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The invaded cluster algorithm, a method for simulating phase transitions, is described in detail. Theoretical,
albeit nonrigorous, justification of the method is presented and the algorithm is applied to Potts models in two
and three dimensions. The algorithm is shown to be useful for both first-order and continuous transitions and
evidently provides an efficient way to distinguish between these possibilities. The dynamic properties of the
invaded cluster algorithm are studied. Numerical evidence suggests that the algorithm has no critical slowing
for Ising models[S1063-651X%96)09208-7
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I. INTRODUCTION current work bonds are randomly ordered and then succes-
sively occupied until a stopping condition is reached. Con-
This paper discusses a cluster method for simulating botMentionally, invasion percolation is formulated as a growth
continuous and first-order transitions. The method, called th@rocess that is initiated at a limited number of seed sites, e.g.,
invaded clustefIC) algorithm, was introduced in Refi] in & Single site. If, in a system of scale the stopping rule is
the context of the Ising model. In this paper we give a morethat. some cluster is comparqble n extentLtqhen, as IS
extended discussion of the IC method, present data for Isin(?aSIIy showrlct., footnote(11) in [1]] the fraction of occu-

and Potts critical points, and show how to apply the metho

ied bonds will approach, asL—oc. The IC algorithm for
he g-state Potts models can be loosely described as the gen-

to first-order transitions in Potts models. K . - -
. eralization of invasion percolation to the FK random cluster
The Swendsen-Wan@EW) algorithm[2] and other clus- models P

ter methodg3,4] have led to vast improvements in the effi- = oo algorithm has several very attractive features:
ciency of simulating the critical region of a variety of spin First, the algorithm may be used to study a phase transition
models. For the Potts models, these algorithms are based Qfithout a priori knowledge of the transition temperature.
the Fortuin-KastelyiFK) [5] representation of the system as The |C algorithm thus enjoys the property of “uniformity”
a correlated bond percolation problem. Each Monte Carlgy “self-organized criticality.” In the computer science lit-
step in a cluster algorithm consists of generating an FK bond@rature, an algorithm is called “uniform” if it can be applied
configuration from the spin configuration by occupying someto problems of arbitrary size without the need for significant
of the satisfied bond§.e., bonds across which the spins areprecomputation. Conventional Monte Carlo sampling of
in agreementof the lattice. Clusters of connected sites arecritical points is nonuniform because precomputation is re-
randomly and independently assigned a new spin value thajuired to obtain the critical temperature. As the system size
is the same throughout the cluster. This creates the updatéacreases, the critical temperature must be computed to in-
spin configuration. creasing accuracy. For the IC algorithm the critical tempera-
The IC algorithm shares these basic features with otheture is not used as an input. In this setting the concept of
cluster algorithms but differs in how the bond configurations“uniformity” is akin to the idea of “self-organized critical-
are generated. For other cluster algorithms, satisfied bondty.” Instead, the transition temperature is aotput of the
are independently occupied with a probability that depend$C algorithm just ag. is an output of invasion percolation.
on the temperature. For the invaded cluster algorithm, bonds cases where the critical temperature is unknown or not
are occupied in a random order until the bond configuratiorknown with sufficient accuracy, this can be a significant ad-
fulfills a stopping condition. For example, the stopping con-vantage. Histogram reweightirid 3,14 is now the method
dition may be a requirement on the size of the largest clustebf choice for high precision measurements of the critical
For judicious choices of stopping condition the IC algorithmtemperature. This method involves extrapolating from a
simulates the transition point of the model. guessed critical temperature and its systematic errors are dif-
The relation between the SW algorithm and the IC algo-icult to judge.
rithm is analogous to the relation between ordinary percola- The IC algorithm is also an extremely fast way to simu-
tion and invasion percolation. In ordinafigond percolation late Ising-Potts critical points. In Sec. IV D we show that
[6], bonds are independently occupied with probability autocorrelation times for the IC algorithm are significantly
forming connected clusters of sites. At the percolationsmaller than for related cluster algorithms. Indeed, for certain
threshold,p., in a large finite box, the probability that any quantities such as the energy and the finite-size critical tem-
one of these clusters has an extent comparable to the systeysrature, the integrated autocorrelation time appears to ap-
size “jumps” from nearly zero to nearly one. In invasion proach zero as the system size increases as a result of anti-
percolation[7—12], at least the version most relevant to the correlations between successive Monte Carlo steps.
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Although first devised for critical points, the IC algorithm  In the seminal work of Fortuin and Kastelys] it was
is also effective for studying first-order transitions. For first- shown that the above defined spin system gives rise to a set
order transitions, it is convenient to have the stopping ruleof percolation-type problems known as random cluster mod-
control the number of sites in the largest cluster. In this wayels. These models are defined by weigtitson bond con-
the average magnetization is essentially fixed and a point ifigurationsw (collections ofoccupiedbonds that are given
the coexistence region can be explored. By sampling a singley
point in the coexistence region the problem of exponentially
long tunneling times between phases is avoided. The multi- W(w)=pl“l(1-p)lEl~lelgc, 2
canonical Monte Carlo methdd5] also avoids exponential _ _ _
tunneling times and has some features in common with thwhere|w| is the number of occupied bondg| is the num-
IC algorithm. We also present a criterion for distinguishingber of bonds in the latticéheredN), C() is the number of
first-order from continuous transitions. This criterion is ef- connected components af (counting isolated sit¢sand
fective for small system sizes and easily reveals the first- —p
order nature of the 5-state two-dimensional Potts model and p=p(B)=1-e €
the 3-state three-dimensional Potts model, both of which : . .

! " is the relationship between the bond density parameter and

have very weak first-order transitions. the temperature in the spin system. In particular

In finite volume, the IC algorithm does not sample the ’ '
canonical ensemble. We call the invariant measure sampled
by the algorithm the “IC ensemble.” A fundamental suppo- 2 W(w):ZﬁETr[e‘BH] 4
sition of this paper is that the IC ensemble is equivalent to @

the usual ensembles of statistical mechanics in the thermo- . . - .
is the graphical expression for the partition function in finite

dynamic limit. Just as the microcanonical and canonical en- lume. The weights mak nse for an itive ceahd
sembles agree for all local observables in the infinite volum olume. The weignts make Sense for any positive e
e casa)=1 is manifestly the usual bond percolation prob-

limit, we conjecture that the IC ensemble agrees with thes . . A
two ensembles for all local observables. On the other hand®™" In this paper we conS|d¢r only pos_mve mt_eger values of
global fluctuations differ in different ensembles. For ex-d‘ It has been gradually realized, with increasing degrees of

ample, energy fluctuations are proportional to the heat capa ophistications,17-19,2,20 that the graphical model and

ity in the canonical ensemble but this is not the case for th he spin model are “equivalent,” e.g., expectations of ob-

IC or microcanonical ensembles. Although we have no pr00§ervablgs in the sp?r'1 'mOQeI are easily calculable in terms of
yet of our assertions concerning the validity of the algorithm,2PProPriate probabilities in the random cluster system. From

in Sec. Il we carefully state our claims and supfpnrig- ;[jhfef mo?e;m pters?ecm_/e,lthle two desg?ptlotrr]]s ta_r N regardrtstr(]j as
orous arguments to back them up. ifferent facets of a single larger problem that is none other

Finally, we remark that in this study we have restrictedthan the annealed bond-diluted version of the original Potts

our attention to Potts models. However, as shown by WoIﬂmOdeI' . .

