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Cluster Monte Carlo study of multicomponent fluids of the Stillinger-Helfand
and Widom-Rowlinson type
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Phase transitions of fluid mixtures of the type introduced by Stillinger and Helfand are studied using a
continuum version of the invaded cluster algorithm. Particles of the same species do not interact, but particles
of different types interact with each other via a repulsive potential. Examples of interactions include the
Gaussian molecule potential and a repulsive step potential. Accurate values of the critical density, fugacity, and
magnetic exponent are found in two and three dimensions for the two-species model. The effect of varying the
number of species and of introducing quenched impurities is also investigated. In all the cases studied,
mixtures ofq species are found to have properties similar toq-state Potts models.

PACS number~s!: 47.10.1g, 05.50.1q, 64.60.Fr, 75.10.Hk
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I. INTRODUCTION

Several years ago Stillinger and Helfand@1,2# introduced
a simple but nontrivial model of fluid demixing. Their orig
nal model consists of a binary mixture ofA andB particles.
Particles of the same type do not interact with one anot
but A andB particles interact with a repulsive potential su
that the Mayerf function is a Gaussian. This choice for th
AB potential, known as the Gaussian molecule poten
greatly simplifies the calculation of virial coefficients an
most work for this potential has been done using series m
ods@3,4#. The main motivation for this work was to confirm
Ising universality for the critical exponents of continuu
systems.

In this paper we study the Stillinger-Helfand model a
some of its generalizations using cluster Monte Carlo me
ods. Where possible, we compare our results to the se
analyses and to results for the Ising-Potts universa
classes. Although the Gaussian molecule potential yield
more tractable virial expansion, it is easier to implemen
cluster algorithm for the repulsive step potential. We a
consider a generalization of the Stillinger-Helfand model
q species~components!, such that particles of the same sp
cies do not interact but particles of different species inter
with a repulsive potential. We expect that this generalizat
will be in the same universality class as theq-state Potts
model for q not too large and another motivation for th
study is to confirm this correspondence. For example,
know that the two-dimensional~2D! Potts model forq.4
has a first-order transition. Does theq-component 2D
Stillinger-Helfand model also have a first-order transition
q.4? In addition, we consider the effect of quenched dis
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der by randomly adding fixed scattering centers. There
general arguments@5# that quenched disorder causes fir
order transitions to become continuous. These argum
hold rigorously for 2D Potts models@6#, but have not been
studied for continuum models.

In previous work@7# cluster Monte Carlo methods wer
applied to the Widom-Rowlinson model@8#. The Widom-
Rowlinson and Stillinger-Helfand models are closely relat
the only difference is that the Widom-Rowlinson model h
a hard-core interaction between different species. In this
per, the invaded cluster Monte Carlo method introduced
Ref. @7# is extended to soft-core repulsive potentials and
used to find the phase transition point for a given tempe
ture without prior knowledge of the critical fugacity. Th
invaded cluster method has almost no critical slowing for
Widom-Rowlinson model, and we find that similar resu
hold for the Stillinger-Helfand models studied here.

II. DESCRIPTION OF THE MODELS AND NOTATION

We considerq component (q>1) fluids in d dimensions
with d52,3. The components~species! have no self-
interaction but particles of one species interact with partic
of all other species via an isotropic repulsive potentialU(r ).
We consider two choices forU(r ),

Ustep~r !5H U0 if r ,s,

0 if r>s,
~2.1a!

Ugm~r !52kT ln~12e2r 2/s2
!. ~2.1b!

The limit b51/kT→` for the step potential corresponds
the Widom-Rowlinson model. For the Gaussian molec
potential, the temperatureT plays no role because the Bol
zmann factore2bUgm(r )512e2r 2/s2

is, by design, indepen
dent ofT.
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In general, each component of theq-component fluid may
have a distinct fugacity; however, symmetry consideratio
dictate that a demixing transition occurs with all fugaciti
equal, and hence we set all the fugacities equal to a si
value z. For sufficiently smallz, the q species are mixed
while for largez, there areq distinct phases because differe
species repel one another, with each phase predomin
composed of one species. Ifq is not too large, there is ex
pected to be a single demixing transition separating th
regimes that is in the same universality class as theq-state
Potts model.

