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Convergence to Equilibrium of Random Ising Models
in the Griffiths Phase
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We consider Glauber-type dynamics for disordered Ising spin systems with
nearest neighbor pair interactions in the Griffiths phase. We prove that in a
nontrivial portion of the Griffiths phase the system has exponentially decaying
correlations of distant functions with probability exponentially close to 1. This
condition has, in turn, been shown elsewhere to imply that the convergence to
equilibrium is faster than any stretched exponential, and that the average over
the disorder of the time-autocorrelation function goes to equilibrium faster than
exp[-k(log t ) d / ( d - 1 ) ] . We then show that for the diluted Ising model these
upper bounds are optimal.
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We consider a random Ising model with formal Hamiltonian

The underlying lattice is Zd and the spin variables a(x) take values + 1.
The notation <x, y> means that the sum is taken over all pairs of nearest
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neighbors (pairs of sites whose euclidean distance is one). We denote by Q =
{ — 1, 1}zd' the configuration space. For xeZd we let \x\ =max,ie{1 d}|xi|.
The associated distance function is denoted by d( •, •). By QL we denote the
cube of all x = (x1,..., xd)eZd such that xte{0,..., L-1}. If xeZd, QL(x)
stands for QL + x. We also let BL be the ball of radius L centered at the
origin, i.e., BL = Q2L + 1((—L,. . . , —L)). A subset A of ~Ld is said to be a
multiple of QL if there exists yeZd and ulv.., uneLZd such that A = y +
Ui QL,(ui). If f is

 a function on Q, Af denotes the smallest subset of Zd such
that f ( o ) depends only on aAf ; is called local if Af is finite.

The Jxy's are random variables in an abstract probability space
(6, B, P). E ( . ) stands for the expectation with respect to P (expectation
over the disorder). We assume them to be i.i.d. and bounded, i.e., there is
Joo such that P{ |J x y | >J<oo} =0. As a particular case we consider the
diluted Ising model where Jxy is equal to 1 with probability r and equal to
0 with probability 1 - r.

The finite volume Gibbs measure on A with boundary condition T is
given by
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where ZJ^ is the partition function, and HJ^ is the finite volume
Hamiltonian with b.c. z. We are always either in the Griffiths phase [G]
or in the paramagnetic phase, so there is P-a.s. a unique infinite volume
Gibbs measure uj. We let nJ(f) = $ u(da) f ( a ) .

In this paper we present some new rigorous results on the speed of
relaxation to the equilibrium of a Glauber-type dynamics when the system
is in the Griffiths regime. Reference [CMM1] contains a gentler introduc-
tion to the subject as well as a discussion of previous work. We consider
for simplicity the heat-bath dynamics, defined by the transition rates

where ( V x f ) ( 0 ) = f(ox) — f ( a } and ax e Q is the spin configuration obtained
from a, by flipping the spin at the site x. Any reasonable reversible (i.e.,
which satisfies the detailed balance condition), attractive single spin-flip
dynamics would work. Let (T^-J-r; t^-Q) denote the semigroup associated
with the dynamics in a volume VcZd, with boundary condition T. In other
words, given a function f of the spin configurations a, ( T v , J , r f ) ( a ) denotes
the expectation of f at time t over the dynamics in V with initial condition
a and boundary condition -c. The quantity TJ, is the infinite volume semi-
group associated with the infinite volume dynamics.

When studying the relaxation to the equilibrium, one is usually inter-
ested in either the "worst" initial condition, or the L 2 ( u J ) average, where
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uj is the equilibrium Gibbs measure. We define then, for a local function /

(remember that uj is the unique equilibrium Gibbs measure). The second
quantity is a close relative of the usual autocorrelation function. In fact,
since TJ

t is self-adjoint on L2(u j) , it follows that

where at is the process at time t and < • > is the average over the process
whose initial condition is thermal equilibrium. For this kind of quantities
one can study both

• the typical behavior, i.e., properties which have probability one
(w.r.t. the disorder), or

• the average behavior, which coincides with the average over the
spatial translations, since our disorder has an ergodic distribution.

