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Intermediate phase for a classical continuum model
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We consider a continuum four component model of Widom-Rowlinson type with an Ashkin-Teller symme-
try. It is established that this model has two phase transitions with four distinct phases at high fugacity and two
distinct phases in an intermediate fugacity regifg0163-182606)05134-X|

A number of years ago, Widom and Rowlindgroposed To implement this scheme in the continuum, we consider
a continuum model of interacting spherical particles and prospherical particles with two interaction radiia and
vided compelling evidence that this model has a phase tranx>a. The outer radiusA serves as a hard-core interaction
si_tion. A rigo_rous proof of the existence of a two-phase re-yistance for phobic pairs, e.g., a® and Y particles are
gime in this model emerged shortly thereafteand ¢,igden to come within a radiusA2of one another. The
recently,3 this phase transition has been understood in 9€0hner radiusa then serves as a hard core for the phillic pairs.

metric terms—as a percolation phenomenon. . i
Nevertheless, progress in the rigorous study of phase trarf-mfa"y’ all the species are unaffected by the members of
);helr own color group.

sitions in continuum systems has been slow and primaril . ) .
confined to models of the Widom-RowlinsdhVR) type. As is thg case in the usual WR models, one can conceive
The g-component generalizations of the WR model and theif intégrating out all colors save a single speci¥s,and
perturbations have been studied in Ref. 5 and the existendg9ard all of this as a machinery for generating interactions
of a region with multiple phases have been demonstrated &etween the¥ particles.(In the two-component model, the
large activities interaction can be written in a closed fofinin the present
The present work does not really provide any further sig-context, the resulting effective interaction does not immedi-
nificant insight for the general problem of liquid-gas transi-ately yield any intuitive features and hence will not be dis-
tion. However, we have discovered a modified type of pencussed further. Nevertheless, the single species description of
etrable sphere model that exhibitgo phase transitions; the the model is of interest and will be used alongside the four-
intermediate phase in this model is quite distinct from thecolor picture in describing the various phases.
high- or low-density phase of the usual WR systems. As in the case of the two-component model, we may de-
Theg-component WR model may be loosely described ascribe the various phases in terms of different percolation
a continuum version of the-state Potts modefor, some-  properties. Indeed, in Refs. 3 and 4, it was shown that per-
what more accurately, the annealed dilute Potts madils  colation is necessary and sulfficient for the existence of dis-
this sense, the model we study is a continuliginkin-Teller  tinct high-density phases. In the present context, we may
model. On the lattice, the Ashkin-Tellemodel is knowf®  envision two types of percolatiofii inner-core percolations
to have an intermediate phase and, as will be demonstrated and (ii) outer-core percolation.
this work, such a phase survives in the continuum version. The former is analogous to the high-density phase in the
The reader will recall that the Ashkin-Teller model con- usualg-component WR models; there is an infinite cluster of
sists of four species of particles, here denotedvtyellow),  particles that are connected in the sense that the union of
R (red), G, andB. In the most interesting region of the phase spheres of radiua surrounding each patrticle form an infinite
diagram, each particle type is strongly attracted to particlesomponent. Observe, by th@énen hard-core rule such a
of their own species, weakly attracted to one other speciesluster must be of a single color; indeed, in the usual
and repelled by the other two. In our case, we will tdkend  g-component models, these particles constitute the density
R as allies against th&-B team. Here we will assume for excess in the two-phase regime and are hence identified with
simplicity that theY-G and Y-B (repulsive interaction the condensate.
are the same. In all other respects it will be assumed that Percolation of type(ii) constitutes the feature of the
the four species are identical under relabeling, e.g.present model. Namely, consider a situation where the inner-
Y—-B—-R—G—Y. core percolation doesot occur and yet there is an infinite
With this description it is not difficult to imagine that as cluster of outer cores connected in the sense of overlapping
the (common fugacity is increased, or, in the lattice ver- spheres of radiué. Here, the outer-core rule requires only
sions, as the temperature is lowered, there will come a poirthat the infinite cluster belong to one of the two teams, it thus
where one team dominates at the expense of the other. Erepresents the excess density(s&y YR over GB. How-
plicitly, there will be two phases, & Rrich phase and a ever, the fact that there is no percolation of the inner cores
GB-rich phase, within whiclY R and GB symmetry is still  indicates that within thé' R infinite cluster, the densities of
respected. Finally, at lower temperatures and/or higheyellow and red particles are equal.
fugacity, cooperation between the allied pairs is forsaken in It turns out that by using the methods of Ref. 3, the above-
favor of single color dominance. Here, there are four distincdescribed picture caffor certain values of parametérbe
(but equivalentphases. transformed into precise statements concerning coexisting
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Gibbs states in the infinite volume system. This will be ac- ) 42 if |x;—xo|=2A,
complished as soon as some preliminary notation has been 1z .
estaEIished. P g P(X1,%2) = 5 57 X | 2% 27 if 2a=[x, x| <2A,