For very largeq, the correspondence between Potts m
els and Widom-Rowlinson models must break down. A
though Potts models have a single ordering transiti
Widom-Rowlinson models can be presumed to have an
termediate crystalline phase ford>3 and largeq. To under-
stand this phase, consider the limitsz!1 andq@1, with the
product l5qz order unity. Then nonoverlapping particle
appear with an effective fugacity ofl. However, when two
particles overlap, the cost is an additional factor of 1/q be-
cause the overlapping particles must be of the same spe
Hence the limiting model is precisely the hard sphere
which we presume has a crystalline phase ind>3 @9#. It is
therefore reasonable to assume that such a phase occu
the Widom-Rowlinson models for largeq andz of orderq21.
Needless to say, for fixedq, when the fugacity is sufficiently
large, the model will demix, and thus the crystalline phas
an intermediate phase. We also expect an intermediate c
talline phase for largeq soft-core Stillinger-Helfand model
based on a mapping to a single component fluid with a
pulsive soft-core potential. For example, the Gaussian c
model @10# is known to crystallize ind53. Although inter-
mediate phases do not occur for the usual Potts models,
are not a consequence of the continuum; indeed such ph
are known to occur on the lattice for the site-dilute~an-
nealed! Potts models@11# as well as for the lattice version o
the Widom-Rowlinson model@12#.

III. CLUSTER ALGORITHM

The algorithms used here are, broadly speaking, exam
of cluster algorithms of the type first introduced by Swen
sen and Wang@13,14#. Cluster algorithms have been foun
to be much more efficient than local algorithms such as
Metropolis algorithm for simulating spin systems and latt
gases near critical points. Cluster algorithms would be v
useful for off-lattice systems, but no general cluster meth
has yet been developed; indeed, theonly off-lattice models
for which highly efficient cluster methods are known a
models of the Stillinger-Helfand and Widom-Rowlinso
type. The distinguishing features of this class of models
that particles of the same species have no self-interaction
that there is a purely repulsive interaction between partic
of different species. In this case, graphical representat
and cluster algorithms are available@15–17# and have been
implemented for the Widom-Rowlinson model@7#.

Cluster algorithms for spin systems work by identifyin
clusters of spins and then randomly flipping these clust
Cluster are defined by placing bonds between nearest ne
bor aligned spins with a probability that depends on the te
perature. For fluid systems, bonds are placed between
s
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ticles of the same type with a probability that depends on
temperature and the interaction potential. Instead of flipp
spins, clusters of particles are removed from the system
then new particles are added via a nonuniform Poisson
cess that depends on the fugacity and the potential due to
remaining particles.

Cluster algorithms are typically used with fixed values
the external parameters such as temperature or fuga
However, when the location of the phase transition is
known, much computational effort in studying the transiti
is spent in locating the transition. To avoid this proble
invaded cluster methods can be used@18,19# which automati-
cally adjust a thermodynamic parameter~for example, tem-
perature or fugacity! to its value at the phase transition. Th
adjustment is accomplished by using the fact~proved for the
q52 case@15#! that the clusters just percolate at the tran
tion. In invaded cluster algorithms, clusters are grown unt
signature of percolation is observed. The value of the th
modynamic parameter at the transition is an output of
simulation obtained from the fraction of successful attem
to add particles or bonds to the system. The invaded clu
algorithm also may be used to distinguish first-order fro
continuous transitions as discussed in Ref.@19# for Potts
models. This method for distinguishing the order of the tra
sition is discussed below and will be used in Sec. IV C.