[3], it is possible to generalize the cluster methods to a much In d=2, for_aII a, thgre Isa phase transition, and for
wider class of models using an embedding procedure. Prél~ 1_ and 2 this trgnsnmn IS contmuoueSee[Zl,ZZ_ _for .
sumably, the same ideas should work for the IC algorith .etalls) For g=1, it can be. provgd_ th"."t the fransition Is
but these matters will not be pursued here. Some additiondrSt-0rder(23]. In two dimensions, it is widely accepted that

spin models and graphical representations appropriate for tH8€ fransition is continuous fay=3 and 4 and discontinuous

IC algorithm are discussed [16]. for g=5. Ind=3, the transition is believed to be discontinu-
The rest of this paper is organized as follows. In Sec. 110US for allg=3.

the invaded cluster algorithm is described in more detail and

in Sec. lll the algorithm is justified and compared to other B. The algorithm

simulation methods. In Sec. IV numerical results are pre- The invaded cluster algorithm for thestate Potts models

sented. is defined as follows: Consider a finite lattice on which there
is some spin configuratiofw;}. From the spin configuration,

Il. INVADED CLUSTER METHOD FOR POTTS MODELS a bond configuration is constructed via a modified form of

invasion percolation. First, the bonds of the lattice are as-

signed a random order. Bonisj) are tested in this order to

The g-state Potts models are defined by a collection ofsee if o;=0;. If the latter occurs, the bond is said to be

A. Potts models

spins, {o;} with i belonging to some lattice and satisfiedand it is added to the bond configuration. These
oi=1,2,...,d. The Hamiltonian is given by bonds are called theccupiedbonds. The unsatisfied bonds
are not considered for the remainder of the current Monte
_ Carlo step.
H=- 6y o — 1), 1 . " L
UZ,D (%, i ) @ The set of occupied bonds partitions the lattice into clus-

ters of connected sites. The cluster structure evolves until a
where the summation is over the bonds of the lattice. Ifstopping conditionis achieved. The stopping condition is
g=2, this corresponds to an Ising system. Here we consideypically based on the size or topology of a single cluster as
hypercubic lattices of sizéN=LY, usually with periodic detailed below. When the stopping condition has been satis-
boundary conditions andli,j) denotes a nearest neighbor fied, a new spin configuration is obtained by randomly as-
pair. signing one of theq spin types to each clustémcluding
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isolated sites and setting each spin in the cluster to thatrepresentation. In a system with symmetry breaking bound-
value. Statistics are collected on the new configuration ofry conditions as described above, the average magnetization
bonds and spins thereby completing a single Monte Carlds precisely the number of sites connected to the boundary.
step. Similarly, the susceptibility is the average size of the bond
Among the quantities typically measured on each Montecluster containing the origin. In periodic boundary conditions
Carlo step is the ratif of occupied to satisfied bonds. As we this is the same as the average of the sum of the squares of

shall seef serves as an estimator of the temperature of théhe cluster sizes divided Hy. Finally (cf. below the energy
system through the relatioff)~1—eA. per bond is related to the probability that both ends of a bond

are in the same cluster.

The mass rule and density rule both require some addi-
tional explanation. Let us start with the mass rule: in free or

The IC method does not use the temperature as an inppieriodic boundary conditions, the finite-volume magnetiza-
parameter. Instead, an appropriate choice of stopping rulg®on will always vanish by symmetry. Presumably, this is
allows us to simulate the critical point, the coexistence rebecause all of they distinct low temperature states are
gion of a discontinuous transition or a point away from theequally represented. Below the bulk transition temperature,
phase transition. The numerical results in Sec. IV feature th#is is manifested in the FK picture by the appearance of one

C. Stopping rules

following three stopping rules. large cluster and a multitude of small clusters. Thdiffer-
(i) Extension rule: Some cluster has maximum extent €nt values that could be assigned to the single large cluster
(the system si2ein at least one of thel directions. yields the above mentioned convex combination. However,

(i) Topological rule: Some cluster winds around the sys-because of tha priori symmetry between these states, if we
tem in at least one of the directions.(This is the usual rule agree in advance to always assign a fixed value to the large
for the identification of spanning clusters in percolation.  cluster, we geta finite volume approximation jdhe corre-

(i ) Mass rule: Some cluster has at leash sites. sponding pure state. Such a picture can be easily established

It is noted that for any of the above rules, the invasionWith complete rigor if the temperature is low. Fqr=2 in
stops when exactly one cluster satisfies the condition. Thu§l=2 this picture holds up to the critical point as can be
during the evolution of the bond configuration, when a givenderived from the main theorem [24,25 and forq>1 it is
bond is occupied, it is only necessary to check its cluster t@& consequence of the result[ig6]. Thus, we will suppose
see if the stopping condition is fulfilled. The extension andthat fixing the fraction of sites in the largest cluster is equiva-
topological rules involve no parameters and are used to drivient to fixing the magnetization.
the system to a phase transition point. Both of these rules Turning attention to the fixed bond density rule, let us
require that some cluster is barely the size of the system. wassume that we are in a finite bdx, e.g., with periodic
refer to these and related Stopping ru|essaanningru|es boundary conditions. The total energy divided by the number
and to the unique cluster which satisfies the rule asglam-  Of bonds is given by
ning cluster

The mass rule invol_ves an input parameteand permits e= iz (1= 85 o Vprs (5)
us to simulate an arbitrary temperature and also to explore |E|(i,j) e
the coexistence region of discontinuous transitions. The mass
rule is an example of éixed parameterule. Some alterna- wtl?r_e ()p. denotes the thermal average at temperature
tive fixed parameter rules that we have not yet studied nu8 ~ In the boxA. However, the quantityl— 4, ;) is eas-
merically are as follows. ily evaluated in the FK representation as

(iv) Magnetization rule: This is closely related to the mass
rule and is defined in systems where the spins at the bound-
ary of the sample are all set to 1. Thus bonds connecting the
boundary sites to internal sites may only be occupied if the
latter also have spin value 1. The stopping condition is ful-wherea(q,p,A) is the probability that two neighboring sites
filled when the number of sites connected to the boundarpelong to the same cluster. On the other hand, differentiating

(1-a), (6)

1
<1_ 5rri ,(rj>B,A:(1_ a

first exceedsnN. the expression Ed2) with respect to8 we get

(v) Susceptibility rule: After thekth bond has been occu-
pied, let us suppose that there are=r(k) clusters, 1 dlogz 1 1 1dz b 7
C4,...,C,; containing |C4|,---,|C,| sites. The stopping *TTIE B __E( _p)Z%_ pl ™
condition is fulfilled when|C,|?+ ... +|C,|? first exceeds
xN. whereb=b(p,q,A) is the probability(in a translation and

(vi) Energy rule: Here one counts the number of bondgeflection invariant systenthat a given bond is present. Evi-
whose endpoints are in the same connected clistgard-  dently, there is a simple relationship between the quantities
less of whether the bond itself has actually been occupieda andb. [Furthermore, ifo; ; is the probability that the bond
and stops when the tally exceesl€|. (i,j) is occupied andy ; is the probability thai andj be-

