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albeit nonrigorous, justification of the method is presented and the algorithm is applied to Potts models in two
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I. INTRODUCTION

This paper discusses a cluster method for simulating both
continuous and first-order transitions. The method, called the
invaded cluster~IC! algorithm, was introduced in Ref.@1# in
the context of the Ising model. In this paper we give a more
extended discussion of the IC method, present data for Ising
and Potts critical points, and show how to apply the method
to first-order transitions in Potts models.

The Swendsen-Wang~SW! algorithm @2# and other clus-
ter methods@3,4# have led to vast improvements in the effi-
ciency of simulating the critical region of a variety of spin
models. For the Potts models, these algorithms are based on
the Fortuin-Kastelyn~FK! @5# representation of the system as
a correlated bond percolation problem. Each Monte Carlo
step in a cluster algorithm consists of generating an FK bond
configuration from the spin configuration by occupying some
of the satisfied bonds~i.e., bonds across which the spins are
in agreement! of the lattice. Clusters of connected sites are
randomly and independently assigned a new spin value that
is the same throughout the cluster. This creates the updated
spin configuration.

The IC algorithm shares these basic features with other
cluster algorithms but differs in how the bond configurations
are generated. For other cluster algorithms, satisfied bonds
are independently occupied with a probability that depends
on the temperature. For the invaded cluster algorithm, bonds
are occupied in a random order until the bond configuration
fulfills a stopping condition. For example, the stopping con-
dition may be a requirement on the size of the largest cluster.
For judicious choices of stopping condition the IC algorithm
simulates the transition point of the model.

The relation between the SW algorithm and the IC algo-
rithm is analogous to the relation between ordinary percola-
tion and invasion percolation. In ordinary~bond! percolation
@6#, bonds are independently occupied with probabilityp
forming connected clusters of sites. At the percolation
threshold,pc , in a large finite box, the probability that any
one of these clusters has an extent comparable to the system
size ‘‘jumps’’ from nearly zero to nearly one. In invasion
percolation@7–12#, at least the version most relevant to the

current work bonds are randomly ordered and then succes-
sively occupied until a stopping condition is reached. Con-
ventionally, invasion percolation is formulated as a growth
process that is initiated at a limited number of seed sites, e.g.,
a single site. If, in a system of scaleL, the stopping rule is
that some cluster is comparable in extent toL then, as is
easily shown@cf., footnote~11! in @1## the fraction of occu-
pied bonds will approachpc asL→`. The IC algorithm for
theq-state Potts models can be loosely described as the gen-
eralization of invasion percolation to the FK random cluster
models.

The IC algorithm has several very attractive features:
First, the algorithm may be used to study a phase transition
without a priori knowledge of the transition temperature.
The IC algorithm thus enjoys the property of ‘‘uniformity’’
or ‘‘self-organized criticality.’’ In the computer science lit-
erature, an algorithm is called ‘‘uniform’’ if it can be applied
to problems of arbitrary size without the need for significant
precomputation. Conventional Monte Carlo sampling of
critical points is nonuniform because precomputation is re-
quired to obtain the critical temperature. As the system size
increases, the critical temperature must be computed to in-
creasing accuracy. For the IC algorithm the critical tempera-
ture is not used as an input. In this setting the concept of
‘‘uniformity’’ is akin to the idea of ‘‘self-organized critical-
ity.’’ Instead, the transition temperature is anoutputof the
IC algorithm just aspc is an output of invasion percolation.
In cases where the critical temperature is unknown or not
known with sufficient accuracy, this can be a significant ad-
vantage. Histogram reweighting@13,14# is now the method
of choice for high precision measurements of the critical
temperature. This method involves extrapolating from a
guessed critical temperature and its systematic errors are dif-
ficult to judge.

The IC algorithm is also an extremely fast way to simu-
late Ising-Potts critical points. In Sec. IV D we show that
autocorrelation times for the IC algorithm are significantly
smaller than for related cluster algorithms. Indeed, for certain
quantities such as the energy and the finite-size critical tem-
perature, the integrated autocorrelation time appears to ap-
proach zero as the system size increases as a result of anti-
correlations between successive Monte Carlo steps.
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Although first devised for critical points, the IC algorithm
is also effective for studying first-order transitions. For first-
order transitions, it is convenient to have the stopping rule
control the number of sites in the largest cluster. In this way
the average magnetization is essentially fixed and a point in
the coexistence region can be explored. By sampling a single
point in the coexistence region the problem of exponentially
long tunneling times between phases is avoided. The multi-
canonical Monte Carlo method@15# also avoids exponential
tunneling times and has some features in common with the
IC algorithm. We also present a criterion for distinguishing
first-order from continuous transitions. This criterion is ef-
fective for small system sizes and easily reveals the first-
order nature of the 5-state two-dimensional Potts model and
the 3-state three-dimensional Potts model, both of which
have very weak first-order transitions.