We first describe the cluster algorithm discussed in S
3.5 of Ref.@15# for Stillinger-Helfand models and then dis
cuss how it can be modified to be an invaded cluster al
rithm. We assume that we have a configuration consisting
particle positions and a set of bonds connecting some of
particles and describe how to obtain the next configuratio

~1! Identify all clusters of particles defined by the bond
A particle with no bonds is considered to be a singlet
cluster. For each cluster, independently and with probab
1/q, label it ablackcluster and with probability 121/q label
it white.

~2! Remove all particles in black clusters. The remaini
white particles are at a set of positionsW.

~3! Replenish the black particles via a Poisson proc
with local intensityy(x) given by

y~x!5ze2bV(x), ~3.1a!

V~x!5 (
yPW

U~ ux2yu!, ~3.1b!

wherez is the fugacity andU(r ) the potential.
~4! For each pair of black particles, place a newbond

between them with probabilityp(r ) given by

p~r !512e2bU(r ), ~3.2!

where r is the separation between the particles. Note t
p(r ) is minus the Mayerf-function for the potential.

~5! Eliminate the white and black labels for the cluste
This procedure comprises one Monte Carlo step.

Given a configuration of particle positions and bon
without species labels, it is possible to obtain a full mul
component configuration where each particle has a spe
label. This assignment is accomplished by identifying clu
ters and then randomly and independently assigning on
theq species labels to each cluster. The species label of e
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particle is taken to be the species label of its cluster. T
labeling of particles is only possible ifq is a positive integer.
However, the algorithm makes sense for allq>1, in analogy
to the relation between Potts models, which are defined
positive integerq, and random cluster models which interp
late between them and are defined for allq.1.

It is instructive to consider the nature of the cluster co
figurations generated by the algorithm as a function of
fugacity for a fixed temperature. Suppose that the fuga
and, hence, the density is very small. Thenp(r ) is typically
small because the particles are far apart, and most clu
are singletons. In step 2, a fraction 1/q of the particles is
removed. In step 3, particles are replenished as a nearly
gas because the exponential factor in Eq.~3.1a! is a small
perturbation except in the vicinity of the remaining particle
The end result is a nearly ideal multicomponent gas. In
limit of large fugacity and density, we expect a phase
which a single species is predominant with a small admixt
of the other species. The bonds connecting particles of
dominant species are sufficiently dense that almost all m
bers of this species are in a single large cluster. The mino
species are almost all in widely scattered singleton clust
When the majority species is white, as occurs in about 1/q of
the Monte Carlo steps, the large cluster is removed and
replaced as a nearly ideal gas in a slightly perturbed ba
ground potential generated by the minority species. An
portant feature of this picture is that the clusters do not p
colate at small fugacity and do percolate at large fugacity
some intermediate value of the fugacity, there must b
percolation transition. As discussed in Refs.@15,20,21#, the
percolation transition of the clusters coincides with the
mixing transition of the fluid.

The coincidence of the percolation transition and the
mixing transition justifies an invaded cluster version of t
above cluster algorithm. The invaded cluster algorithm
very similar to the fixedz cluster algorithm described abov
except that steps~3! and~4! are modified as follows. Instea
of putting down new black particles as a Poisson process
fixed intensity, black particles are added to the system on
a time according to the potentialV(x) ~see below!. After
each black particle is added, bonds between the new par
and all previously placed black particles are put down w
probability p(r )512exp@2bU(r)#. The black clusters de
fined by these bonds are monitored after each particl
added, and the process of adding particles is stopped wh
stopping conditionis satisfied. For simulating the phase tra
sition, the stopping condition is that one clusterspansthe
system. For periodic boundary conditions, spanning is ta
to mean that a cluster wraps around the system in at leas
of the d directions. The spanning condition insures that
algorithm simulates the phase transition@19#.