(vii) Density rule: Essentially equivalent to the energylong to the same cluster, the relationgq—1)
rule, we simply count the number of bonds that have beer<(1—-a; ;)=q(1—b;;/p) holds even without the assump-
selected and stop when the totalpiE|. tion of translation invariancéWe thus argue that fixing the

The magnetization, susceptibility, and energy rules arelensity of bonds has an equivalent effect to fixing the density
derived from their thermodynamic namesakes via the FKof neighboring pairs in the same cluster. The mass and den-
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sity rules have clear computational advantages over theto the usual SW or IC spin moves while the bond moves are
counterparts, the magnetization and energy rules, respedefined by selecting, without bias, aayout of Qp(o). It is
tively. For this reasor{and certain othejsthese rules will manifestly apparent that this “algorithm” samples the above
supersede the energy and magnetization rules in the remaijpint bond-spin distribution.

der of this paper. We claim that for the density rule, the bond moves are

Later we will argue that the fixed parameter rules pro-equivalent to this unbiased selection fréip (o). Indeed let
duce, in the thermodynamic limit, the equilibrium system ato denote a spin configuration. For the purpose of this theo-
the temperature corresponding to the chosen value of theem, let us implement the IC algorithm by assigning random
parameter. This temperature is therefore an output of thaumbers to the bonds and selecting the lowRssatisfied
simulation. For first-order transitions, the goal is to find pa-bonds. We may writ€)p(o)={w1, ... ,wg} with eachw, a
rameter values in the “forbidden region,” which is in prin- subset of the satisfied bonds of theand having w,|=P. It
ciple easy for the magnetization and the susceptibility. Fois clear that under IC dynamics, the criterion for selecting
continuous transitions, we may probe the critical region byw, is that the highest bond im, is lower than the highest
considering a sequence of magnetizations tending to zero &ond in any othew e Qp(o). Configurations inlp(o) all
susceptibilities tending to infinity. For example, choosinghave the same number of bonds, hence the probabilities are
x~N?® with s<1 the transition temperature and the critical unbiased.
behavior of local observables will again, presumably, emerge
from the output.

The fixed parameter stopping rules are related to “con-
strained” random cluster ensembles. Consider, for example, A. Comparison to the Swendsen-Wang algorithm
the constrained mass ensemhlefined by restricting atten-
tion exclusively to bond configurations that satisfy the  jihm and this, to the greatest extent, is the basis of our
mass condition(that the largest cluster ino has mass jqqition concerning the former. In both cases, occupied
M=mN) and are otherwise weighted hy raised to the ponq clusters are grown on top of a spin configuration by
number of components aé: randomly selecting some of the satisfied bonds. When the

Wi (w)=1 )gC®) ®) growth p_rocess_is sto_pped, both algorithms generate the up-
m(@)=ly(@)q=*", dated spin configuration from the bond configuration by the
same procedurédescribed in the second paragraph of the
Introduction. Thus the “only” difference lies in how the
bonds are selected.

In the SW algorithm, satisfied bonds are independently
accepted with probabilitp. If p is identified with a tempera-
gture as in the FK representatidiEq. (3)] one can show
seem that standard “equivalence of ensembles” argumen ,20] that detailed balance is satisfied for both the spins and

could be developed to show that in the thermodynamic limit, e bonds: For the spins, this is with respect to the canonical

these measures are identical to the usual random cluster me%'—bbS measure, and for the bonds it is with respect to the

sures at an appropriate valuepfin this case, according to random cluster measure. The key observail] is that the

the ideas if19], the associated measure in the spin systen’?W .algorllthm SImu'Iates a joint measure on spivd bond
converges to the corresponding Gibbs distribution. configurations that is defined by the weights

Somewhat to our surprise, it is readily shown that the IC W(o, )= p|w\(1_ p)lE\—lw\A(a.,w)_ (11)
density rule algorithm simulates the constrained density en-

semble. This constitutes the current high water mark as far g, he aboveA (o, ) insures consistency between the bond
rigorous results are concerned. We present the argument bé:[ﬁd spin configurationst (o, ) is one if all occupied bonds

low. . : . e . :
- . . in the configuration are satisfied, otherwiséo, w) is zero.

. Theorem]n finite volume, the IC.aI.gonthm W't,h thg d.en— It is worth pointing out that the SW algorithm can in fact

sity rule with p|E|=P samples the joint bond-spin distribu- pe gescribed in the framework of an IC algorithm. Let

tion defined by the weights S=S(o) denote the number of satisfied bonds in a given
spin configuration. LetA,(o) denote the random variable
that is chosen according to binomial statistics:

In particular, the random cluster marginal is the constrained S A sA

density ensemble defined as in E§). P(Ap(a)=A)=(R)p(1-p)>" (12
Proof. For a fixed spin configuration with at leaBt sat-

isfied bonds, consider the s@t(o) of all bond configura- The SW algorithm is defined by the stopping rule that on

tions w consistent with the spin configuratian and with ~ €ach round, al,(o) is drawn, and then the growth stops as
|w|=P: soon as the firsh (o) satisfied bonds are accepted. Viewed

in this light, the SW algorithm is seen to be quite similar to
Qp(0)={w|lp(w)=1 andA(c,w)=1}. (100 some of the IC algorithms under consideration. However,
unlike the SW algorithm, we are unable to write down a joint
We may define an “algorithm” as follows: starting from an distribution similiar to Eq(11) for any of the IC ensembles
(w,0) with 1p(w)A(o,w) =1, the spin moves are identical except for the case of the density rule.

lll. VALIDITY OF THE IC METHOD

The IC algorithm is in fact very similar to the SW algo-

wherely(w) is one if w satisfies the stated mass condition
and is zero otherwise. Similarly, we may construct toa-
strained density ensembéand theconstrained susceptibility
ensemblaising weights as in Eq8) with 1,, replaced by the
appropriate restricting functions.

Although we have not yet attempted a derivation, it woul

W(o,w)=lp(w)A(0,w). 9
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B. Away from criticality: Fixed parameter algorithms achieveC= x(p), the algorithm stops at=p+ 7_ where

As the title of this subsection indicates, we will provide 7t iS @ random variable depending on the spin configuration.
separate discussions of the critical and noncritical algoEven if we know thagz |—0 asL—c, we cannot, as of
rithms. In part, this is because the latter require fewer asyet, control the effects that these fluctuations have on the
sumptions about the equilibrium state of the Potts-FK syslimiting distribution for the IC algorithm. Indeed, the IC dis-
tem. For the fixed parameter stopping rules, the fundamentatibution will differ from the canonical distribution in finite
assumption is that the ensemble sampled by the IC algorithmolume. However, it is hard to believe that these objects do
has the same local properties as the canonical ensemble ahat tend to the same distribution in the infinite volume limit;
temperature that yields the chosen value for the thermodyall we lack is a proof. Nevertheless, to summarize our argu-
namic function(e.g., magnetization or susceptibilithat de-  ment, the assumption that the spin-bond configurations typi-
fines the stopping rule. We present the argument for the sugal of the Gibbs distribution are close to the ones of the IC
ceptibility rule, though similar arguments are possible forensemble is self-consistent in and of the fact that iterations of

other rules. _ o the IC algorithm keep us in the vicinity of the Gibbs distri-
Consider a large Potts-FK system in equilibrium atption.

