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We consider a continuum four component model of Widom-Rowlinson type with an Ashkin-Teller symme-
try. It is established that this model has two phase transitions with four distinct phases at high fugacity and two
distinct phases in an intermediate fugacity regime.@S0163-1829~96!05134-X#

A number of years ago, Widom and Rowlinson1 proposed
a continuum model of interacting spherical particles and pro-
vided compelling evidence that this model has a phase tran-
sition. A rigorous proof of the existence of a two-phase re-
gime in this model emerged shortly thereafter2 and
recently,3,4 this phase transition has been understood in geo-
metric terms—as a percolation phenomenon.

Nevertheless, progress in the rigorous study of phase tran-
sitions in continuum systems has been slow and primarily
confined to models of the Widom-Rowlinson~WR! type.
Theq-component generalizations of the WR model and their
perturbations have been studied in Ref. 5 and the existence
of a region with multiple phases have been demonstrated at
large activities.6

The present work does not really provide any further sig-
nificant insight for the general problem of liquid-gas transi-
tion. However, we have discovered a modified type of pen-
etrable sphere model that exhibitstwo phase transitions; the
intermediate phase in this model is quite distinct from the
high- or low-density phase of the usual WR systems.

Theq-component WR model may be loosely described as
a continuum version of theq-state Potts model~or, some-
what more accurately, the annealed dilute Potts models!. In
this sense, the model we study is a continuumAshkin-Teller
model. On the lattice, the Ashkin-Teller7 model is known8,9

to have an intermediate phase and, as will be demonstrated in
this work, such a phase survives in the continuum version.

The reader will recall that the Ashkin-Teller model con-
sists of four species of particles, here denoted byY ~yellow!,
R ~red!,G, andB. In the most interesting region of the phase
diagram, each particle type is strongly attracted to particles
of their own species, weakly attracted to one other species
and repelled by the other two. In our case, we will takeY and
R as allies against theG-B team. Here we will assume for
simplicity that the Y-G and Y-B ~repulsive! interaction
are the same. In all other respects it will be assumed that
the four species are identical under relabeling, e.g.,
Y→B→R→G→Y.

With this description it is not difficult to imagine that as
the ~common! fugacity is increased, or, in the lattice ver-
sions, as the temperature is lowered, there will come a point
where one team dominates at the expense of the other. Ex-
plicitly, there will be two phases, aYR-rich phase and a
GB-rich phase, within whichYR andGB symmetry is still
respected. Finally, at lower temperatures and/or higher
fugacity, cooperation between the allied pairs is forsaken in
favor of single color dominance. Here, there are four distinct
~but equivalent! phases.

To implement this scheme in the continuum, we consider
spherical particles with two interaction radii,a and
A.a.The outer radiusA serves as a hard-core interaction
distance for phobic pairs, e.g., anyG and Y particles are
forbidden to come within a radius 2A of one another. The
inner radiusa then serves as a hard core for the phillic pairs.
Finally, all the species are unaffected by the members of
their own color group.

As is the case in the usual WR models, one can conceive
of integrating out all colors save a single species,Y, and
regard all of this as a machinery for generating interactions
between theY particles.~In the two-component model, the
interaction can be written in a closed form.1! In the present
context, the resulting effective interaction does not immedi-
ately yield any intuitive features and hence will not be dis-
cussed further. Nevertheless, the single species description of
the model is of interest and will be used alongside the four-
color picture in describing the various phases.

As in the case of the two-component model, we may de-
scribe the various phases in terms of different percolation
properties. Indeed, in Refs. 3 and 4, it was shown that per-
colation is necessary and sufficient for the existence of dis-
tinct high-density phases. In the present context, we may
envision two types of percolation:~i! inner-core percolations
and ~ii ! outer-core percolation.

The former is analogous to the high-density phase in the
usualq-component WR models; there is an infinite cluster of
particles that are connected in the sense that the union of
spheres of radiusa surrounding each particle form an infinite
component. Observe, by the~inner! hard-core rule such a
cluster must be of a single color; indeed, in the usual
q-component models, these particles constitute the density
excess in the two-phase regime and are hence identified with
the condensate.

