number of species and of introducing quenched impurities is also investigated. In all the cases studied,
mixtures ofg species are found to have properties similagistate Potts models.

PACS numbgs): 47.10+g, 05.50+q, 64.60.Fr, 75.10.Hk

[. INTRODUCTION der by randomly adding fixed scattering centers. There are
general argumentfs] that quenched disorder causes first-
Several years ago Stillinger and Helfalid2] introduced  order transitions to become continuous. These arguments
a simple but nontrivial model of fluid demixing. Their origi- hold rigorously for 2D Potts model$], but have not been
nal model consists of a binary mixture AfandB particles.  studied for continuum models.
Particles of the same type do not interact with one another, In previous work[7] cluster Monte Carlo methods were
but A andB particles interact with a repulsive potential such applied to the Widom-Rowlinson modé8]. The Widom-
that the Mayeif function is a Gaussian. This choice for the Rowlinson and Stillinger-Helfand models are closely related,
AB potential, known as the Gaussian molecule potentialthe only difference is that the Widom-Rowlinson model has
greatly simplifies the calculation of virial coefficients and a hard-core interaction between different species. In this pa-
most work for this potential has been done using series mettper, the invaded cluster Monte Carlo method introduced in
0ds[3,4]. The main motivation for this work was to confirm Ref. [7] is extended to soft-core repulsive potentials and is
Ising universality for the critical exponents of continuum used to find the phase transition point for a given tempera-
systems. ture without prior knowledge of the critical fugacity. The
In this paper we study the Stillinger-Helfand model andinvaded cluster method has almost no critical slowing for the
some of its generalizations using cluster Monte Carlo methWidom-Rowlinson model, and we find that similar results
ods. Where possible, we compare our results to the seridwld for the Stillinger-Helfand models studied here.
analyses and to results for the Ising-Potts universality
classes. Although the Gaussian molecule potential yields a II. DESCRIPTION OF THE MODELS AND NOTATION
more tractable virial expansion, it is easier to implement a ) o , ,
cluster algorithm for the repulsive step potential. We also e consideq component §=1) fluids ind dimensions
consider a generalization of the Stillinger-Helfand model toWith d=2,3. The componentgspecies have no self-
q speciescomponents such that particles of the same spe- interaction but pgmclgs of one species mt_e-ract with particles
cies do not interact but particles of different species interacPf all other species via an isotropic repulsive poteritlgr).
with a repulsive potential. We expect that this generalizatioVe consider two choices fas(r),
will be in the same universality class as thestate Potts .
= . Uy if r<o,
model_forq not too Ia_rge and another motivation for this Ustef )=
study is to confirm this correspondence. For example, we 0
know that the two-dimensiondPD) Potts model forg>4 -
has a first-order transition. Does thgcomponent 2D Ugn(r)=—kTIn(1—e™" lo%y, (2.1b
Stillinger-Helfand model also have a first-order transition for

g>47? In addition, we consider the effect of quenched disor-The limit 3=1/kT— for the step potential corresponds to
the Widom-Rowlinson model. For the Gaussian molecule

potential, the temperaturE plays no role because the Bolt-
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In general, each component of theeomponent fluid may  ticles of the same type with a probability that depends on the
have a distinct fugacity; however, symmetry considerationdemperature and the interaction potential. Instead of flipping
dictate that a demixing transition occurs with all fugacitiesspins, clusters of particles are removed from the system and
equal, and hence we set all the fugacities equal to a singlinen new particles are added via a nonuniform Poisson pro-
value z. For sufficiently smallz, the q species are mixed, cess that depends on the fugacity and the potential due to the
while for largez, there areg distinct phases because different remaining particles.
species repel one another, with each phase predominately Cluster algorithms are typically used with fixed values of
composed of one species.dfis not too large, there is ex- the external parameters such as temperature or fugacity.
pected to be a single demixing transition separating thesklowever, when the location of the phase transition is not
regimes that is in the same universality class ascisgate  known, much computational effort in studying the transition
Potts model. is spent in locating the transition. To avoid this problem,