P<p(Bc) (i.e., T>T). The “system wide” average cluster | ot ys now turn our attention to a discussion of the situ-
sizes will be very close to the mean value which, in turn, isation when the spin configuration is not typical of the desired
close to the limiting infinite volume susceptibility(p). Ex-  equilibrium distribution; here the arguments will be some-
plicitly, for bond configurationn, on a lattice of scalé, we  \hat less complete. We will again consider a given spin
may compute configuration and compare what happens under SW vs IC
dynamics. Suppose, for example, that the spin configuration

2 2
Clw)= u (13 is at too high a temperature. We may imagine that we have a
N configuration that is typical of the Gibbs distribution at an
and, asL—, the distribution ofC(w,) will be sharply ~nverse temperaturg such that +-e P=p<p=1-e ’.If
peaked about(p). we do a single iteration of the SW algorithm, again collect-

Now let us contrast the behavior of the SW and IC algo-N9 our bonds according to the time parameteas always,
rithms on a given spin configuration. Suppose that both th&/€ Stop whent=p. Because the temperature of the spin
SW and IC algorithms run by assigning a random r]umbef.:onﬂgura'uon was h|gher thand/the percentage of satls_fled
uniformly in [0,1] to each bond of the lattice. For the IC bonds will be relatively lower than typical for configurations
algorithm, this provides us with the ordering while for the that are at the right temperature. Evidently, when we stop,
SW algorithm at parametes, the instructions are to occupy with large probability the average Eond cluster size WI!| be
all satisfied bonds with random number less tiparFor the ~ Smaller than(p) but larger thany(p). The resulting spin
SW algorithm we may occupy bonds as a function of con-onfiguration will therefore be of intermediate character be-
tinuous timet, O<t<1. At time t, all satisfied bonds with Ween those that are typical of temperatureg ahd tem-
value less thah are occupied. Clearly, if we were to stop too Peratures 18. By contrast, whert=p, the invaded cluster
soon, e.g., at=p—e, the value ofC will be, with high algorithm does not stop. Hence, the fractibrof satisfied
probability, strictly smaller than the equilibrium value. Simi- bonds that get occupied under IC dynamics is in excess of
larly if we were to go beyong to t=p+e, we will geta P and the new configuratiotalso of intermediate characjer
value ofC that is too large. On the other hand, stopping, atiS further towards the low temperature side. It is thus appar-
t=p as we are supposed to, yields a valueifthat, by ent that away from equilibrium, we are pushed in the right
definition, is typical of the equilibrium distribution. direction and, as this example illustrates, we are pushed

Now, starting from thesamespin configuration, let us do harder in the dll’eCtIOI’l.Of eq_U|I!br|um under IC dynamics
a step of the IC algorithmwith the susceptibility rulestop- ~ than under SW dynamics. Similar arguments ?‘pf‘)ly to the
ping whenC= y= x(p). We may also envision this opera- cas€p<p and show th_at n0\_n7< p. We believe thl_s nega-
tion taking place as a function of continuous time. Now atlivé feedback mechanism™ is ultimately responsible for the
time t, the same bonds have been collected in both Monté™mense reductiofor complete absengef critical slowing
Carlo schemes and we can reiterate the previous discussiéiPwn that results from using IC dynamics. .
to conclude that the algorithm will not stop significantly be- ~ Unfortunately, we now leave terra firma in order to dis-
fore or aftert=p. If the system is in equilibrium initially ~CUSS the case where the configurations cannot be character-
then the IC algorithm chooses nearly the same stopping timg€d in terms of a single temperaturelike parameter. In gen-
as the SW algorithm. Since the latter was in equilibrium,eral, dynamically generated configurations are out of
evidently under IC, we stay in equilibrium. equilibrium, however we can consider the following pro-

The opposite perspective provides us with an equa||>posal for the definition of an effective temperature: For a
valid argument: Suppose it is the cags is observedthat ~ 9iven conﬂgurayom,__letC(m ,t) be the mean square clus-
the fractionf of satisfied bonds that are occupied has a dis{er size[as defined in Eq(13)] observed when we have
tribution that is sharply peaked. Then, each step of the Ic2ccupied all satisfied bonds with value less thanLet
algorithm amounts to an iteration of the SW algorithm with C(o ,t) be the average of this quantity over all realizations
parameter value equal fo If the stopping rule demands that of random numbers on the bonds. A measure of the effective
C=x(p), it follows thatf=p. temperature of the configuratian_is to compareC(o ,t)

Of course for an actual simulation in finite volume, the with x(p), the actual(equilibrium) susceptibility as a func-
above arguments are by no means a rigorous proof: T&on of the temperature parameterlf there is a singlénon-
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zerg point where these curves cross, this may be identifiedally observed at the critical poi.g., they could be power
as an effective temperature. In any caseCfio,,t=p) is law rarg, however, as we will see, the full validity of such
smaller thany(p) we can assert that the temperature isan assertion is not essential for the broader features of our
higher than that corresponding to the parameterhile if argument.
C(o,t=p)>x(p) it is lower. Obviously the colder con- Indeed, the basic reasoning is now pretty much the same
figurations should be heated up and the hotter configurationgs in the noncritical case: If the distribution fofthe fraction
should be cooled down. For spin configuratierand target ~ of satisfied bonds that are occupigd sharply peaked, the
susceptibility y, the typical simulation temperature of a central value must correspond to that of the critical param-
move will be given byt(x) such thatC(o ,t(x))=x(p). Etn P(Bc). If this central value were too small, then the
Since the curve€ (o, ,t) is monotone we again see the nega_correlatlon length would be a small fraction of the system
tive feedback mechanism—if the spin configuration is colderfand the clusters would not get big enough. l.f the peak yalue
than that corresponding o the simulation temperature will is so large that thelow tempergturb corrglatlon length is
be higher than that correspondingicand vice versa. small co.mpared to the system size, the biggest cluster would
Of course these considerations apply as well to the othel?e. too b'g.' Thus, the value éfhas to be.close enOl.Jgh to the
fixed parameter IC algorithms where we would argue—justcr't'cal point to ensure that the correlation length is at least a

as persuasively—that the magnetizationtv@ energy vst scaling fracthn of the system size. .
profiles of a spin configuration can be used to measure an If the required spanning cluster is itself, somehow, atypi-

effective temperature. It is worth remarking that there is oneCal of criticality, the above argument is still valid. As a con-

system where these suppositions are exact, namely the Ion@r—ete example, consider a stopping rule _that terminates the
ranged mean-field Ising model. Here, for Bnsite system, Iu;ter growth when there is a clluster of sie. Such a bad
each site interacts with every other site via a coupling ththO'C? _Of a spanning cluster will nqnetheless heavily favor
scales inversely witiN. At noncritical temperatures, the SW the critical value Of_f over any non_cr|t|cal value. Th_e worst
algorithm drives this system to equilibrium exponentially Fhat cogld happen is that the scaling O.f the spanning cluster
quickly (as expectedwhile, by contrast, the IC algorithm itself might be of the wrong type but in any case all local

achieves equilibrium in at most two Monte Carlo stgp§. obse_rvables W'”..St'” tal§e on t'helr qrmcal values. Flnally,
starting at noncritical spin configurations, the negative feed-

back mechanism discussed in the preceding subsection ap-
plies to these algorithms as well.