In practice, a particle is added to the system accordin
the potentialV(x) by the following procedure. A particle is
tentatively placed at a random positionx. A random number
r is chosen in the interval@0,1), and the particle placement
accepted if

r ,e2bV(x); ~3.3!

otherwise the particle is rejected and another attempt is m
to place a particle. Letz̃5^Ntot /L

d&, whereNtot is the total
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number of attempted particle placements in a Monte Ca
step, including both accepted and rejected placements,Ld is
the system volume, and the brackets^•••& indicate an aver-
age over the simulation. Because the intensityy(x), defined
in Eq. ~3.1a!, and the Boltzmann factore2bV(x) governing
particle placements differ by a factor of the fugacity, w
conclude thatz̃ is an estimator ofzc , the value of the fugac-
ity at the transition. Note that if the fluctuationss z̃ in Ntot /L

d

are small, then the invaded cluster algorithm is essenti
identical to the fixed fugacity algorithm operating atz5zc .
This identification justifies the use of the invaded clus
method. A more complete discussion of the invaded clus
method and the use ofz̃ as an estimator of a critical param
eter is given in Ref.@19#.

Whenever the invaded cluster method simulates a sys
at its critical point, scaling methods can be used to obt
critical exponents from the size dependence of diverg
thermodynamic quantities such as the compressibility or
susceptibility. To study the latter, we consider the quanti

x[
1

Ld K (i
si

2L , ~3.4!

wheresi is the number of particles in thei th cluster. We now
show thatx is related to the usual susceptibility. Conside
for simplicity, the discretized version of the Stillinge
Helfand model on a lattice of linear dimensionL with spac-
ing e so that the total number of sites is (L/e)d. The demix-
ing order parameter at sitex is given by dr1(x)[n1(x)
2n(x)/q, wheren1(x)51 if there is a particle of type 1 a
sitex andn1(x)50 otherwise;n(x) counts the presence of
particle ofany type. The relevant susceptibilityx̃ is defined
by the second derivative of the pressure with respect to
~ordering! chemical potential

x̃5
1

Ld (
x,y

^dr1~x!dr1~y!&. ~3.5!

@The reason thate does not enter explicitly into Eq.~3.5! is
that the derivatives are with respect to the log of the activ
and it is the activity that is scaled bye.# For a given particle
and bond configuration, averaging over assignments of s
cies labels, it is clear thatdr1(x)dr1(y) vanishes unless the
sitesx and y are both occupied and in the same cluster,
which case the result isq22(q21). Thus, for a fixed
particle-bond configuration, we obtain the number of p
ticles in the cluster atx if we sum overy. Summing overx
yields the sum of the squares of the cluster sizes so thax̃
5q22(q21)x, and hence we conclude thatx is related to
the usual susceptibility. Finally, finite size scaling predic
that

x;Lg/n, ~3.6!

so that the scaling ofx with system size can be used
extract the magnetic exponentg.

Cluster methods also may be used to distinguish fi
order from continuous transitions. For this purpose, a fix
density stopping rule is used. Black particles are added to
system until the densityr reaches a fixed value and thenz̃ is
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measured. In this way the canonical ensemble is simula
rather than the grand canonical ensemble. This procedu
done for a range of densities near the transition. If the tr
sition is continuous, the fugacity is a strictly increasing fun
tion of r. However, if the transition is first order, then th
fugacity does not increase monotonically with increasingr

in the coexistence region. Why does the nature of thez̃ ver-
susr curve signify whether a transition is continuous or fi
order? Suppose that the demixing transition of
q-component system is first order. At the transition, there
coexistence ofq11 phases;q demixed phases and on
mixed phase. Because the repulsive interaction is reduce
the demixed phases, these phases have a higher density
the mixed phase. Thus, in the thermodynamic limit, there
range ofr for which the fugacity is constant. Letr1 be the
density of the mixed phase andr2 the density of the demixed
phase. Because lnz5]s/]r, wheres is the entropy density
we have thats is a linear function ofr in the coexistence
region. More specifically,s(r) is a linear combination of
s(r1) ands(r2), the entropy densities of the mixed and d
mixed phases. The linearity ofs(r) applies in the thermody
namic limit. However, for a finite system, the entropy de
sity is not linear in the coexistence region. Consider a sys
with linear dimensionL and periodic boundary conditions a
density r. This system also can be viewed as an infin
system with periodic constraints on the particles. Lets(r,L)
be the entropy density of this periodically constrained s
tem. Now suppose the constraints are removed and the
tem comes to equilibrium. Ifr1<r<r2, demixing will occur
spontaneously so thats(r,L)>s(r) with the equality hold-
ing only at the endpoints of the coexistence range. Beca
ln z5]s/]r, we must have thatz is nonmonotone in the co
existence region. This approach for distinguishing the or
of a transition is very similar to the microcanonical Mon
Carlo method used in Ref.@22#.