We let Qb be the set of all bond configurations, i.e., Qb= {0, 1} '̂', where
$Zd is the set of all bonds (pairs of nearest neighbors) in Zd. Then we let
Pr be the probability measure on Qb associated with an independent bond
percolation problem with bond density r and define

If d > 3, we define B ( d ) as the "slab-threshold" for the "pure" (i.e., with all
Jxy equal to one) Ising model. We refer the reader to [P] for details about
Bc (it is called B1 over there). The quantity fic(d) is conjectured to be equal
to the usual critical inverse temperature Pc(d). When d = 2 we simply let
4C(2)=/?C(2). What is important for us is that for all P > f i c the block
magnetization satisfies a surface order large deviation estimate. To be
precise let mL = ( 2 L + 1 ) - d

x e B L a ( x ) , be the normalized magnetization
in BL, let m*((l) be the spontaneous magnetization (for the pure model), and
let m * ' f ( p ) = l i m p _ p — m*((i) (i.e., M*-fis the same as m* unless m* has
a discontinuity). Then, if /?>/?,., and a, b are such that -m*-f((l)<a<
b<m*-f([l), we have, for large enough L
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where fi§ is the Gibbs measure in BL for the pure Ising model with free
boundary conditions. Surface order large deviation estimates have been
proven in [P] for d > 3 . In d =2 the problem has been completely solved
up to flc and with an exact expression for c (see [S, CCS, DKS, Pf, II, 12,
CGMS, IS]). The reason why we are interested in inequalities like (1.6) is
that they are a key ingredient for proving upper bounds on the relaxation
speed (see [CMM1], in particular Theorem 6.4 and the last inequality in
the proof of Lemma 6.5).

In the following we will use then FK representation for the Ising
model [FK]. We let v ™> q , p , w be the FK measure in the volume A with
wired b.c. Here q is a positive real number and p = {pxy, <x, y} e$z*} is
a collection of real numbers 0<p x y <1 each associated to a nearest
neighbor bond. The ferromagnetic Ising model (1.1), (1.2) corresponds to
q = 2 and pxy = 1 — e ~ 2 ^ J

x y . We say that there is wired exponential decay of
connectivity (WEDC) for a given q and p if there exist C>0, m>0 such
that for all cubes A we have

where {x <—> y] is the event that x is connected to y by a path of occupied
bonds with both endpoints in A<u{y}. We define ftw = ftw(d) as the
supremum of all ft' such that for all ft < ft' we have WEDC for q = 2 and
uniform pxy= 1 —e~2/>. We conjecture that ftw = ftc.

We can now state our results:

Theorem 1.1. l f d > 2 and either (i) E(1 -e-^'-V) <pc(d) or (i i)
E kxyl </Ci 'hen with P-probability 1 there exists a unique infinite volume
Gibbs measure fij. Moreover

(a) there exists k>0 such that for almost every J and for any local
function / there exists t0(J, f) such that for all t > t0

(b) there exists k>0 and for any local function / there exists t0(f)
such that, if t > t0(f) then

The second results shows that the upper bounds are almost saturated in the
diluted Ising model. For xeZd define the function nx:Q\-+{ — 1, + 1}, by
nx(a) = a(x).
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Theorem 1.2. Consider the diluted Ising model with bond density r.
Let d > 2 , /?> ftc(d), and assume that there is a unique Gibbs phase almost
surely. Then

(a) if r>pc there exist k>0 such that, with positive P-probability
we have, for t large enough,

(b) there exists k>0 such that, for large enough t,

Remark 1. nJ(n0) is clearly equal to 0, by uniqueness of the Gibbs
measure and the spin-flip symmetry.

Remark 2. Part (b) when d = 2 was proven in [CMM2].

Remark 3. Part (a) was proven in [CMM1] for a "uniformly
ferromagnetic" models, where Jxy is almost surely greater than some con-
stant 6. For diluted systems, the hypothesis r>pc is crucial. If, in fact, we
are below the percolation threshold, then every local function / lives in a
finite cluster. By consequence the convergence to equilibrium is exponen-
tially fast with probability 1 and with a .J-dependent relaxation time. This
implies a dynamical phase transition at r = pc.