The general philosophy that underpins our belief in the The weaker point in our argument concerns our reasoning
validity of the critical algorithms is quite similar to the non- as to why the distribution of thé values should be sharply
critical cases. The important differences lie in the implicit peaked(First and foremost, this has been observed in every
assumptions we have made concerning the behavior of thesitical system). Let us imagine the problem in an infinite
graphical representation at criticality, in particular in finite volume setting and consider a critical spin configuration. We
volume. Indeed, for a Potts system with a continuous transiagain regard the process of growing the clusters as an inde-
tion, if we ask for the value of the parameter where thependent percolation problem defined on the random graph
susceptibility is equal to a certain value, the answer is unamthat is provided by the satisfied bonds of the spin configura-
biguous. Furthermore, provided thiatis large compared to tion. Let us first assume that, in the usual sense, this problem
the typical size of bond clusters, the statistics in a finite lathas a sharp percolation threshalg, It then follows easily
tice of sidel should represent an excellent approximation tothatt, corresponds to the critical value of the FK parameter,
the infinite volume behavior. t.=1—efe=p(B,). Indeed, at=p(B,), we have achieved

For the critical algorithms, the entire premise begins withthe critical FK bond configuration and our assumption of a
nontrivial questions about the equilibrium critical behavior sharp threshold rules out the possibility of any other value.
of the random cluster model in finite volume. For example,Going back to finite volume and starting from a critical con-
in a large system is there a single cluster with the followingfiguration, the argument in this case is finished: If we stop at
two properties?i) The extent of the cluster is the scale of the an f significantly different fromp(8.), we will get the
system.(ii) The cluster does not contain twor more dis-  wrong sort of clusters and stoppingfat p(8.) we keep the
joint subsets each of which satisfy conditiin. Under the spin configuration critical.
standard(long list of) assumptions concerning the nature of  Unfortunately, ind=2, it is not the case that the under-
the critical point the following picture, in the graphical rep- lying percolation problem has a sharp transition. Specifically,
resentation, emerges: AboVe, the probability that there is in the Ising model on the two-dimensional square lattice it
any such cluster goes to zero exponentially in the scale of theras shown in[27,28 that percolation of one spin type is
system. BelowT., there is a single large cluster that ex- necessary and sufficient for the existence of a positively
hausts a fraction—equal to the spontaneousmagnetized phas¢The analog of this result for the general
magnetization—of the system. Within this cluster, there arey-state Potts models was proved[28].)
many separate paths that are the scale of the system. To In particular, this means that in a critical configuration,
prevent this large cluster from happening requires a fluctuathere is no infinite cluster of satisfied bonds and thus, even if
tion presumably as rare as ¢xponst%~1]. By process of t=1, there is no percolation in our secondary process. Evi-
elimination, the only place that a cluster with the above propdently the percolation clusters on the critical spin configura-
erties could exist on all scales is the critical point. tion will themselves look critical for all betweernp(T.) and

This is not to say that the above line of reasoning proved. It is easy to believéout hard to prove, so we will spare the
that these or other kinds of spanning clusters are indeed typieader the details of the heurisfidbat the clusters will not

C. At criticality: Spanning algorithms
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go critical untilt=p(T.). Thus, the algorithm will not stop be the root. Information concerning the current state of the
collecting bonds until at least this point. However, in finite cluster as a whole, such as its mass, is stored with the root.
volume, there are, undoubtedly, typical critical spin configu- After the cluster configuration is updated by the addition
rations that forbid the existence of a spanning cluster. Foff a bond, it is necessary to check whether the current cluster
example, if there are star-connected chaimeaning that Satisfies the stopping rule. For the fixed parameter rules this
neighbors and next nearest neighbors both count as coff straightforward. For the other spanning rules, it is neces-
nected of plus spins and of minus spins winding both waysSary to associate with each site a vector from the site to the
around the torus, the topological condition cannot be satistoot of its cluster. The set of distance vectfss} is updated
fied. At the critical point, such configurations presumablyin the natural way when two clusters are combined. The sites
have uniform|y positive probab|||ty on all scales. Of Coursein the Iarger cluster retain their previous coordinates relative
this kind of disaster is ruled out by the mechanics of theto the root. The sites in the smaller cluster take new coordi-
algorithm: whatever the stopping condition, if it was satisfiednatesv’,
on the last iteration, it is satisfiable on the next one. How-

ever, near disasters can occur causing “bottlenecks’—
situations where one of a relatively few bondsistbe occu- . )
pied in order to achieve a spanning cluster. This would havd&/here ey is the unit vector of the new bond added to the
a tendency to drive us to higher valuesfof lattice, j is the site in the larger cluster which connects to

We believe that these bottlenecks do occur and, in fac in the smaller cluster. For the topological rule, stopping
are responsible for the relatively broad tails in the distribu-c@n only occur if the new bond is added as an internal bond.
tion of f in the regionp(8.)<f<1 that have been observed 'f the new bond(j,k) is an internal bond, we evaluate
in our two-dimensional simulations. However, we also be- N
lieve that these events affect only the details of how the Uk =V~ €k (15
L—oo limit is achieved, not the limit itself, since there are
alternate routes circumventing bottlenecks occurring on allf vk # v the current cluster is multiply connected and the
scales. Nevertheless, the finite-size scaling is sometime§pological rule is satisfied.
quite complicated and, in certain instances, we must resort to For the extension rule, each cluster must have associated
semiempirical fitting of the data. with it the coordinates of the @ sites which are the most

An interesting feature of the IC algorithfasing spanning distant from root along thel axes in the positive and nega-
rules is that the approach to equilibrium is along a critical tive directions. Updating these coordinates after two clusters
trajectory. For example, if the starting configuration is char-are combined is somewhat tedious due to periodic boundary
acteristic of zero temperature, the initial bond configurationconditions and is described [80].
is typical of ordinary bond percolation at threshold. Thus The invaded cluster algorithm requires .80 sec per
some sort of power law correlations are actually establishedpdate per spin on a DEC Alpha 2100 workstation. The run-

vi’evi—vk—ejk+vj, (14)

on the first step. ning speed is about a factor of 2 slower than for the SW
algorithm.

IV. NUMERICAL METHODS AND RESULTS For the reSUltS- repo_rted here we Start_ with an initial or-

_ _ dered T=0) configuration. Unless otherwise stated, the sys-

A. Implementation of the algorithm tem is allowed to equilibrate for 200 Monte Carlo steps

The most difficult part of the IC algorithm is the construc- (MC’s) before data collection. If no error bars are shown in a
tion of a cluster configuration from a spin configuration. Thefigure, the error is smaller than the symbol size.
first step is to produce a random permutation of the Betf

bonds of the lattice |E|=dL® herg. This is accomplished B. Continuous transitions
through |E| random pairwise permutations. Initially, let . . .
m{1,...|E|}—E be some conventional initial order on 1. Three-dimensional Ising model