Percolation of type~ii ! constitutes the feature of the
present model. Namely, consider a situation where the inner-
core percolation doesnot occur and yet there is an infinite
cluster of outer cores connected in the sense of overlapping
spheres of radiusA. Here, the outer-core rule requires only
that the infinite cluster belong to one of the two teams, it thus
represents the excess density of~say! YR over GB. How-
ever, the fact that there is no percolation of the inner cores
indicates that within theYR infinite cluster, the densities of
yellow and red particles are equal.

It turns out that by using the methods of Ref. 3, the above-
described picture can~for certain values of parameters! be
transformed into precise statements concerning coexisting
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Gibbs states in the infinite volume system. This will be ac-
complished as soon as some preliminary notation has been
established.

Let us start here with a concise formulation of the model.
Let L,Rd be a ‘‘regular vessel’’~e.g., a sphere or a cube!
and letx1

y ,...,xNy
y ,x1

r ,...,xNr
r ,x1

b ,...,xNb
b ,x1

g ,...,xNg
g , denote

points inL. Define

x I~x1 ,x2!5H 0 if ux12x2u,2a,

1 otherwise,
~1!

xO~x1 ,x2!5H 0 if ux12x2u,2A,

1 otherwise,
~2!

and let

xNy ,Nr ,Nb ,Ng
5S )

c5y,r
d5b,g

)
1< i<Nc
1< j<Nd

xO~xi
c ,xj

d!D
3S )

1< i<Ny
1< j<Nr

x I~xi
y ,xj

r ! )
1< i<Nb
1< j<Ng

x I~xi
b ,xj

g!D .
~3!

The grand-canonical partition function, at fugacities
zy , . . . ,zg , is given by

JL~zy ,zr ,zb ,zg!

5 (
Ny , . . . ,Ng50

` zy
Ny•••zg

Ng

Ny! •••Ng!

3E
L
dNyx•••dNgxxNy , . . . ,Ng

~x1
y , . . . ,xNg

g !.

~4!

Of course, here we have paid no heed to boundary condi-
tions. ~In fact, the above defined is correct for free boundary
conditions.! Boundary conditions, in the present context,
may be envisioned as the placement of particles of various
types on or outside the boundary]L and may be imple-
mented by the restriction of the region of integration. For
example, in the yellow boundary conditions, the region of
integration for eachxi

y is all of L, however, the positions
xj
b andxj

g are restricted toL/]AL, the set of points inL of a
distance greater than 2A from the boundary and, similarly,
the positionxj

r lie in L/]aL. As usual, the partition function
provides the normalization constant for the probability dis-
tribution for the configurations of colored particles.

Along the line of equal fugacitieszy5•••5zg[z, the
principle focus of our attention, we may introduce thegray
representation~Ref. 3, see also Ref. 10! for the problem. In
this representation, all configurations of a total ofN particles
are regarded as equivalent. For example~in the absence of
boundary conditions!, the probability density to observe only
two particles, located atx1 andx2 , is given by

P~x1 ,x2!5
1

J

z2

2!
3H 42 if ux12x2u>2A,

2322 if 2a<ux12x2u,2A,

4 if ux12x2u,2a.
~5!

Aside from the prefactor, the interpretation of the above is
obvious: if ux12x2u>2A, each particle could be any of four
colors, if 2a<ux12x2u,2A both particles must be on the
same team, within which there are 22 possibilities and, fi-
nally, if ux12x2u,2a both particles must be of the same
color, for which there are four possibilities.

More generally~albeit still for free boundary conditions!
let v5x1 , . . . ,xN denote a particle configuration. Suppose
that there is a total ofK~v! outer connected clusters ofv @so
that 1<K(v)<N] and let us denote these clusters by
C1 , . . . ,Ck . Within each of these clusters there aremj
5m(Cj ) distinct inner-core connected clusters; 1<mj
<uCj u[ number of particles inCj . Each outer-core con-
nected cluster can be on one of the two teams and within
eachCj , all of themj clusters can be either of two colors.
All in all, as it is not hard to see, we obtain a density, for the
configurationv[x1 , . . . ,xN , given by

P~v!5
1

J

zN

N!
2K~v! )

j51

K~v!

2m@Cj ~v!#. ~6!

Of course, Eq.~6! must be appropriately modified@e.g., in
the counting of the numberK~v!# for the presence of specific
boundary conditions. The boundary conditions correspond-
ing to, say, a yellow particle at each point of the boundary,
will be called the wired boundary conditions.