For very largeq, the correspondence between Potts mod-invaded cluster methods can be u§&8,19 which automati-
els and Widom-Rowlinson models must break down. Al-cally adjust a thermodynamic parametér example, tem-
though Potts models have a single ordering transitionperature or fugacityto its value at the phase transition. This
Widom-Rowlinson models can be presumed to have an inadjustment is accomplished by using the fgobved for the
termediate crystalline phase fde=3 and largeg. To under- g=2 casg|15]) that the clusters just percolate at the transi-
stand this phase, consider the limit€1 andg>1, with the  tion. In invaded cluster algorithms, clusters are grown until a
product A =qz order unity. Then nonoverlapping particles signature of percolation is observed. The value of the ther-
appear with an effective fugacity of. However, when two modynamic parameter at the transition is an output of the
particles overlap, the cost is an additional factor af b&-  simulation obtained from the fraction of successful attempts
cause the overlapping particles must be of the same specide. add particles or bonds to the system. The invaded cluster
Hence the limiting model is precisely the hard sphere gasilgorithm also may be used to distinguish first-order from
which we presume has a crystalline phaselia3 [9]. Itis  continuous transitions as discussed in HéR] for Potts
therefore reasonable to assume that such a phase occursmdels. This method for distinguishing the order of the tran-
the Widom-Rowlinson models for larggandz of orderq™.  sition is discussed below and will be used in Sec. IV C.
Needless to say, for fixegl when the fugacity is sufficiently We first describe the cluster algorithm discussed in Sec.
large, the model will demix, and thus the crystalline phase 3.5 of Ref.[15] for Stillinger-Helfand models and then dis-
an intermediate phase. We also expect an intermediate crystss how it can be modified to be an invaded cluster algo-
talline phase for largg soft-core Stillinger-Helfand models rithm. We assume that we have a configuration consisting of
based on a mapping to a single component fluid with a reparticle positions and a set of bonds connecting some of the
pulsive soft-core potential. For example, the Gaussian corparticles and describe how to obtain the next configuration:
model[10] is known to crystallize ird=3. Although inter- (1) Identify all clusters of particles defined by the bonds.
mediate phases do not occur for the usual Potts models, théy particle with no bonds is considered to be a singleton
are not a consequence of the continuum; indeed such phasglgster. For each cluster, independently and with probability
are known to occur on the lattice for the site-diluen-  1/q, label it ablackcluster and with probability + 1/q label
nealed Potts model$11] as well as for the lattice version of it white
the Widom-Rowlinson moddl12]. (2) Remove all particles in black clusters. The remaining

white particles are at a set of positions
(3) Replenish the black particles via a Poisson process
Ill. CLUSTER ALGORITHM with local intensityy(x) given by

The algorithms used here are, broadly speaking, examples y(x)=ze AV (3.13
of cluster algorithms of the type first introduced by Swend- ' '
sen and Wang13,14. Cluster algorithms have been found
to be much more efficient than local algorithms such as the V(X)= E U(|x—yl), (3.1b
Metropolis algorithm for simulating spin systems and lattice yeWw
gases near critical points. Cluster algorithms would be ver
useful for off-lattice systems, but no general cluster metho
has yet been developed; indeed, thdy off-lattice models
for which highly efficient cluster methods are known are
models of the Stillinger-Helfand and Widom-Rowlinson p(r)=1—-e AYM), (3.2
type. The distinguishing features of this class of models are
that particles of the same species have no self-interaction adherer is the separation between the particles. Note that
that there is a purely repulsive interaction between particlep(r) is minus the Mayef-function for the potential.
of different species. In this case, graphical representations (5) Eliminate the white and black labels for the clusters.
and cluster algorithms are availaljtts—17 and have been This procedure comprises one Monte Carlo step.
implemented for the Widom-Rowlinson modé]. Given a configuration of particle positions and bonds

Cluster algorithms for spin systems work by identifying without species labels, it is possible to obtain a full multi-
clusters of spins and then randomly flipping these clusterscomponent configuration where each particle has a species
Cluster are defined by placing bonds between nearest neiglabel. This assignment is accomplished by identifying clus-
bor aligned spins with a probability that depends on the temters and then randomly and independently assigning one of
perature. For fluid systems, bonds are placed between pathe g species labels to each cluster. The species label of each