E. For j=1 to |E|, w is updated by choosing a random  Figure 1 shows data for the mean value of the ratio of
numberr in the rangg to |E|; then thejth andrth elements  occupied to satisfied bond¢f) for the three-dimensional
of the permutation are interchanged(j)= m(r). It is well  Ising model as a function df ~**° The power ofL is cho-
known that aftefE| steps,7 is a random permutation. The sen to approximate the inverse of the three-dimensional Ising
computational work involved in making the random permu-correlation length exponent id#1.59. Results for both the
tation is nearly linear in the number of bonds. topological and extension spanning rules are shown. Finite-
Bonds are explored in the order given by the random persize corrections are smaller for the topological stopping rule.
mutation. If a bond is satisfied it is added to the clusterThe best linear fit to the data for the topological rule yields
configuration. The data structure for the cluster configuratio.358 03 in  comparison with a recent value
and its updating is done in the same general way as for othg¥(T.)=0.358 0987) from Ref.[31].
cluster and percolation algorithms using the Hoshen- Using ideas made plausible by finite-size scaling theory
Kopelman(or “disjoint set forests’) method. Each cluster of we can obtain two independent critical exponents. Figure 2
sites is described as a rooted tree and when two clusters asbows logy({f)—(f)e) plotted against log(L) for the three-
combined; the root of the smaller cluster becomes a son afimensional Ising model wherg ), is measured using the
the root of the larger cluster. When two clusters of the saméopological rule and(f), is measured using the extension
size are combined, the conventional direction associated withule. A fit to the data yieldss=0.63, which is in agreement
the bond that joined the clusters determines which site is tavith the value 0.628®) from [31]. A second independent
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159 FIG. 3. Double logarithmic plot of the distribution of cluster

sizesn(s) for the three-dimensional Ising model. The inset shows a
double logarithmic plot of the average size of the largest cluster.

FIG. 1. (f) vs L~ for the three-dimensional Ising model using
different stopping rules. The infinite volume estimatep¢T ;) from
Ref.[31] is shown on the vertical axis.

sumably caused by the simultaneous percolation of the spins
discussed in Sec. llIC. This is in contrast to the three-

. . . . dimensional Ising model for which thiedistribution is very
exponent can be obtained either from the cluster size d'sméymmetrical. The inset to Fig. 4 shows VB2 plotted

bution or the scaling of the largest cluster. Figure 3 Showsdgainst 1. The solid line is a fit to the data whose leading

n(s), the number of clusters per site of sizevith the data  op4yior i ~1/2 This curve supports the hypothesis that the
binned in octaves. This figure shows that the cluster siz€ici inution off becomes sharp ds— .

distribution is indeed self-similar and allows us to estimate Figure 5 is a plot of the average energy per sfiinthis

the exponentr, defined byn(s)~s"". A straight line fit section ¢ refers to the energy per spin rather than the energy

ylelds 7=2.19 compared to the accepted value of 2.21. Ayq hong g1 ~1 with the exact value plotted on the vertical
more efficient way to obtain a second independent expone is. A fit to the data of the formag+e,L 1+ &,L 2 yields

is via the fractal dimension of the spanning cluster. The av—SO: —1.706, which is reasonably close to the exact value

erage_size_ of the_ spanning_cluster is plottgd against th_e SY$S1707 .. .Energy fluctuations are shown in the inset of

tem size in the inset of Fig. 3, from which we obtaih Fig. 5. The quantity vag)N is seen to increase roughly

~Blv=2.45 compared t0 the accepted value 2.47. linearly in L. This is in contrast to the canonical ensemble

where varg)N is the specific heat and diverges logarithmi-

cally in L for the two-dimensional Ising model. The behavior
Figure 4 shows results for the extension rule applied toof energy fluctuations underscores the difference between the

the two-dimensional Ising model. Both the mean and mediafC ensemble and the canonical ensemble.

value off are plotted againdt ! (in accord with finite-size The top panel of Fig. 6 shows the fraction of occupied

scaling sincev=1 for the two-dimensional Ising modedand  bonds vs the mass of the largest cluster for the mass rule.

are seen to converge to the exactly known valug(@f.).

The fact that the median lies below the mean shows that the l

distribution is skewed toward larger valuesfofThis is pre- 0.586 o mean

2. Critical two-dimensional Potts models

Ogg o o median
0.584 -
0.01 L E\:\ - 0582 |
i oy
© LN 0.580 |-
v D\ 000 L
. N 0.578 | 0000 0005 0010 -
A E\ n .
v E\ 0.000 0.005 0.010
”\D /L
0.001 . : — FIG. 4. The mean and the median bfvs 1L for the two-
10 50 100 dimensional Ising model. The solid line shows a linear fit to the
L median and the exact infinite volume value is shown on the vertical

axis. The inset shows the standard deviation offthie 1L. A least
FIG. 2. Double logarithmic plot off),—(f) vsL for the three-  squares fit to the fornty+c,L ™2+ c,L ™! (solid line) suggests
dimensional Ising model. that the distribution becomes sharp in the infinite volume limit.
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FIG. 7. Double logarithmic plots dff —p(T.)| vs system size
L for the two-dimensionab-state Potts models. Exact values of
Data collapse for a range of system sizes predicted by the(T.) are used.
finite-size scaling ansatz,

[(f)—p(Te) ILY"~G(mLA), (16)

. ' : Figure 7 is a log-log plot of the deviation df from its
is confirmed in the lower panel. These results demonstratg, 5.t yalue versus the system size for two-dimensional Potts
that the IC algorithm can be used to extract quantitative re-.

" o models with continuous transitiong=1,2,3,4. Except for
sults for the critical temperatures and critical exponents usg, . Ising case, we have used the topological rule. The exten-
ing systems of modest size. ’

sion rule is used for the Ising case. Figure 8 is a log-log plot
of var(f)2 vs the system size for the two-dimensional Potts

0675 F ' ' ' ' 7 models with continuous transitions. The figure shows that the
o L=50 H f distribution becomes narrow as a power of the system size
0650 v L=100 . o . .
o L=150 L. Fitting the last five data points for eachto the form
0625 ¢ L=20 - var(f) 2~ L@ vyields b(1)=0.71(1), b(2)=0.442),
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FIG. 6. The mass rule applied to the two-dimensional Ising FIG. 8. Double logarithmic plots of the standard deviation of
model. The upper graph show$) vs m. In the lower graph the f, var(f)*2 vs system siz& for the two-dimensionaj-state Potts
same data are scaled as described in the text. models.
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For the extension stopping rule, the median enters a flat

P ' ' ' . ': T region starting at about=40. The arithmetic mean of the
LLlzmEiii i . last seven data points is 0.42336. Current valueg df32]
04 . i agree in the first four digits, and so does the value that we
Tt s < s obtained from the median in this way. Again, the mean is
0420 - . above the median and starts to approach it only for very large
. mean system sizesl(=80).
topological stopping rule + median
0415 - .