Remark. As to be expected, the above formula is consid-
erably more complicated than that of the gray representation
associated with the usual two-component WR models. For
these models, one has a single interaction radius, that serves
to define the notion of connectedness, and the right-hand side
of Eq. ~6! is replaced by (const)3@zN/N!#2C(v), whereC~v! is
simply the number of connected components ofv. Notice
that in the present model, asa→0, we obtainm(Cj )5uCj u
which results inP(v)}@1/N! #(2z)N2K(v), i.e., the two-
component model~at twice the fugacity!. The physical pic-
ture behind this equivalence to the two-component model is
quite obvious: member of the same team are no longer dis-
tinguishable in any meaningful way. Nonetheless, this is
quite interesting because in the lattice version, complete
equivalence~indistinguishability! within the allied groups
corresponds to the line along which the Ashkin-Teller model
is known to degenerate into an Ising system.

It is, of course, seen that a complete knowledge of the
gray measure, along with a specification of the coloring
scheme employed at the boundary, allows us to reconstruct
all possible statistical information of the original model.

Percolation, in the gray or colored representation, will be
defined here quite simply: we will say that there isinner-
core percolationif the probability that a particle located at
any given point ofL is connected to]L by an inner-core
connection is uniformly positive inL asL→Rd along some
prespecified sequence.Outer-core percolationis defined in
the same way, using outer-core connectedness, subject to the
proviso that there is no inner-core percolation.
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Our first result relates these geometric phases in the gray
model to actual phases in the four-color model.

Proposition 1. If, in the grey representation with wired
boundary conditions, there is inner-core percolation, then
there are (at least) four infinite volume Gibbs states charac-
terized by a relative abundance of Y, R, B, or G. If there is
outer-core percolation (without inner-core percolation)
there are (at least) two infinite volume Gibbs states charac-
terized by a relative abundance of Y and R over B and G or
vice versa. Within these states there is complete Y↔R and
B↔G symmetry.

Proof. Let fL
I denote the average fraction of particles that

are inner-core connected to the boundary. LetfL
O denote the

fraction of particle outer-core connected to the boundary that
are not, of themselves, inner-core connected to]L and let
fL
F denote the fraction of remaining~free! particles. We em-
phasize that, in counting the fractionfL

O , the particle is per-
mitted to be outer-core connected~without being inner-core
connected! to a particle that is itself inner-core connected to
the boundary. Suppose, then, that there is inner-core perco-
lation. Let f I5 limL→RdfL

I ~taken along a subsequence if
necessary! and similarly for f O and f F512( f I1 f O). If,
say, the wiring of the boundary corresponds to yellow
boundary conditions, andfL

y , ... ,fL
g ,are the average frac-

tion of yellow, red, blue, and green particle, respectively,
then, as is easily seen,

fL
y 5 fL

I 1 1
2 fL

O1 1
4 fL

F ~7!

while

fL
r 5 1

2 fL
O1 1

4 fL
F ~8!

and

fL
b 5 fL

g 5 1
4 fL

F . ~9!

Evidently, in the infinite volume limit, these quantities are
distinct and satisfyf y. f r> f b5 f g>0. Changing the color at
the boundary produces the claimed three remaining states.11

Finally, suppose there is outer-core percolation. In the
yellow boundary conditions, equations~7! still apply, only
this time we find f y5(1/2)f O1(1/4)f F5 f r. f g5 f b

5(1/4)f Fand similarly green boundary conditions produce a
state with f g5 f b. f y5 f r .h

Remark.Back in the single species picture, it is seen that
the two-phase region corresponds to two states of differing
density@namely,f5(1/2)f O1(1/4)f F, andf5(1/4)f F] while
the four-phase regime, less interesting from the perspective
of the four-component model, actually represents a region of
three distinct Gibbs states with densities~of the privileged
species! equal to f I1(1/2)f O1(1/4)f F, (1/2)f O1(1/4)f F,
and (1/4)f F, respectively.