herez is the fugacity andJ(r) the potential.
(4) For each pair of black particles, place a ne&ond
between them with probabilitp(r) given by
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particle is taken to be the species label of its cluster. Thi;iumber of attempted particle placements in a Monte Carlo
labeling of particles is only possibledfis a positive integer.  step, including both accepted and rejected placemefitis
However, the algorithm makes sense forgg 1, in analogy  the system volume, and the brackeéts- ) indicate an aver-
to the relation between Potts models, which are defined foage over the simulation. Because the intengity), defined
positive integen, and random cluster models which interpo- in Eq. (3.1a, and the Boltzmann factoe™#¥® governing
late between them and are defined forcatt 1. particle placements differ by a factor of the fugacity, we
It is instructive to consider the nature of the cluster con-conclude that is an estimator ot , the value of the fugac-
figurations generated by the algorithm as a function of thty at the transition. Note that if the fluctuations in Ny, /L9
fugacity for a fixed temperature. Suppose that the fugacityyre small, then the invaded cluster algorithm is essentially
and, hence, the density is very small. Them) is typically  jgentical to the fixed fugacity algorithm operatingzt z .
small because the particles are far apart, and most clustefgjs identification justifies the use of the invaded cluster
are singletons. In step 2, a fractionqléf the particles is  method. A more complete discussion of the invaded cluster

removed. In step 3, particlqs are replgnished asa nearly ideﬁ"lethod and the use afas an estimator of a critical param-
gas because the exponential factor in E2j19 is a small eter is given in Ref[19].

perturbation except in the v_icinity of the remaining particles. Whenever the invaded cluster method simulates a system
IT'h('at erf1d| resul? IS a.?earl)é |?jeal _rtnult|componetnt gaﬁ. In t.h%t its critical point, scaling methods can be used to obtain
Imit of largeé fugacity and density, we expect a phase g .., exponents from the size dependence of divergent

dominant species are sufficiently dense that almost all mem-

bers of this species are in a single large cluster. The minority 1
species are almost all in widely scattered singleton clusters. X= _d< E 3.2> (3.9
When the majority species is white, as occurs in abogiot/ Lo\ i

the Monte Carlo steps, the large cluster is removed and then ) i o

replaced as a nearly ideal gas in a slightly perturbed back¥heres; is the number of particles in thén cluster. We now

ground potential generated by the minority species. An im_show_ thap(_ is related_ to th_e usual s_usceptlblllty. C_o_nS|der,

portant feature of this picture is that the clusters do not perfor Simplicity, the discretized version of the Stillinger-

colate at small fugacity and do percolate at large fugacity. At1elfand model on a lattice of linear dlmensdlhrwnh spac-

some intermediate value of the fugacity, there must be #19 € SO that the total number of sites is/f)®. The demix-

percolation transition. As discussed in Refs5,20,21, the NG order parameter at site is given by p;(x)=n(x)

percolation transition of the clusters coincides with the de-—N(X)/q, wheren,(x)=1 if there is a particle of type 1 at

mixing transition of the fluid. sitex andn;(x) =0 otherwisen(x) counts theBresence of a
The coincidence of the percolation transition and the departicle ofanytype. The relevant susceptibility is defined

mixing transition justifies an invaded cluster version of theby the second derivative of the pressure with respect to the

above cluster algorithm. The invaded cluster algorithm is(ordering chemical potential

very similar to the fixedz cluster algorithm described above

except that step&) and(4) are modified as follows. Instead ~ 1

of putting down new black particles as a Poisson process at a X= Ld xzy (0p1(X) pa(y))- 3.5

fixed intensity, black particles are added to the system one at '

a time according to the potentiad(x) (see below After  [The reason that¢ does not enter explicitly into EG3.5) is
each black particle is added, bonds between the new particiat the derivatives are with respect to the log of the activity
and all previously placed black particles are put down withand it is the activity that is scaled hy] For a given particle
probability p(r)=1—exg —BU(r)]. The black clusters de- and bond configuration, averaging over assignments of spe-
fined by these bonds are monitored after each particle igjes labels, it is clear thaip,(x) 8p1(y) vanishes unless the
added, and the process of adding particles is stopped whensgesx andy are both occupied and in the same cluster, in
stopping conditions satisfied. For simulating the phase tran-yhich case the result i 2(q—1). Thus, for a fixed
sition, the stopping condition is that one clustpansthe  particle-bond configuration, we obtain the number of par-

system. For periodic boundary conditions, spanning is takeficles in the cluster ax if we sum overy. Summing overx

to mean that a cluster wraps around the system in at least one - ~
Lo . ey elds the sum of the squares of the cluster sizes sojhat
of the d directions. The spanning condition insures that they q A