Let us start here with a concise formulation of the model. 4 if |x,—x,|<2a.
Let ACRY be a “regular vessel'(e.g., a sphere or a cupe )

and Ietxy,...,x,y\,y,xrl,...,x[\lr,xk{,...,xﬂb,x%,...,x%g, denote

points in A. Define

0
X|(X1,X2):[

1

0
Xo(X1,X2)= 1

and let

Aside from the prefactor, the interpretation of the above is
obvious: if[x; —X,|=2A, each particle could be any of four
colors, if 2a<|x;—X,|<2A both particles must be on the
if [x1—X,|<2a, same team, within which there aré possibilities and, fi-
(D) nally, if |x,—x,|<2a both particles must be of the same

otherwise, color, for which there are four possibilities.
More generally(albeit still for free boundary conditiohs
if [X3—X%o| <2A, let w=X4, ... Xy denote a particle configuration. Suppose
otherwise, ) that there is a total df (w) outer connected clusters of[so
that 1<K(w)=<N] and let us denote these clusters by
Cq, ...,Ck. Within each of these clusters there

=m(C;) distinct inner-core connected clusters; <im,
<|C;|= number of particles irC;. Each outer-core con-

T xo(x.x9) nected cluster can be on one of the two teams and within
r1=i=n, O eachC;, all of them; clusters can be either of two colors.
9 1<j<Ng All'in all, as it is not hard to see, we obtain a density, for the
configurationw=xy, ... Xy, given by
[T aed o IT x|,
<Ny 1<i<Ny 1 N K(w)
i<N; 1<j=<Ng4 P(w)= E m2K(w) ]1;[1 2MCj(w)] (6)

The grand-canonical
Zg, is given by

Zy,y ...

partition function, at fugacities

Ezy.2,24,24)

()

Of course, Eq(6) must be appropriately modifielg.g., in
the counting of the numbé¢(w)] for the presence of specific
boundary conditions. The boundary conditions correspond-
ing to, say, a yellow particle at each point of the boundary,
will be called the wired boundary conditions.

Remark As to be expected, the above formula is consid-

B - Zyy "Zgg erably more complicated than that of the gray representation
Ny Ng=0 Ny!---Ng! associated with the usual two-component WR models. For
Y ‘ these models, one has a single interaction radius, that serves
% f dNyx. - - dNox ! X ) to define the notion of connectedness, and the right-hand side
A ANy NGURTs e AN of Eq. (6) is replaced by (consy[ZV/N!]2°), whereC(w) is

simply the number of connected componentsaofNotice
(4)  that in the present model, @s—0, we obtainm(C;) =|C;|
which results inP(w)<[1/N!](2z)N2K(), je., the two-

Of course, here we have paid no heed to boundary Condbomponent mode{at twice the fugacity The physical pic-
tions. (In fact, the above defined is correct for free boundaryyre behind this equivalence to the two-component model is
conditions) Boundary conditions, in the present context, qite obvious: member of the same team are no longer dis-
may be envisione_d as the placement of particles (_)f Variouﬁnguishable in any meaningful way. Nonetheless, this is
types on or outside the boundasA and may be imple- quite interesting because in the lattice version, complete
mented by the restriction of the region of integration. Forequivalence(indistinguishability within the allied groups
example, in the yellow boundary conditions, the region of¢qorresponds to the line along which the Ashkin-Teller model
integration for eaCh(iy is all of A, however, the pOSitionS is known to degenerate into an |Sing System_

x¢ andx{ are restricted ta\/dzA, the set of points in\ of a It is, of course, seen that a complete knowledge of the
distance greater thanA2from the boundary and, similarly, gray measure, along with a specification of the coloring
the positionxjr liein A/d,A. As usual, the partition function scheme employed at the boundary, allows us to reconstruct
provides the normalization constant for the probability dis-all possible statistical information of the original model.