Remark 4. When /?</?c the convergence to equilibrium is exponen-
tially fast uniformly in the disorder. To see this we can use Theorem 3.1 in
[MO] which says that if the interaction has the FKG property and the
dynamics is attractive, then, the condition

implies \ \ T ^ f - f t J ( f ) \ \ m ^ C'(f) e~m't. Now, thanks to inequality (2.20) in
[Hi] we get

By second Griffiths inequality //^0(er(0) a(z)) ^^(a(0) a(z)). Finally, if
P<PC, the last quantity has an exponential decay in |z| thanks to the
results on the sharpness of the phase transition [ABF]. Thus there is also
a dynamical phase transition which, modulo the conjecture Pc = fic, occurs
exactly at ftc.
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Proof of Theorem 1.1. In [CMM1] a general result has been
proved which says that the following hypothesis (H) is a sufficient condi-
tion for the theorem:

(H) There exist L0e/ + , oc>0, i9>0 such that for all L which are
multiples of L0

where QL is a cube of side L and the SMT property is defined as follows:
given a finite volume V<=.J.d, neZ+ and <x>0, we say that the condition
SMT( V, n, a) holds if for all local functions / and g on Q such that
d(Af, Ag) >n we have

With /tJyT(f, g) we mean the covariance (w.r.t. the measure fij^r) of/and g.
In [CMM1], (H) is given in an slightly stronger form, i.e., "for all L which
are multiples of L0" is replaced by "for all L>L0 ," but it is not difficult
to see that the weaker form is sufficient.

So, if we can prove that (H) holds, we are done. To do so we use a
result in [CMM2] (Lemma 3.4) which states that (H) is in turn a conse-
quence of the following assumption:

(H') There exist L0, C> 0 and m > 0 such that SME(A, C, m] holds
for all A which are multiples of QL0, where SME(A, C, m) means that for
all VcA and for all y e Ac, we have

where

and Ty is the configuration obtained from T by flipping the spin at y. In
order to estimate quantities like (1.12) for general d>2 we use recent
results based on the FK representation [AC]. In particular in [AC] it is
shown that
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where V
F^<I-P<« is the FK measure with a bond-dependent p parameter

given by pxy(J) = 1 — exp(— 2ft \Jxy\), and wired boundary conditions.
V <-^> y is the event that V is connected to y by a path of occupied bonds
with both endpoints in A u {y}.

Case ( i ) . E(1 -e~2ft^)<pc. It is well known (see, e.g., [ACCN])
that the FK measure with q=1 dominates (in the FKG sense) the one
with q = 2 and same p. But q = 1 corresponds to independent bond percola-
tion, so, if we let Pp be the probability measure associated with inde-
pendent bond percolation, we obtain that

Moreover it is easy to check that

where p = E( 1 — e 2f '•V). In this way we get

At this point we use the fact that p<pc and the "absence of intermediate
phase" for general percolation models [AB], [MMS] and we get that

Case ( i i ) . E \Jxy\ </?„,. In this case, thanks to the concavity result,
Proposition 1.4, which we prove below, and thanks to the fact that the
random variables Jxy are independent, we get

where J = E \Jxy\. The result then follows from the definition of fiw.

Proof of Theorem 1.2. We limit ourselves to give a sketch of the
proof, since all missing details can be found in the analogous statements in
[CMM1] (see, in particular, part (b) of Theorem 3.3, Lemma 6.5 and
Lemma 6.6). The only new ingredient is the following result:

Lemma 1.3. Let d>2 and r>pc(d). Let J={Jxy; {x, y} e<^} be
independent Bernoulli random variables with ¥ > { J x y = 1 } =r. Then there
exist e>0 such that the following holds with positive probability: there
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exists L(J) such that for all L>L, the cube QL contains a cube Q f ( y ) of
side l = L(elogI)1/dJ, such that

0) Jxu= 1 if both x and u are in Q l ( y )
(2) of all bonds <x, u> connecting Ql(.y) with Q l ( y ) c , exactly one

has Jxu = 1, while, for all the others we have Jxu = 0
(3) there is a path of length not greater than L connecting the origin

with Q l ( y ) such that Jxu= 1 along the path.