In finite volume, the IC algorithm does not sample the
canonical ensemble. We call the invariant measure sampled
by the algorithm the ‘‘IC ensemble.’’ A fundamental suppo-
sition of this paper is that the IC ensemble is equivalent to
the usual ensembles of statistical mechanics in the thermo-
dynamic limit. Just as the microcanonical and canonical en-
sembles agree for all local observables in the infinite volume
limit, we conjecture that the IC ensemble agrees with these
two ensembles for all local observables. On the other hand,
global fluctuations differ in different ensembles. For ex-
ample, energy fluctuations are proportional to the heat capac-
ity in the canonical ensemble but this is not the case for the
IC or microcanonical ensembles. Although we have no proof
yet of our assertions concerning the validity of the algorithm,
in Sec. III we carefully state our claims and supply~nonrig-
orous! arguments to back them up.

Finally, we remark that in this study we have restricted
our attention to Potts models. However, as shown by Wolff
@3#, it is possible to generalize the cluster methods to a much
wider class of models using an embedding procedure. Pre-
sumably, the same ideas should work for the IC algorithm
but these matters will not be pursued here. Some additional
spin models and graphical representations appropriate for the
IC algorithm are discussed in@16#.

The rest of this paper is organized as follows. In Sec. II
the invaded cluster algorithm is described in more detail and
in Sec. III the algorithm is justified and compared to other
simulation methods. In Sec. IV numerical results are pre-
sented.

II. INVADED CLUSTER METHOD FOR POTTS MODELS

A. Potts models

The q-state Potts models are defined by a collection of
spins, $s i% with i belonging to some lattice and
s i51,2, . . . ,q. The Hamiltonian is given by

H52(
^ i , j &

~ds i ,s j
21!, ~1!

where the summation is over the bonds of the lattice. If
q52, this corresponds to an Ising system. Here we consider
hypercubic lattices of sizeN5Ld, usually with periodic
boundary conditions and̂i , j & denotes a nearest neighbor
pair.

In the seminal work of Fortuin and Kastelyn@5# it was
shown that the above defined spin system gives rise to a set
of percolation-type problems known as random cluster mod-
els. These models are defined by weightsW on bond con-
figurationsv ~collections ofoccupiedbonds! that are given
by

W~v!5puvu~12p! uEu2uvuqC~v!, ~2!

whereuvu is the number of occupied bonds,uEu is the num-
ber of bonds in the lattice~heredN), C(v) is the number of
connected components ofv ~counting isolated sites!, and

p5p~b!512e2b ~3!

is the relationship between the bond density parameter and
the temperature in the spin system. In particular,

(
v

W~v!5Zb[Tr@e2bH# ~4!

is the graphical expression for the partition function in finite
volume. The weights make sense for any positive realq and
the caseq51 is manifestly the usual bond percolation prob-
lem. In this paper we consider only positive integer values of
q. It has been gradually realized, with increasing degrees of
sophistication@5,17–19,2,20#, that the graphical model and
the spin model are ‘‘equivalent,’’ e.g., expectations of ob-
servables in the spin model are easily calculable in terms of
appropriate probabilities in the random cluster system. From
the modern perspective, the two descriptions are regarded as
different facets of a single larger problem that is none other
than the annealed bond-diluted version of the original Potts
model.

In d>2, for all q, there is a phase transition, and for
q51 and 2 this transition is continuous.~See @21,22# for
details.! For q@1, it can be proved that the transition is
first-order@23#. In two dimensions, it is widely accepted that
the transition is continuous forq53 and 4 and discontinuous
for q>5. In d>3, the transition is believed to be discontinu-
ous for allq>3.

B. The algorithm

The invaded cluster algorithm for theq-state Potts models
is defined as follows: Consider a finite lattice on which there
is some spin configuration$s i%. From the spin configuration,
a bond configuration is constructed via a modified form of
invasion percolation. First, the bonds of the lattice are as-
signed a random order. Bonds^ i , j & are tested in this order to
see if s i5s j . If the latter occurs, the bond is said to be
satisfiedand it is added to the bond configuration. These
bonds are called theoccupiedbonds. The unsatisfied bonds
are not considered for the remainder of the current Monte
Carlo step.

The set of occupied bonds partitions the lattice into clus-
ters of connected sites. The cluster structure evolves until a
stopping conditionis achieved. The stopping condition is
typically based on the size or topology of a single cluster as
detailed below. When the stopping condition has been satis-
fied, a new spin configuration is obtained by randomly as-
signing one of theq spin types to each cluster~including
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isolated sites! and setting each spin in the cluster to that
value. Statistics are collected on the new configuration of
bonds and spins thereby completing a single Monte Carlo
step.

Among the quantities typically measured on each Monte
Carlo step is the ratiof of occupied to satisfied bonds. As we
shall see,f serves as an estimator of the temperature of the
system through the relation̂f &'12e2b.

C. Stopping rules

The IC method does not use the temperature as an input
parameter. Instead, an appropriate choice of stopping rules
allows us to simulate the critical point, the coexistence re-
gion of a discontinuous transition or a point away from the
phase transition. The numerical results in Sec. IV feature the
following three stopping rules.