-2 ;
- ; . =q “(q—1)x, and hence we conclude thgatis related to
algorithm simulates the phase transit{dr®)]. L . O . .
In practice, a particle is added to the system according tthe usual susceptibility. Finally, finite size scaling predicts

the potentialV(x) by the following procedure. A particle is at

tentatively placed at a random positignA random number x~LY7, (3.6)

r is chosen in the interv4l,1), and the particle placement is

accepted if so that the scaling o with system size can be used to
extract the magnetic exponemnt

r<e AVX: (3.3 Cluster methods also may be used to distinguish first-

order from continuous transitions. For this purpose, a fixed

otherwise the particle is rejected and another attempt is mad#ensity stopping rule is used. Black particles are added to the

to place a particle. Lez=(N,,/L9), whereN,, is the total  system until the density reaches a fixed value and theiis
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measured. In this way the canonical ensemble is simulated TABLE I. The L dependence of the number of particles in the
rather than the grand canonical ensemble. This procedure #anning clusteM, the critical densityp, the susceptibilityy, the
done for a range of densities near the transition. If the tranestimator of the critical fugacity, its standard deviation, and
sition is continuous, the fugacity is a strictly increasing func-decorrelation timery, for the 2D Gaussian molecule potential. The
tion of p. However, if the transition is first order, then the averages are over 1@panning clusters. The error estimates were
fugacity does not increase monotonically with increasing obtained by computing the standard deviation of the quantity of

in the coexistence region. Why does the nature ofther- interest and dividing by the square root of the number of measure-
susp curve signify Whethér a transition is continuous or first ments. The error estimates fey, are obtained from the variation of

order? Supbose that the demixing transition of a” with the upper limit in the summation of Eq4.1) and hence
: PP 9 . represent an estimate of the systematic error. The autocorrelation

q-component system is first order. At the transition, there 'Sunction I'y(t) is distinguishable from the noise for-10 Monte
coexistence ofg+1 phases;q demixed phases and one -, steps.

mixed phase. Because the repulsive interaction is reduced far
the demixed phases, these phases have a higher density than M
the mixed phase. Thus, in the thermodynamic limit, there is a
range ofp for which the fugacity is constant. Let; be the 20 297.11) 1.1051) 245.25) 1.32868) 0.257 0.561)
density of the mixed phase apd the density of the demixed 40  109%1) 1.13174) 832.510) 1.34696) 0.183 0.683)
phase. Because b+ d9dp, wheres is the entropy density, 60 23462) 1.14183) 16952) 1.35045) 0.149 0.683)
we have that is a linear function ofp in the coexistence 80  40174) 1.14723) 27962) 1.35165) 0.131 0.715)
region. More specificallys(p) is a linear combination of 100 60985) 1.15032) 41193) 1.35194) 0.117 0.7%3)
s(p1) ands(p,), the entropy densities of the mixed and de-120 85877) 1.15322) 56703) 1.35244) 0.108 0.763)
mixed phases. The linearity s{p) applies in the thermody- 140 1146210) 1.15472) 74195 1.35194) 0.0982 0.7€R)
namic limit. However, for a finite system, the entropy den-
sity is not linear in the coexistence region. Consider a system

with linear dimensiorL and periodic boundary conditions at  Tables | and Il show the dependence d¥l, p, x, z, o3,
density p. This system also can be viewed as an infiniteand r,, for the 2D and 3D Stillinger-Helfand models, respec-

system with periodic constraints on the particles. &(@t,L) tively. The integrated autocorrelation timg, is defined by
be the entropy density of this periodically constrained sys-

tem. Now suppose the constraints are removed and the sys-
tem comes to equilibrium. |6, < p=< p,, demixing will occur ™
spontaneously so tha{p,L)=s(p) with the equality hold-

ing only at the endpoints of the coexistence range. Becausgnis time is approximately the number of Monte Carlo steps
Inz=0s/dp, we must have that is nonmonotone in the co- petween statistically independent configurations and enters
existence region. This approach for distinguishing the ordefnto the error estimate foM. In practice,I'y(t) becomes

of a transition is very similar to the microcanonical Monte jngistinguishable from the noise for~10 Monte Carlo

p X z 03 T

+§1 Ty(t). 4.2

N| =

Carlo method used in Reff22]. steps, and it is necessary to cut off the upper limit of the sum
defining 7y when the magnitude df,, becomes comparable
IV. RESULTS to its error.