2. Mass rule for first-order transitions

.00 0.02 0.04 0.06 0.08 0.10 .
mn The above results show that spanning rules may be used

. . . . : to accurately locate a weak first-order transition, however
0425 mEee 33 | they perform poorly for strong first-order transitioflarge
' ot _ e values ofq). The difficulty is that thef distribution becomes
o increasingly broad and asymmetric with a tail extending to-
¢ 1 ward f=1. We believe that the tail in thé distribution is

o

“ 0420 b
¢ related to the way the spanning condition is met for strong
3 first-order transitions. The spanning cluster is a nearly linear
0415 - exfension stopping rule T object which extends across the system in a background of
. , ) , % small clusters whose size is presumably the correlation
000 002 004 006 008 010 length. For large values af the spanning cluster is very
HL narrow (somewhat like a river running through a terrain of

small clusters This observation is consistent with the in-
FIG. 9. The mean and median 6ffor the three-dimensional crease |np(TC) with increasingq' In addition, for |arga:]’

3-state Potts model. The upper graph shows results from the topgnere are severe bottlenecks; one of only a few bonds must
logical stopping rule, the solid line is a Ilnea_r fit to thg median. Thebe occupied to meet the spanning condition. This leads to a
lower graph shows results from the extension stopping rule. broad f distribution with a tail towardf=1. Although we

believe thef distribution becomes sharp for larde the

convergence is very slow. An additional difficulty in using
b(3)=0.302), andb(4)=0.231). For percolation this re- €ither of the spanning rules for strong first-order transitions
sult is close to the expected scalifg1)=1/»(1). For in-  arises from the fact that the spanning cluster is nearly repro-
vasion percolation it is believed that the fdlldistribution  duced in successive Monte Carlo steps so that the autocorre-

scales with. (1), For the other values af, b(q) is much  lation time is large.

smaller than 1¥(q) and decreasing witk. We do not yet These problems can be avoided with the mass stopping
understand the finite-size scaling of thelistribution. rule. At the phase coexistence temperaflife the magneti-
zation may take any value from O to;, wherem; is the

C. First-order transitions in Potts models magnetization of the pure low temperature phase. Thus we
expectf to approachp(T.) for every m between 0 and
1. Three-dimensional 3-state Potts model m,. At m, we expect the derivative of(m) to jump to a

We first discuss results for the topological and extensiorfinite value as the systems enters the ordered phase with
stopping rules for the three-dimensional 3-state Potts model. <T¢-
This model has a weak first order transition. Figure 9 shows Figure 10 shows a plgtf) vs m for the two-dimensional
the mean and median values bivs L~ for system sizes 10-state Potts model, obtained from the mass rule for system
between 10 and 70 for the topological stopping rule andsizes 50, 100, and 200. Data were obtained after an equili-
between 10 and 110 for the extension stopping rule. Dat&ration of 1000 MC's from a sample ofx210* to 5x 10*
were taken from samples of 481C’s for each lattice sizeup MC’s. The dashed line denotes the exact value of
to L=70 and between 3000 and 6000 MC's for the Iargerp(TC)=\/a/(l+ V). It is clear that the crossing point of
sizes. In the case of the topological stopping rule, a fit of thédhese curvegnearm=0.6) for different system sizes pro-
mean to a function of the formcy+c,L Y2+c,L~1  vides an accurate estimatefT.). Furthermore, the curves
+c3L "2 givesc, = 0.4232. This is in good agreement with become increasing flat for lardeand presumably converge
results obtained with other methof32]. With the topologi-  (nonuniformly to p(T.). The value ofm, can be estimated
cal stopping rule, the median shows no finite-size effectdrom the largest value ah for which (f)=p(T.). From data
within the error, as is the case for the three-dimensional Isinor L="50, 100, 150, 200, and 50¢he data for 150 and 500
model. It can be fitted to a practically horizontal line, which are omitted from the plot for clarijywe find convergence to
extrapolates to 0.4228. Again the median seems to be thée valuem,=0.8544.
better choice if predictions about the infinite system are to be For small values ofm we find a region which moves
made, although it tends to be more noisy. As in the case dhcreasingly toward zero whefeis significantly greater than
the two-dimensional Ising model, the difference between th@(T.). The nonmonotonicity of as a function oim occurs
mean and the median results from a tail in the distribution ofonly for those Potts models with first-order transiti@mom-
f towardsf=1. pare Fig. 12
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In the inset of Fig. 10 the standard deviationfos plot- 00 02 04 06 08 10

ted vs 1L. This quantity appears to vanishlas-o, though
at a rate that depends om The data are consistent with our

belief that thef distribution _approaches a fungtlon at FIG. 12. The median of vs m for the two-dimensional Potts
p(T) for any m<m,. Any mixture of low and high tem- models using the mass rule with = 2, 4, 5, 6, and 10 and

pe_rature pha;es in the cpexistence region can be. sampled PY 500 The exact value q¥(T,) for eachq is shown by a dashed
fixing the ratiom/m;. This argument can be confirmed by |ine.

looking at the energy per spin. Lat be the fraction of the

system that is in the low temperature phase and assume that (e)=(m/m)e,+(1—m/m)en+esAIN (17)

it is proportional tom. If &, () is the energy per spin of the

pure low(high) temperature phase, we expect the energy peét the transition point. The third term includes the interfacial

spine to behave like energy per unit areags and the areaA and should vanish
with system size like 1/.
08 . . Figure 11 showge) vs m for L = 50, 100, and 200

from the same runs as the data of Fig. 10. Error bars obtained
with the jack-knife method are smaller than the symbols.

o L=200 A There is a large region from smath to aboutm,=0.855
e L=100 where the energy is described by a line with negative slope
s L850 plus a correction that vanishes asbecomes large. Again,

this statement is also based on additional datd_fer 150
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FIG. 11.(e) vs m for the two-dimensional 10-state Potts model 041 ) ) ) )
using the mass rule for several lattice sitesThe solid line is a fit 00 0.2 04 06 0.8 1.0
to the form co+c;m+c,m? for the L=200 data points with m

0.05=m=0.5, the intercept with then=0 axis is our estimate for
ey, the energy of the high temperature phase at the transition. FIG. 13. f vs m for the three-dimensional 3-state Potts model.
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FIG. 15. Integrated autocorrelation times far e, andf vs in-
tegration timew for the two-dimensional Ising model for size
L=256.

FIG. 14. Autocorrelation functions of the magnetization en-
ergy ¢, and occupation fractiorf vs time stept for the two-
dimensional Ising model for size=256.

) L . wheret is time in Monte Carlo steps. The three sets of points
and 500. This behavior is in good agreement with &9).  , Fig. 14 are the normalized autocorrelation functions of the

At m the energies for different collapse, as there is no absolute value of the magnetizatiom energye, and frac-
interfacial energy left, and the systems enter the ordereg,, of occupied bondsf for the two-dimensional Ising

phase belowl ., causing the energy to drop. Only for small q4e| Numerical data were collected for the topological
m do the energies leave the presumed curve due to finite Siz&opping rule from a run of Y0MC's, which was divided
effects. In order to estimate the energy of the high temperay ;109" groups with errors estimated by the jack-knife
ture phase, we fitted the=200 data points in the raNg€ method. In a few steps all three autocorrelation functions
0.05~m=0.5 to a function of the formco+ciM+¢c,M",  haye nearly vanished. The autocorrelation functions afid
which givese=Co=—0.969, which agrees well with the . gisplay a negative overshoot on the first step, which be-
exact result—0.96& ... [33]. Evaluating the data for the comes Jarger for larger system sizes.