IV. RESULTS

In Sec. IV A we present results for the 2D and 3
Stillinger-Helfand Gaussian molecule models. The tw
component step potential model is discussed in Sec. I
and theq-component step potential is discussed in Sec. IV

A. Gaussian molecule model in two and three dimensions

We simulated the Gaussian molecule model@with the po-
tential Ugm defined in Eq.~2.1b!# using the invaded cluste
method and the spanning rule described in Sec. III fo
range of linear dimensionsL up to 140 ind52 and 40 in
d53. We choose units such that distances are measure
units ofs. We collected statistics for the number of particl
in the spanning clusterM, the critical densityr, the suscep-
tibility x, the estimator of the critical fugacityz̃, and its
standard deviations z̃ , and the normalized autocorrelatio
function for the spanning cluster sizeGM . For each value of
L we averaged over 105 Monte Carlo steps. The estimator o
the critical density is the average number of particles~of any
species! per unit area~volume! when the spanning conditio
is fulfilled. AlthoughUgm(r ) does not go to zero at finiter, it
becomes very small for largerr and to speed the calculation
we setUgm(r )50 for r>3.
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Tables I and II show theL dependence ofM, r, x, z̃, s z̃ ,
andtM for the 2D and 3D Stillinger-Helfand models, respe
tively. The integrated autocorrelation timetM is defined by

tM5
1

2
1(

t51

`

GM~ t !. ~4.1!

This time is approximately the number of Monte Carlo ste
between statistically independent configurations and en
into the error estimate forM. In practice,GM(t) becomes
indistinguishable from the noise fort'10 Monte Carlo
steps, and it is necessary to cut off the upper limit of the s
definingtM when the magnitude ofGM becomes comparabl
to its error.

Note that the fluctuationss z̃ in z̃ decrease with increasin
L and thattM is small and hardly increases withL. These
results demonstrate the validity and efficiency of the invad
cluster algorithm. The decrease ins z̃ shows that asL in-
creases, the invaded cluster becomes essentially equiv
to a fixed parameter cluster algorithm for which detailed b
ance can be proven.

The error estimates for all quantities in Tables I and
excepttM were obtained by computing the standard dev
tion of the quantity of interest and dividing by the squa

TABLE II. The L dependence ofM, r, x, z̃, s z̃ , andtM for the
3D Gaussian molecule potential. The averages are over 105 span-
ning clusters. The error estimates are calculated as discussed
caption of Table I. The autocorrelation functionGM(t) is distin-
guishable from the noise fort;60 Monte Carlo steps.

L M r x z̃ s z̃ tM

10 171.6~3! 0.435~2! 35.7~2! 0.577~2! 0.103 0.52~4!

20 956~2! 0.438~1! 138.9~4! 0.580~1! 0.0582 0.55~3!

30 2614~3! 0.438~1! 308~1! 0.581~1! 0.0424 0.57~2!

40 5344~6! 0.439~1! 542~2! 0.581~1! 0.0341 0.58~3!