tribution for the configurations of colored patrticles.
Along the line of equal fugacitieg,=---=z4=z, the defined here quite simply: we will say that thereimser-

Percolation, in the gray or colored representation, will be

principle focus of our attention, we may introduce @y  core percolationif the probability that a particle located at
representation(Ref. 3, see also Ref. 1@or the problem. In  any given point ofA is connected tA by an inner-core

this representation, all configurations of a totaNbparticles  connection is uniformly positive ih as A — RY along some

are regarded as equivalent. For exam(ilethe absence of prespecified sequenc@uter-core percolatioris defined in
boundary conditions the probability density to observe only the same way, using outer-core connectedness, subject to the

two particles, located at; andx,, is given by

proviso that there is no inner-core percolation.
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Our first result relates these geometric phases in the grgyarticle, regardless of location, increases, or at least does not
model to actual phases in the four-color model. decrease the value of: for all N, all o=(Xx4, ... Xy), and

Proposition 1. If, in the grey representation with wired all Xy 1, we haveA(w,Xy+1)=A(w). A function is said to
boundary conditions, there is inner-core percolation, thenbe decreasing if it is the negative of an increasing function.
there are (at least) four infinite volume Gibbs states characiet u, and v, denote two grand-canonical measure on
terized by a relative abundance of Y, R, B, or G. If there ismultiparticle configuration inA\. Namely, measures accord-
outer-core percolation (without inner-core percolation) ing to which N indistinguishable particles are present
there are (at least) two infinite volume Gibbs states characwith nonvanishing probability for allN and with

terized by a relative abundance of Y and R over B and G otonditional measure of the formpy(Xy, ... Xy)
vice versa. Within these states there is completeRYand = (1/N!) (X1, . .. Xn)dXq, ..., dxy with fy>0 and fy
B+—G symmetry. <ePN (for stability). Then the measurg , is said toFKG-

Proof. Let f'Adenote the average fraction of particles thatdominatethe measurer,, if w,(A)=v,(A)for any increas-
are inner-core connected to the boundary. I_%Uenote the ing function A.
fraction of particle outer-core connected to the boundary that Remark Despite the ominous tone in the above definition,
are not, of themselves, inner-core connectedAoand let the concepts involved are quite simple: increasing functions
f/’:\ denote the fraction of remainin@ee) particles. We em-  are functions that satisfy the criterion “more is better,” e.g.,
phasize that, in counting the fractidf}, the particle is per- the number of particles in a specific region, and, loosely
mitted to be outer-core connectédithout being inner-core SPeaking, dominating measures correspond to systems with
connectelito a particle that is itself inner-core connected tothe tendency of larger particle content. In particular, and of
the boundary. Suppose, then, that there is inner-core percélevance to the present work, for two ideal gases, the one
lation. Let f'=lim, _paf| (taken along a subsequence if With higher fugacity is FKG dominant. o
necessary and similarly for f© and fF=1—(f'+fO). If, As a consequence of the following domination result, the

say, the wiring of the boundary corresponds to ye”0Wexistence _o_f the various pdhases is almost immediate.
boundary conditions, ané,, ... ,f%,are the average frac- Proposition 2. Let ACR® denote a regular vessel and let

tion of yellow, red, blue, and green particle, respectively,”zA(~) denote the ideal gas (Poisson) measure at fugacity
then, as is easily seen z and letuy \ (—) denote the previously described grey mea-

sure in wired boundary conditions. Then

P=fy+3 3+ 1} (7)
— W — J—
while V4Z,A( )FiG/uz,A( )FfGVaz,A( ), (10
=210+ 8 (8) where = denotes FKG dominance and the constant
FKG
and —4-K(d)=g-(3-1)
b_sg_1¢F Proof. (Sketch We will only provide the outline of the
fa=fa=zfy. 9