Remark. Condition (2) will make our life more complicated, because
we are going to deal with an event which is not positive. On the other side
having free (or actually "quasi-free") boundary condition is essential in the
last inequality in the proof of Lemma 6.5 in [CMM1 ] where one needs a
lower bound on the variance of a certain function (passing to finite volume
quantities is understood). That inequality would actually be false in
arbitrary b.c. Given Lemma 1.3 (which we prove below), we can complete
the argument. The idea is as follows: since Q l ( y ) is a cube with fi>$c and
"quasi-free" b.c. we can use (1.6) and show that the spins u(u) inside Q l ( y )
relax as (see inequalities (6.34), (6.35) and Lemma 6.5 in [CMM1])

So we know that for all L large enough, within distance L from the origin
there are spins relaxing as slow as in (1.17). At first sight, this doesn't seem
to say much about the spin at the origin yet. But it is not too difficult to
show that this slow relaxation actually propagates all the way to the origin,
in some weaker form, if (of course) the origin is connected to the slow
relaxing spins. More precisely one can prove (see (6.33) in [CMM1 ]) that,
if 0 and u are connected by a path of length n then

for some m independent of J. From (1.17) and (1.18) we get

The result follows by choosing L ~ t exp[ —(log t ) ( d - 1 ) / d ] and from the fact
that//(7i0) = 0. |

Proof of Part ( b ) . This statement has been proven in [CMM1] for
/? larger than some unspecified f1 i (d) . The proof can be extended to all
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ft > /?<. in exactly the same way as it was done for the two-dimensional case
(Proposition 4.3 in [CMM2]). |

Proof of Lemma 1.3. Assume first d> 2. Consider the event $ that
in QL there is a cube Q l ( y ) with l = |_(e log L)1/dJ, such that (1), (2) and
(3) of Lemma 1.3 hold.

We use the fact [GMa] that if we are beyond the percolation
threshold, for b sufficiently large, there is percolation in the slab of thick-
ness b; i.e., the region

Let then 2.L= {0,..., L- 1}2 x {0, 1 , . . . ,b-1}d - 2 , be the two dimensional L
by L square thickened by b in the other d— 2 directions. We define
0*2'' / ' 'i—»Z2 as the projection on the first 2 coordinates. Let X^ be the
event that the cluster of the origin constructed using the occupied bonds in
2. is infinite, and choose b such that Pr(XXj)>0. On the event X^ we can
define random sites (see Fig. 1) une & for n= 1, 2,... such that

(1) |un|=2«/a.s.
(2) un is connected to the origin by a path of occupied bonds inside 3^n/.

If there is more than one site satisfying (1) and (2), pick one of them with
a given arbitrary rule. Let then vn be a nearest neighbor of un obtained by
adding 1 to either the first or the second coordinate of un, in such a way
that |vn | =2nl+ 1. So vn is still inside 3. but just outside .%„,. What we
would like to say is that there is now a cube 2.f at v,, which has some finite

Fig. 1. Proof of Lemma 1.3 when d>2.
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probability to satisfy statements (1) and (2) of the Lemma. Unfortunately
statement (2) does not translate into a positive event, so we are going to
push the cube Ql out of the quadrant slab, along, say the third direction
and construct, by hand, a connection to it. We denote by x(i) the ith coor-
dinate of some xeZd. Thus we let vn = (v n

( 1 ) , v ( 2 )
n , b, 0,..., 0) and let cn =

Ql + vn, so that cn is right "above" the slab. Consider then the events

(1) Fn that the bond {un, vn} and the bonds "between" vn and vn are
occupied,

(2) cn* that all bonds inside cn are occupied, while all bonds con-
necting cn with (cn)

c are empty, except the bond {vn , vn — (0, 0, 1, 0,..., 0)}.

Let then Gn = Fnnc*. We observe that the occurrence of one of the Gn's
for some n ^ [ _ L 1 / ( 2 d ) _ ] implies S, because the length of the path connecting
cn to the origin is at most the number of bonds in 3^nf plus b + 1, and so
it is not greater than L. Thus we let N = \_L1/(2d)_\, and we want an upper
bound on the probability that none of the Gn, n<N occur. Let then
9 t = U * _ , < 7 B . Wehave

We argue that

In fact, since GN = FNr\c*, and since c* is independent of FN, ^N-1 and
A'oo, we have that

Let now Jn= {0,..., n — 1}2 x Zd-2 and let 36n be the sigma algebra
generated by all the bond variables with both endpoints in 2.n. Then we
have (^C