In Sec. IVA we present results for the 2D and 3D Note that the fluctuations; in z decrease with increasing

Stillinger-Helfand Gaussian molecule models. The tWO-L and thatry is small and_h_ardly Increases with Th_ese
component step potential model is discussed in Sec. IV esults demo.nstrate the validity and efficiency of the mvaded
and theg-component step potential is discussed in Sec. IV C_cluster algont_hm. The decrease iy shows thqt as. in-

creases, the invaded cluster becomes essentially equivalent
_ _ ) _ to a fixed parameter cluster algorithm for which detailed bal-

A. Gaussian molecule model in two and three dimensions ance can be proven.

We simulated the Gaussian molecule mdaéth the po- The error estimates for all quantities in Tables | and Il
tential U, defined in Eq.(2.10] using the invaded cluster exceptry were obtained by computing the standard devia-
method and the spanning rule described in Sec. Ill for dion of the quantity of interest and dividing by the square
range of linear dimensionks up to 140 ind=2 and 40 in _
d=3. We choose units such that distances are measured in TABLE Il. The L dependence d¥l, p, x, z, 03, andry, for the
units of . We collected statistics for the number of particles 3D Gaussian molecule potential. The averages are ovesian-
in the spanning clustevl, the critical densityp, the suscep- ning clusters. The error estimates are calculated as discussed in the

tibility x, the_ e_stimator of the critical_ fugacity, and its_; gcji?sflho;blgffl)ﬁ)l?h; Jg;i‘;&?&rasxg g:?lzt'ggé?_ s distin
standard deviatiorw, and the normalized autocorrelation

function for the spanning cluster sitg, . For each value of | M
L we averaged over 2Monte Carlo steps. The estimator of
the critical density is the average number of partiglefsany 10 171.63) 0.4352) 35.72) 0.5742) 0.103 0.524)
specieg per unit aregvolume) when the spanning condition 20  9562) 0.4381) 138.94) 0.5841) 0.0582 0.583)
is fulfilled. AlthoughUy.,(r) does not go to zero at finite it 30 26143) 0.4381) 3091) 0.58%1) 0.0424 0.57)

becomes very small for largerand to speed the calculation, 40 53446) 0.4391) 5422) 0.58%1) 0.0341 0.58)
we setUyq(r)=0 for r=3.

p X Z (o ™
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FIG. 1. Plot of p versus 1 for the 2D Stillinger-Helfand In(L)
Gaussian molecule model. The straight line represents a least g5 o Log-log plot ofy versusL for the 2D Gaussian mol-

squares fit omitting the value fdr=20 and 40. The extrapolated gc je model. The straight line represents the best fit to the data,
result isp,=1.1644-0.0004. omitting L =20, with y/v=1.745.

root of the number of measurements. This error estimatgesult is that the 2D Gaussian molecule is, indeed, in the 2D
does not take into account correlations between successiveing universality class, but that there are relatively slowly
Monte Carlo steps. To account for correlations, the error esvarying corrections to scaling.

timates in the tables for an observal@amust be multiplied A least squares fit to all the data for the susceptibiity

by V270, wherer is the integrated autocorrelation time for for the 3D Gaussian molecule model yielggr=1.9626

O. The statistical errors for quantities derived from fits such=0.0044 withy?=0.11, DF=2, andQ=0.95. TheQ value

as p. and y/v include the factor/27 except thatrg is re-  Near unity suggests that the data is well fit to a pure power
placed byr, . law. Recent high precision Monte Carlo studies of the 3D

Figure 1 shows the results fp(L) versus 1 for the 2D  Ising model[23] yield y/»=1.9630(30) which is consistent
Stillinger-Helfand model. The value g¢f in the limit of L with our results. Our results add weight to the hypothesis that
— is extrapolated from the finite size data by doing a lin-the Stillinger-Helfand model is in the Ising universality class
ear least squares fit omitting the values for20 and 40 for both 2D and 3D. The relatively high precision results for
yielding the result,p.(2)=1.1644+0.0004. A similar ex- vlv from_the Gaussian molecule model suggests 'Fhat moo!els
trapolation for the critical fugacity yields.(2)=1.3536 Of the Stillinger-Helfand type may be useful for high preci-
+0.0008. Similarly, extrapolating the result for the 3D SiON st_udles qf the 3D Ising universality cIas;. Thel isotropy
stillinger-Helfand model using the data for all availatile ~Of the interaction and absence of an underlying lattice might
yields p.(3)=0.440+0.001 and z.(3)=0.5826+0.0013. make for smaller corrections to scaling in Stillinger-Helfand
Our error values for these critical parameters are one stafodels compared to lattice spin models.
dard deviation from the linear least squares fit of the fugacity
or density versus Lf no effort has been made to estimate B. Step potential in 2D
systematic errors. All of the fits have acceptable goodness-
of-fit probability valuesQ.