TABLE I. The L dependence of the number of particles in t
spanning clusterM, the critical densityr, the susceptibilityx, the

estimator of the critical fugacityz̃, its standard deviations z̃ , and
decorrelation timetM for the 2D Gaussian molecule potential. Th
averages are over 105 spanning clusters. The error estimates we
obtained by computing the standard deviation of the quantity
interest and dividing by the square root of the number of meas
ments. The error estimates fortM are obtained from the variation o
t with the upper limit in the summation of Eq.~4.1! and hence
represent an estimate of the systematic error. The autocorrela
function GM(t) is distinguishable from the noise fort;10 Monte
Carlo steps.

L M r x z̃ s z̃ tM

20 297.1~1! 1.105~1! 245.2~5! 1.3286~8! 0.257 0.56~1!

40 1095~1! 1.1317~4! 832.5~10! 1.3469~6! 0.183 0.63~3!

60 2346~2! 1.1418~3! 1695~2! 1.3504~5! 0.149 0.68~3!

80 4017~4! 1.1472~3! 2796~2! 1.3516~5! 0.131 0.71~5!

100 6098~5! 1.1503~2! 4119~3! 1.3519~4! 0.117 0.75~3!

120 8587~7! 1.1532~2! 5670~3! 1.3524~4! 0.108 0.76~3!

140 11462~10! 1.1547~2! 7419~5! 1.3519~4! 0.0982 0.79~2!
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root of the number of measurements. This error estim
does not take into account correlations between succes
Monte Carlo steps. To account for correlations, the error
timates in the tables for an observableO must be multiplied
by A2tO, wheretO is the integrated autocorrelation time fo
O. The statistical errors for quantities derived from fits su
as rc and g/n include the factorA2t except thattO is re-
placed bytM .

Figure 1 shows the results forr(L) versus 1/L for the 2D
Stillinger-Helfand model. The value ofr in the limit of L
→` is extrapolated from the finite size data by doing a l
ear least squares fit omitting the values forL520 and 40
yielding the result,rc(2)51.164460.0004. A similar ex-
trapolation for the critical fugacity yieldszc(2)51.3536
60.0008. Similarly, extrapolating the result for the 3
Stillinger-Helfand model using the data for all availableL
yields rc(3)50.44060.001 and zc(3)50.582660.0013.
Our error values for these critical parameters are one s
dard deviation from the linear least squares fit of the fuga
or density versus 1/L; no effort has been made to estima
systematic errors. All of the fits have acceptable goodne
of-fit probability valuesQ.

Our 3D value for the critical density is consistent with t
series result of Lai and Fisher@4#, rc(3)50.44160.001@Eq.
~36! of Ref. @4## but our critical fugacity is somewhat large
than their value,zc(3)50.578560.0002 @Eq. ~44! of Ref.
@4##. Note that Lai and Fisher report results using a differ
convention so that their values ofrc andzc must be divided
by pd/2 to compare with our values.

The exponent ratiog/n can be obtained from the scalin
of the susceptibilityx with L according to Eq.~3.6!. Figure 2
shows a log-log plot ofx versusL for the 2D Gaussian
molecule model. A least squares fit of all the data to a sim
power law does not yield an acceptable goodness of fit va
Q. If the smallest value ofL is omitted, we obtaing/n
51.74560.001 withx256.2, Q50.19, and DF54 ~degrees
of freedom!. The Q value indicates a reasonable fit to
simple power law, but the fitted value ofg/n is 5s from the
2D Ising value ofg/n57/4. A reasonable explanation of th

FIG. 1. Plot of r versus 1/L for the 2D Stillinger-Helfand
Gaussian molecule model. The straight line represents a
squares fit omitting the value forL520 and 40. The extrapolate
result isrc51.164460.0004.
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result is that the 2D Gaussian molecule is, indeed, in the
Ising universality class, but that there are relatively slow
varying corrections to scaling.