It remains to be shown that for some values ofa andA,
both types of percolation occur as the fugacity is raised. For
this we need some elementary notation of monotonicity. Al-
though the concepts below are borrowed from the lattice
~and proved via continuum limits! they are in fact easier to
state in the continuum. LetL,Rdand letA denote a func-
tion of particle configurations inL. Explicitly, for anyN, if
v5(x1 , . . . ,xN), it is possible to evaluateA~v!. The func-
tion A is said to beincreasingif the addition of one more

particle, regardless of location, increases, or at least does not
decrease the value ofA: for all N, all v5(x1 , . . . ,xN), and
all xN11 , we haveA(v,xN11)>A(v). A function is said to
be decreasing if it is the negative of an increasing function.
Let mL and nL denote two grand-canonical measure on
multiparticle configuration inL. Namely, measures accord-
ing to which N indistinguishable particles are present
with nonvanishing probability for all N and with
conditional measure of the form rN(x1 , . . . ,xN)
5(1/N!) f N(x1 , . . . ,xN)dx1 , . . . ,dxN with f N.0 and f N
,ebN ~for stability!. Then the measuremL is said toFKG-
dominatethe measurenL if mL(A)>nL(A)for any increas-
ing functionA.

Remark. Despite the ominous tone in the above definition,
the concepts involved are quite simple: increasing functions
are functions that satisfy the criterion ‘‘more is better,’’ e.g.,
the number of particles in a specific region, and, loosely
speaking, dominating measures correspond to systems with
the tendency of larger particle content. In particular, and of
relevance to the present work, for two ideal gases, the one
with higher fugacity is FKG dominant.

As a consequence of the following domination result, the
existence of the various phases is almost immediate.

Proposition 2.LetL,Rd denote a regular vessel and let
nz,L(2) denote the ideal gas (Poisson) measure at fugacity
z and letmz,L

w (2) denote the previously described grey mea-
sure in wired boundary conditions. Then

n4z,L~2 ! >
FKG

mz,L
w ~2 ! >

FKG
naz,L~2 !, ~10!

where >
FKG

denotes FKG dominance and the constanta

542K(d)>42(3d21).
Proof. ~Sketch! We will only provide the outline of the

necessary ideas since the overall scheme~which, in any case,
is fairly elementary! has appeared explicitly in Ref. 3~propo-
sition 2.1 and its corollary!. The first domination follows
from the fact that the gray measure is Poisson measure at
fugacity 4z, for isolated particles, augmented by a set of
constraints that are specified by a decreasing function that
restricts the possible coloring schemes. The second inequal-
ity follows from the fact that the addition of a new particle
may tie together as many asK(d) clusters~that were here-
tofore uncorrelated! and thus ‘‘cost’’ a factor of 42K(d).
Thus, as is easily seen on an intuitive level, this system can
be no ‘‘worse’’ than an ideal gas at fugacity 42K(d)z. h

As an immediate corollary, we obtain the principal result
of this paper.

Theorem. In d>2, for any a there is value z* (a) that is
independent of A, such that for all z.z* (a) there is inner-
core percolation for the gray measure with wired boundary
conditions (and hence four distinct Gibbs states in the four-
color model). Further, for A/a sufficiently large, there is a
range of fugacities, z1(a,A)>z>z2(a,A) with z1(a,A)
,z* (a), such that for all z in this range there is outer-core
percolation, and no inner-core percolation (and hence an
intermediate phase with two Gibbs states in the four-color
model).

Proof. Consider independent~Poisson! spheres of radius
b in dimensiond. Let z(b)5z(b)(d) denote the percolation
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threshold~where percolation isdefinedas discussed above!
in this system. Notice that percolation, e.g., as defined here,
can be expressed as~the limit of! the averages of increasing
functions. Further, by simple scaling,z(b)(d)5z(1)(d)b2d

wherez(1)(d) is finite and nonzero ford>2 ~see, e.g., Ref.
12, Sec. 10.5!. Thus regardless ofA, by the second half of
proposition 2, there will be inner-core percolation whenever
az.z(a)(d).

Finally, let us suppose thataz.z(A)(d) so there is an
infinite cluster of outer cores. If, in addition, 4z,z(a)(d),
inner core percolationcannotoccur due to the first domina-
tion in proposition 2. Fora/A sufficiently small, we have
(1/4)z(a)(d).(1/a)z(A)(d) and forz in this range, an inter-
mediate phase in the four-color model occurs.h

Concluding remarks. By considering continuum
penetrable-sphere models with four species and differing in-
terspecies interactions, we have shown that for a range of

interaction parameters, there are two phase transitions as the
fugacity is varied.

Finally, it is noted that by the methods of this work one
can construct models with any number of phases; e.g., an
eight-component model with two teams of four within which
there are two subteams of two. Such a model, characterized
by three interaction radii can display three different phase
transitions. Similarly a model of this form withk interaction
parameters will displayk separate phase transitions.
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