Our 3D value for the critical density is consistent with the
series result of Lai and Fishft], p.(3)=0.441+0.001[Eq.
(36) of Ref.[4]] but our critical fugacity is somewhat larger TABLE Ill. The L dependence ol p. . %, o5, andm for

than their valuez,(3)=0.5785-0.0002[Eqg. (44) of Ref. - :
[4]]. Note that Lai and Fisher report results using a differentthe 2D Stilinger-Helfand step potential model B 1. The aver-

- . L ages are over fOspanning clusters. The autocorrelation function
CO”"SQ“O” so that th‘?" values pf andz; must be divided I‘E,:]A(t) is distinguisﬂable ?rom the noise fdar-10 Monte Carlo
by 7%“ to compare with our values. steps.

The exponent ratio// v can be obtained from the scaling
of the susceptibilityy with L according to Eq(3.6). Figure 2 | M
shows a log-log plot ofy versusL for the 2D Gaussian
molecule model. A least squares fit of all the data to a simple0  509.%2) 1.92493) 720.15) 2.26264) 0.379 0.58%b)
power law does not yield an acceptable goodness of fit valugd 1871.86) 1.96332) 24292) 2.28193) 0.270 0.66610)
Q. If the smallest value oL is omitted, we obtainy/v 60 40012) 1.97793) 49273) 2.28564) 0.219 0.70210)
=1.745-0.001 withy?=6.2,Q=0.19, and D=4 (degrees 80 685%2) 1.985%2) 81314) 2.286%3) 0.191 0.737L0)
of freedonm). The Q value indicates a reasonable fit to a 100 104113) 1.99021) 120046) 2.28642) 0.169 0.77215)

simple power law, but the fitted value gf v is 50 fromthe 120 146514) 1.99341) 164947) 2.286G2) 0.154 0.788L0)
2D Ising value ofy/ v="7/4. A reasonable explanation of this

Table 1l summarizes our results for the 2D Stillinger-
Helfand model with the step potential given by Eg.13
and temperaturd =1 (measured in units o). For each

p X Z o ™
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TABLE IV. The T dependence dofi, p, x, Z, o3, andy, for 4.0
the 2D Stillinger-Helfand step potential modellat 20. The aver-
ages are over fOMC steps. The autocorrelation functidiy, (t) is
distinguishable from the noise far-60 Monte Carlo steps. The 35
computational time required for B=20 system aff=10 is ap-
proximately a week on a 533 MHz Alpha processor.

- 3.0
T M p X z 03 ™

KA
® e o'
% o o

o ®
w, o
°o

0.05 411.12) 1.490%3) 470.33) 1.70154) 0.310 0.580.5
0.2 412.22) 1.495G2) 472.43) 1.70724) 0.304 0.570.5
0.5 439.12) 1.60762) 535.93) 1.85084) 0.326 0.580.5
1 509.32) 1.92492) 720.64) 2.26264) 0.379 0.591) 20
3 763.03) 3.306%4) 1612.78) 4.10526) 0.598 0.620.5 '
5  963.17) 4.66064) 25672) 5.93538) 0.785 0.641)

7 11331) 5.99345) 35512) 7.743310) 0.957 0.651) P P T TP T I S
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value of L we averaged over fOMonte Carlo steps. The FIG. 3. Plot of the fugacityz versusp for the 2D Stillinger-
results are qualitatively similar to the Gaussian moleculeHelfand step potential model @t=1, L =40, forq=3,4,5,6, and 8.
model. Table IV shows the temperature dependence of thEach point is averaged over 20 000 MC steps. The error bars are of
measured quantities fdr fixed atL=20. The values op  the size of the markers.