biggest system usedl,= 500 atm, givese,= —1.661, which The integrated autocorrelation timg , which is required

is close to the exact value 1.662 ... aswell. . for estimating the errors in measuring the observaklés
There are few computational methods for reliably distin-gyafined by

guishing the order of a phase transitifB4]. The 3-state
Potts model in three dimensions, for example, at the phase w

transition point in many respects behaves just like a second- Ta(W)= > + 2 A(t), (193
order transition. If the magnetization rule is used, however, =1
even weak first-order transitions seem to behave differently
than continuous ones. We observed th& a nonmonotonic
function of m for first-order transitions. Figure 12 shows the

median value of vs m for Potts models for several values The integrated autocorrelation time determines the size of

of g. The known values op(T.) are marked by dashed the standard error in measuridgaccording to
lines. Note that the curves are monotone increasing for mod-

els with second-order transitiongj€ 2, 4 and nonmono- SA=[2var A) 75 /Nyc]*? (20
tonic for models with first-order transitiongj€ 5, 6, and
10). Nonmonotonicity is also found for the three- with var(A) the variance irA andNy the number of Monte
dimensional 3-state Potts model; see Fig. 13. It should b&arlo steps. Figure 15 is a plot ef(w) with A=m, ¢, and
noted that both the three-dimensional 3-state and twof as a function ofw for the two-dimensional Ising model.
dimensional 5-state Potts models have extremely weak firs§imilar behavior was found for the three-dimensional Ising
order transitions so that this criterion is quite sensitive. It ismodel. The error forra(w) was estimated by taking the
useful even if the correlation length is larger than the systensquare root of the sum of the variances Iof(t)’s for
size. t=<w. For all three observables,(w) reaches a plateau in a
few steps.

Table | is a summary of the integrated autocorrelation
time for the two- and three-dimensional Ising model at

In this section we study the dynamic properties of the ICw=6, where all ther’'s have saturated but still have rela-
algorithm. The normalized autocorrelation function of an ob-tively small errors. The values for, are compared with
servableA is defined by results[3] for the SW and Wolff single cluster algorithm.
The energy autocorrelation time is markedly smaller for the
IC algorithm than the other two cluster algorithm. Further-
more, 7, decreases for larger systems while for the other

TA= I|m 'TA(W). (19b)

W— e

D. Dynamics of the IC algorithm

(AoA) —(A)?

ECR

(18)
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TABLE I. Integrated autocorrelation times for two- and three- ter growth is controlled by a spanning rule rather than the
dimensional Ising models for the SW, Wolff, and IC algorithms. temperature, the method is able to simulate the phase transi-

Results for the IC algorithm are measured at time stef6. tion point withouta priori knowledge of the phase transition
temperature. The transition temperature is, instead, an output

d L Tosw®  Tewolf® Teic Tm,IC 7iIC of the algorithm. We have demonstrated this numerically for

2 32 4134 1.801) 0513 0883 0.193) Ising-Potts models in two and _three dime_nsions.

5 64 4978 2233 0422 0783 0.112) _ We may alsq use parametrlzed _stopp.mg rules to_ 9xplore

2 am oW 26w 04 0o0 oory SN ihe coestence egon of daconinons vansilons o

2 256 3.178) 0.3713) 0.813) 0.063) g :

rules we specify a quantity such as the energy or susceptibil-
ity and learn the corresponding temperature. Using the mass
rule we have been able to sweep through the coexistence
24 6.81) 1503 0212) 0623 0072 region of first-order transitions and to obtain quantities such
32 7.83) 1724) 0.252) 0.652 0.092) as the energy of the high and low temperature coexisting
48 994 1906 0192 06683 0023  ppases. The behavior of the effective transition temperature
%Referencd 37). with the mass parameter gpparently yie_lds a very sensitiye
method to distinguish continuous from discontinuous transi-
cluster algorithms it increases,, appears to be independent tions.
of system size suggesting the possibility that the dynamic The invaded cluster algorithm is very similar to the
exponent for IC dynamics is zero for both two- and three-Swendsen-Wang algorithm except that the occupied bonds
dimensional Ising models. are determined by a stopping rule rather than the tempera-
For the largest systemb¢(1) is close to—0.5 and, as a ture. We argued that this leads to a feedback mechanism that
result, 7+ is very small. Although the data are not good forces the system to the desired equilibrium state much faster
enough to draw clear conclusions, it appears tha@p-  than is the case for the Swendsen-Wang algorithm. The con-
proaches zero as a powér’ with zi~—1 . The anticorre- sequence is that the algorithm is extremely fast. Measured
lation in f and e means that these quantities can be accuyiocorrelation times are less than unity and decrease with
rately estimated in a small number of Monte Carlo Step.ssystem size for the energy and estimated critical temperature.

Indeed, for averaging these variables, the IC algorithm isrpq hagnetization integrated autocorrelation time is constant
better than performing independent sampling from the ""or the two- and three-dimensional Ising models but grows

variant IC measure. For example, #30) and the behavior slowly for the 3- and 4-state two-dimensional Potts models.

i ~L78/ ~ . . .
of var(f) imply that 6f~L =%/ Nuc, wherea~1.3. . We speculate that the invaded cluster algorithm applied to
Table Il shows results for the integrated autocorrelatlorwlrsin critical points has no critical slowing down. For this
time for the 3- and 4-state Potts models. We find again tha 9 P : g : e
reason and because there is no need to know the transition

the IC algorithm is much faster than the SW algorithm, i .
though forq=3 and 4 there appears to be some criticalt€Mmperature, we believe the IC method will prove to be the

slowing. Based on Table Il we can obtain estimates for thén0St efficient approach for high precision measurements of
dynamic exponent for the magnetizatian,(3)=0.28 and  critical properties. . ,

z,,(4)=0.63. Note, however, that these values are less than Although we have tested the algorithm in a number of
the Li and Sokal35] bound for the dynamic exponent for Settings and supplied nonrigorous arguments for its validity,

16 5.61) 1362 0.352) 0.652) 0.092)

W www

the SW algorithm £= a/v). much work remains to be done in understanding the method
and putting it on a firm footing. It is important to prove that
V. SUMMARY the IC ensemble is equivalent to the usual statistical mechan-

) i ics ensembles. We would also like to understand the finite-
~ The invaded cluster method comprises a class of algosize scaling properties of the IC ensemble since these differ
rithms for sampling equilibrium spin systems. Because clusfrom our naive expectation in some cases.

TABLE II. Integrated autocorrelation times for two- In this paper we have confined our attention to Potts mod-
dimensional, 3- and 4-state Potts models for the SW and IC alge€lS, however the method is much more broadly applicable. In
rithms. Results forr, ,c and 7 ¢ for IC dynamics are measured at a future papef16] we will show how to use the approach for
time stepw=6 while the time stepv,,, for 7, ,c is shown in the last @ variety of discrete spin systems such as the Ashkin-Teller
column. Results for SW dynamics are for sizes 128 and 256 rathenodel. Similary, the embedding approach described by

than 120 and 250. Wolff can be used to generalize the methodn) models.
Note added.Recently we received a interesting unpub-
q L Te.SW° TeIC Tt IC Tm, IC W, lished work[36] that describes a “fixed cluster” algorithm.
3 120 30312 0733 0083 1.404) 6 This algorithm uses a stoppmg rule based on thga extent
3 250 30.61.7 0592 00682 1735 11 the largest cluster. However, in contrast to the fixed param-
o : : : eter rules used heré,does not correspond to a thermody-
3 500 0.522) 0.063) 2.086) 15

namic quantity.

4 120 115.76.1 1.232) 0.113) 2.977) 16
4 250 232.24.6 1.103) 0.092) 4.61100 27 ACKNOWLEDGMENTS
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