A least squares fit to all the data for the susceptibilityx
for the 3D Gaussian molecule model yieldsg/n51.9626
60.0044 withx250.11, DF52, andQ50.95. TheQ value
near unity suggests that the data is well fit to a pure po
law. Recent high precision Monte Carlo studies of the
Ising model@23# yield g/n51.9630(30) which is consisten
with our results. Our results add weight to the hypothesis t
the Stillinger-Helfand model is in the Ising universality cla
for both 2D and 3D. The relatively high precision results f
g/n from the Gaussian molecule model suggests that mo
of the Stillinger-Helfand type may be useful for high prec
sion studies of the 3D Ising universality class. The isotro
of the interaction and absence of an underlying lattice mi
make for smaller corrections to scaling in Stillinger-Helfa
models compared to lattice spin models.

B. Step potential in 2D

Table III summarizes our results for the 2D Stillinge
Helfand model with the step potential given by Eq.~2.1a!
and temperatureT51 ~measured in units ofU0). For each

st FIG. 2. Log-log plot ofx versusL for the 2D Gaussian mol-
ecule model. The straight line represents the best fit to the d
omitting L520, with g/n51.745.

TABLE III. The L dependence ofM, r, x, z̃, s z̃ , andtM for
the 2D Stillinger-Helfand step potential model atT51. The aver-
ages are over 106 spanning clusters. The autocorrelation functi
GM(t) is distinguishable from the noise fort;10 Monte Carlo
steps.

L M r x z̃ s z̃ tM

20 509.5~2! 1.9249~3! 720.7~5! 2.2626~4! 0.379 0.585~5!

40 1871.8~6! 1.9633~2! 2429~2! 2.2819~3! 0.270 0.665~10!

60 4001~2! 1.9779~3! 4927~3! 2.2856~4! 0.219 0.702~10!

80 6855~2! 1.9855~2! 8131~4! 2.2865~3! 0.191 0.737~10!

100 10411~3! 1.9902~1! 12000~6! 2.2864~2! 0.169 0.772~15!

120 14651~4! 1.9934~1! 16494~7! 2.2860~2! 0.154 0.783~10!
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value of L we averaged over 106 Monte Carlo steps. The
results are qualitatively similar to the Gaussian molec
model. Table IV shows the temperature dependence of
measured quantities forL fixed at L520. The values ofr
and z̃ at low temperatures should reduce to the Wido
Rowlinson model. In Ref.@7# we measured the critical pa
rameters of the Widom-Rowlinson model using the invad
cluster method. ForL540 ~the smallest size measured! we
obtainedr51.525 andz̃51.720, values that are close to th
values ofr and z̃ for the two lowest temperatures in Tab
IV. This agreement confirms that the step potential is c
tinuously connected to the hardcore potential. If theL520
data point is omitted, we obtain from a least squares fit to
data for the susceptibilityx, g/n51.743460.0009 withx2

50.52, Q50.81, and DF53.

C. Dependence of the order of the transition onq
and on impurities

The critical properties of theq-component Stillinger-
Helfand model are expected to be closely related to
q-state Potts model. One of the features of theq-state Potts
model is that the transition is continuous for smallq and is
first-order forq.qc(d), whereqc(2)54 and 2,qc(3),3.
We have used the method described in Sec. III to determ
the order of the transition as a function ofq for the
q-component Stillinger-Helfand step potential model. Figu
3 shows the fugacityz̃ as a function ofr for d52 for L
540 andT51. Note that forq53 the curve is clearly mono
tonically increasing, which implies a continuous transitio
For q>5 the curves are clearly nonmonotonic, which im
plies a first-order transition. Forq54 the curve is essentially
flat within the error bars~whose size is approximately that o
the symbols!. Although the effective value ofqc is expected
to vary with L, these results are consistent with the hypo
esis thatqc(2)54 for the 2D Stillinger-Helfand step poten
tial model.

Figure 4 showsz̃ as a function ofr for the 3D Stillinger-
Helfand step potential model forL520 andT51. The q
52 curve is clearly monotonically increasing while theq
53 is clearly not, implying that 2,qc(3),3 as for the 3D
Potts model.