N_1 £ & 2 ( N - 1 ) l + l + 2 . Thus we can write

Now we use the fact that the conditional probability Pr( -\38n) has still the
FKG property, which together with the fact that FN and Xx are positive
events and that FN is independent of ^2(N_1) l + l + 2 yields
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From (1.21), (1.22), (1.23) we get Pr(GN \ »£N-1, *«) > P r ( F N ) Pr(cN*) =
Pr(GN), so (1.20) is proven. Moreover, if we let ScN be the set of all bonds
connecting CN with ce

N, we get

for some K = K(r, b), if L is large enough. From (1.19), (1.20) and (1.24),
we obtain

Iterating

Since N = \_L 1 / ( 2 d ) J , if e is small enough, we have that

By the Borel-Cantelli lemma, we thus obtain that with Pr( • \ Xy )-proba-
bility 1, there exists L0 such that £ holds for all L>L 0 .

The d=2 Case. If d = 2 there is no way of pushing the cube cn

"above" the quadrant, so we need a different approach. We let X^ be the
event that the origin percolates within the quadrant Z+ x Z+, and use
again the fact that Pr(XXl)>0 if r is above the percolation threshold. Let
l1=LL1/4J.

In particular (see Fig. 2) we want to focus on C0) C1,..., C,1.

Fig. 2. Proof of Lemma 1.3 when d=2.
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We also let

where l = L£logLJ, with e to be determined momentarily. Finally we
define H to be the horizontal "strip" given by H= (j£'=0 Ck. For any of the
objects defined above, we use the superscripts T, B, L, R to denote its top,
bottom, left and right side. Consider then the events

{A <-^> B} = {A is connected to B inside C}

and define <$ = (J%=1 Gk. Finally, let

It is easy to see that on Xm, the event E implies the event S. In fact if X^
and E occur, then there is a path from the origin to ck whose length cannot
exceed the number of bonds in H, and so it is not greater than 2l1

3< L.
On the other side we have

In the first two terms there is a positive event conditioned to another
positive event, so we use the FKG inequality and we get an upper bound
by removing the conditioning. In the last term we observe that (S is inde-
pendent of X^. So we get

Since we are above the percolation threshold, the first two terms are not
greater than 1 —c 1 e~ m

1
L 1 / 4 for some constants c1 < oo and m1 >0.

As for the third term in (1.26) we notice that Gk and Gk. are indepen-
dent if k, k' are two distinct odd integers. Moreover {0k <-*» CT

k} and cf
are also independent. Finally, we are above the (quadrant) percolation
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threshold, so Pr{Qk*~*-> Cj} >9 for some positive 9 independent of k.
Thus, for large L

if 3e |log r\ < 1/10 and L is large enough. So we have

and we conclude as in the d> 2 case, by using the Borel-Cantelli lemma. |

We finish by proving the "concavity property" used in the inequality
(1.16) which can be thought of as a generalization of a result in [OPG].
We define $ as the set of all bonds of ~Z.d with at least one endpoint in A.

Proposition 1.4. _ Let A be a finite subset of Zd, fbe a non-decreas-
ing function on {0,1}^. Let J= {Jxy, <x, y> e<fzj} be a collection of
positive real numbers and let p = { p x y , (x, y) e SZd] where pxy = 1 —e~2 J

x y .
Consider the associated FK probability v^2^-"'1". Then v^.2,x-/),-(y) ,s
concave in each Jxy.

Proof. Throughout this proof we let, for simplicity, vp,q = v F
A

K , q , p , w .
Choose a particular bond e = <x, y> and let

We want to prove that G" < 0 if q = 2. In fact we have

where Z is the partition function for the FK-model and

If we now denote by g the function of the variable ne
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we get that

which implies that

Notice that F' is non negative because both f and gp are increasing func-
tions and the measure vp,q satisfies the FKG property. Thus, in order to
conclude the proof, we have to show that 1 + 2e~ 2 J ' v q , p (g p e ) >0. By
explicit computation we have

Finally we observe that the FK-model with parameters (q, p) dominates an
independent percolation model with parameter p' = p/[q — (q — 1) p] (see,
e.g., [ACCN]). Thus, for q = 2 we get
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