necessary ideas since the overall schéwtgch, in any case,
Evidently, in the infinite volume limit, these quantities are is fairly elementaryhas appeared explicitly in Ref.(Bropo-
distinct and satisfyfY>f'=fP=f9=0. Changing the color at sition 2.1 and its corollajy The first domination follows
the boundary produces the claimed three remaining states.from the fact that the gray measure is Poisson measure at
Finally, suppose there is outer-core percolation. In thefugacity 4z, for isolated particles, augmented by a set of
yellow boundary conditions, equatiorig) still apply, only  constraints that are specified by a decreasing function that
this time we find fY=(1/2)f°+(1/4)fF=f">f9=fP  restricts the possible coloring schemes. The second inequal-
= (1/4)fFand similarly green boundary conditions produce aity follows from the fact that the addition of a new particle
state withf9=f">fY=f".[J may tie together as many &5 d) clusters(that were here-
RemarkBack in the single species picture, it is seen thattofore uncorrelatedand thus “cost” a factor of 4@,
the two-phase region corresponds to two states of differing’hus, as is easily seen on an intuitive level, this system can
density[namely,f = (1/2)f®+ (1/4)fF, andf = (1/4)fF] while  be no “worse” than an ideal gas at fugacity #?z. O
the four-phase regime, less interesting from the perspective As an immediate corollary, we obtain the principal result
of the four-component model, actually represents a region obf this paper.

three distinct Gibbs states with densiti¢sf the privileged Theorem. In d=2, for any a there is value*{a) that is
species equal to f'+ (1/2)f°+ (1/4)F, (1/2)f°+ (1/4)fF,  independent of A, such that for al>z*(a) there is inner-
and (1/4FF, respectively. core percolation for the gray measure with wired boundary

It remains to be shown that for some valuesachnd A, conditions (and hence four distinct Gibbs states in the four-
both types of percolation occur as the fugacity is raised. Foeolor model). Further, for A/a sufficiently large, there is a
this we need some elementary notation of monotonicity. Al-range of fugacities, ga,A)=z=z,(a,A) with z(a,A)
though the concepts below are borrowed from the lattice<z*(a), such that for all z in this range there is outer-core
(and proved via continuum limitghey are in fact easier to percolation, and no inner-core percolation (and hence an
state in the continuum. Lek C R%nd let.A denote a func- intermediate phase with two Gibbs states in the four-color
tion of particle configurations irk. Explicitly, for any N, if ~ model).
w=(X1, ... Xy), it is possible to evaluatel(w). The func- Proof. Consider independeriPoisson spheres of radius
tion A is said to beincreasingif the addition of one more b in dimensiond. Let z2®=2z")(d) denote the percolation
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threshold(where percolation islefinedas discussed aboye interaction parameters, there are two phase transitions as the
in this system. Notice that percolation, e.g., as defined herdugacity is varied.

can be expressed #he limit of) the averages of increasing  Finally, it is noted that by the methods of this work one
functions. Further, by simple scaling®(d)=z"(d)b™?  can construct models with any number of phases; e.g., an
wherez(!)(d) is finite and nonzero fod=2 (see, e.g., Ref. eight-component model with two teams of four within which
12, Sec. 10.b Thus regardless oA, by the second half of there are two subteams of two. Such a model, characterized
proposition 2, there will be inner-core percolation wheneveryy three interaction radii can display three different phase
az>7(d). transitions. Similarly a model of this form witk interaction

Finally, let us suppose thatz>z"(d) so there is an parameters will displak separate phase transitions.
infinite cluster of outer cores. If, in addition,z4 z®(d),

inner core percolatiosannotoccur due to the first domina- The authors would like to thank Christian Maes for the
tion in proposition 2. Fora/A sufficiently small, we have suggestion of the direction of this investigation. The authors
(142D (d)> (1/) ZM(d) and forz in this range, an inter- are grateful to Roland Dobrushin for having made our col-
mediate phase in the four-color model occlurs. laboration at the Schdinger Institute possible. L. C. was
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