TABLE IV. The T dependence ofM, r, x, z̃, s z̃ , andtM for
the 2D Stillinger-Helfand step potential model atL520. The aver-
ages are over 106 MC steps. The autocorrelation functionGM(t) is
distinguishable from the noise fort;60 Monte Carlo steps. The
computational time required for aL520 system atT510 is ap-
proximately a week on a 533 MHz Alpha processor.

T M r x z̃ s z̃ tM

0.05 411.1~2! 1.4905~3! 470.3~3! 1.7015~4! 0.310 0.58~0.5!
0.2 412.2~2! 1.4950~2! 472.4~3! 1.7072~4! 0.304 0.57~0.5!
0.5 439.1~2! 1.6076~2! 535.9~3! 1.8508~4! 0.326 0.58~0.5!
1 509.5~2! 1.9249~2! 720.6~4! 2.2626~4! 0.379 0.59~1!

3 763.0~3! 3.3065~4! 1612.7~8! 4.1052~6! 0.598 0.62~0.5!
5 963.1~7! 4.6606~4! 2567~2! 5.9353~8! 0.785 0.64~1!

7 1133~1! 5.9934~5! 3551~2! 7.7433~10! 0.957 0.65~1!

10 1353~1! 7.9680~9! 5059~4! 10.426~2! 1.182 0.66~1!
e
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Finally, we have studied the effect of quenched impurit
on the nature of the transition for theq53 Stillinger-Helfand
step potential model. The impurities consist of random
placed scatterers that interact with all the fluid particles
the same repulsive step potential that exists between di
ent components. Figure 5 shows a plot ofz̃ versusr for the
q53 Stillinger-Helfand step potential model in 3D for fou
impurity densities ranging from 0.025 to 0.0625. For each
the 10 impurity configurations considered for a given de
sity, data from 103 Monte Carlo steps were collected. For th
two lowest impurity concentrations, thez̃ versusr curve is
nonmonotonic as is the case for the pure system, while
the two highest impurity concentrations, the curve is mon
tonic indicating a crossover to a continuous transition. T
behavior is in accord with general arguments@5# that the
presence of quenched impurities should cause a first-o

FIG. 3. Plot of the fugacityz̃ versusr for the 2D Stillinger-
Helfand step potential model atT51, L540, forq53,4,5,6, and 8.
Each point is averaged over 20 000 MC steps. The error bars a
the size of the markers.

FIG. 4. Plot ofz̃ versusr for the 3D WR step potential model a
T51, L520, for q52 and 3. Each point is averaged over 15
MC steps. The error bars are of the size of the markers.
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transition to become continuous. It is not clear from our d
whether there is a critical value of the disorder below wh
the transition remains continuous or whether the crossove
finite disorder strength is a finite size effect and that a

FIG. 5. Plot ofz̃ versusr for the q53 Stillinger-Helfand step
potential model in 3D with quenched impurities atT51 and L
520. The 4 traces in the graph correspond to 200, 300, 400,
500 fixed impurity particles, corresponding to impurity densit
equal to 0.025, 0.0375, 0.05, and 0.0625.
e

h.
a

at
y

strength of disorder is sufficient to make the transition co
tinuous in the thermodynamic limit.

V. DISCUSSION AND CONCLUSIONS

We have studied the Stillinger-Helfand model and seve
generalizations using the invaded cluster algorithm. Our
sults for q-component Stillinger-Helfand models with 2<q
<8 are consistent with the hypothesis that these models
in the same universality class as the corresponding P
models. In addition, we have shown that the addition
quenched disorder causes the demixing transition to cha
from first order to continous for those values ofq for which
the pure system transition is first order. For the caseq52
andd52, our results for the magnetic exponent are outs
the statistical error bars of the exact Ising value. Howev
we believe that this difference is most likely the result
slowly varying corrections to scaling. It would be useful
consider larger system to confirm Ising universality. It wou
also be interesting to consider larger values ofq to explore
the possibility of an intermediate crystalline phase
Stillinger-Helfand models.
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