andz at low temperatures should reduce to the Widom-
Rowlinson model. In Ref[7] we measured the critical pa-  Finally, we have studied the effect of quenched impurities
rameters of the Widom-Rowlinson model using the invadedPn the nature of the transition for tige=3 Stillinger-Helfand
cluster method. Fok. =40 (the smallest size measujedle ~ Step potential model. The impurities consist of randomly

obtainedp=1.525 andz=1.720, values that are close to the placed scatterers that interact with all the fluid particles via
' e the same repulsive step potential that exists between differ-

values ofp andz for the two lowest temperatures in Table ent components. Figure 5 shows a plozafersusp for the
IV. This agreement confirms that the step potential is conq 3 stillinger-Helfand step potential model in 3D for four

t'nUOUS|.y gonnepted to the hfardcore potential. If the 20 impurity densities ranging from 0.025 to 0.0625. For each of
data point is omitted, we obtain from a least squares fit to th‘?he 10 impurity configurations considered for a given den-
data for the susceptibility, y/v=17434-0.0009 withx* sity, data from 18 Monte Carlo steps were collected. For the

=0.52,Q=0.81, and DF=3. two lowest impurity concentrations, theversusp curve is
N nonmonotonic as is the case for the pure system, while for
C. Dependence of the order of the transition om the two highest impurity concentrations, the curve is mono-
and on impurities tonic indicating a crossover to a continuous transition. This

The critical properties of theg-component Stillinger- behavior is in accord with general argumepfg that the
Helfand model are expected to be closely related to thg@resence of quenched impurities should cause a first-order
g-state Potts model. One of the features of thetate Potts
model is that the transition is continuous for sngkhnd is
first-order forg>q.(d), whereq.(2)=4 and 2<q.(3)<3.
We have used the method described in Sec. Il to determine ;¢
the order of the transition as a function of for the
g-component Stillinger-Helfand step potential model. Figure 1.4

3 shows the fugacity as a function ofp for d=2 for L 12
=40 andT=1. Note that fog=3 the curve is clearly mono- 1w ™
tonically increasing, which implies a continuous transition. 1.0
For g=5 the curves are clearly nonmonotonic, which im-
plies a first-order transition. Fay=4 the curve is essentially
flat within the error bargwhose size is approximately that of 0.6
the symbols Although the effective value af.. is expected )
to vary with L, these results are consistent with the hypoth- ¢4
esis thatg.(2)=4 for the 2D Stillinger-Helfand step poten- -

0‘2I|||I|||I|||I|||I|||I|||I

tial model.

Figure 4 showg as a function o for the 3D Stillinger- 04 0.6 08 10 p 1.2 14 1.6
Helfand step potential model fdt=20 andT=1. Theq
=2 curve is clearly monotonically increasing while the FIG. 4. Plot ofz versusp for the 3D WR step potential model at

=3 is clearly not, implying that q.(3)<3 as for the 3D T=1, L=20, forgq=2 and 3. Each point is averaged over 1500
Potts model. MC steps. The error bars are of the size of the markers.
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P2 S B L L B L LN B L BLELEL L B strength of disorder is sufficient to make the transition con-
p;=0.0625 ] tinuous in the thermodynamic limit.
20 .
o p;=0.05 ] V. DISCUSSION AND CONCLUSIONS

0% -
A o D = 0.0375pmmomets==""_ We have studied the Stillinger-Helfand model and several
O 0y = 0.025 generalizations using the _invaded cluster algorithm. Our re-
& .',...WM sults for g-component Stillinger-Helfand models with<j
* =<8 are consistent with the hypothesis that these models are
in the same universality class as the corresponding Potts
models. In addition, we have shown that the addition of
quenched disorder causes the demixing transition to change
from first order to continous for those valuesagpfor which
the pure system transition is first order. For the cqse?
andd=2, our results for the magnetic exponent are outside
P ST P T B S S S the statistical error bars of the exact Ising value. However,
095 10 105 1.1 115 12 125 1.3 we believe that this difference is most likely the result of
P slowly varying corrections to scaling. It would be useful to
consider larger system to confirm Ising universality. It would
FIG. 5. Plot ofz versusp for the q=3 Stillinger-Helfand step ~ @lS0 be interesting to consider larger valuesjdb explore
potential model in 3D with quenched impurities &&=1 andL the possibility of an intermediate crystalline phase in
=20. The 4 traces in the graph correspond to 200, 300, 400, antillinger-Helfand models.
500 fixed impurity particles, corresponding to impurity densities
equal to 0.025, 0.0375, 0.05, and 0.0625. ACKNOWLEDGMENTS
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