~i! Extension rule: Some cluster has maximum extentL
~the system size! in at least one of thed directions.

~ii ! Topological rule: Some cluster winds around the sys-
tem in at least one of thed directions.~This is the usual rule
for the identification of spanning clusters in percolation.!

~iii ! Mass rule: Some cluster has at leastmN sites.
It is noted that for any of the above rules, the invasion

stops when exactly one cluster satisfies the condition. Thus,
during the evolution of the bond configuration, when a given
bond is occupied, it is only necessary to check its cluster to
see if the stopping condition is fulfilled. The extension and
topological rules involve no parameters and are used to drive
the system to a phase transition point. Both of these rules
require that some cluster is barely the size of the system. We
refer to these and related stopping rules asspanningrules
and to the unique cluster which satisfies the rule as thespan-
ning cluster.

The mass rule involves an input parameterm and permits
us to simulate an arbitrary temperature and also to explore
the coexistence region of discontinuous transitions. The mass
rule is an example of afixed parameterrule. Some alterna-
tive fixed parameter rules that we have not yet studied nu-
merically are as follows.

~iv! Magnetization rule: This is closely related to the mass
rule and is defined in systems where the spins at the bound-
ary of the sample are all set to 1. Thus bonds connecting the
boundary sites to internal sites may only be occupied if the
latter also have spin value 1. The stopping condition is ful-
filled when the number of sites connected to the boundary
first exceedsmN.

~v! Susceptibility rule: After thekth bond has been occu-
pied, let us suppose that there arer5r (k) clusters,
C1 , . . . ,Cr containing uC1u,•••,uCr u sites. The stopping
condition is fulfilled whenuC1u21 . . .1uCr u2 first exceeds
xN.

~vi! Energy rule: Here one counts the number of bonds
whose endpoints are in the same connected cluster~regard-
less of whether the bond itself has actually been occupied!
and stops when the tally exceeds«uEu.

~vii ! Density rule: Essentially equivalent to the energy
rule, we simply count the number of bonds that have been
selected and stop when the total isruEu.

The magnetization, susceptibility, and energy rules are
derived from their thermodynamic namesakes via the FK

representation. In a system with symmetry breaking bound-
ary conditions as described above, the average magnetization
is precisely the number of sites connected to the boundary.
Similarly, the susceptibility is the average size of the bond
cluster containing the origin. In periodic boundary conditions
this is the same as the average of the sum of the squares of
the cluster sizes divided byN. Finally ~cf. below! the energy
per bond is related to the probability that both ends of a bond
are in the same cluster.

The mass rule and density rule both require some addi-
tional explanation. Let us start with the mass rule: in free or
periodic boundary conditions, the finite-volume magnetiza-
tion will always vanish by symmetry. Presumably, this is
because all of theq distinct low temperature states are
equally represented. Below the bulk transition temperature,
this is manifested in the FK picture by the appearance of one
large cluster and a multitude of small clusters. Theq differ-
ent values that could be assigned to the single large cluster
yields the above mentioned convex combination. However,
because of thea priori symmetry between these states, if we
agree in advance to always assign a fixed value to the large
cluster, we get~a finite volume approximation to! the corre-
sponding pure state. Such a picture can be easily established
with complete rigor if the temperature is low. Forq52 in
d52 this picture holds up to the critical point as can be
derived from the main theorem in@24,25# and forq@1 it is
a consequence of the result in@26#. Thus, we will suppose
that fixing the fraction of sites in the largest cluster is equiva-
lent to fixing the magnetization.

Turning attention to the fixed bond density rule, let us
assume that we are in a finite boxL, e.g., with periodic
boundary conditions. The total energy divided by the number
of bonds is given by

«5
1

uEu(^ i , j & ^12ds i ,s j
&b,L , ~5!

where ^&b,L denotes the thermal average at temperature
b21 in the boxL. However, the quantitŷ12ds i ,s j

& is eas-
ily evaluated in the FK representation as

^12ds i ,s j
&b,L5S 12

1

qD ~12a!, ~6!

wherea(q,p,L) is the probability that two neighboring sites
belong to the same cluster. On the other hand, differentiating
the expression Eq.~2! with respect tob we get

«52
1

uEu
] logZ

]b
52

1

uEu ~12p!
1

Z

]Z

]p
5F12

b

pG , ~7!

whereb5b(p,q,L) is the probability~in a translation and
reflection invariant system! that a given bond is present. Evi-
dently, there is a simple relationship between the quantities
a andb. @Furthermore, ifbi , j is the probability that the bond
^ i , j & is occupied andai , j is the probability thati and j be-
long to the same cluster, the relation (q21)
3(12ai , j )5q(12bi , j /p) holds even without the assump-
tion of translation invariance.# We thus argue that fixing the
density of bonds has an equivalent effect to fixing the density
of neighboring pairs in the same cluster. The mass and den-
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sity rules have clear computational advantages over their
counterparts, the magnetization and energy rules, respec-
tively. For this reason~and certain others! these rules will
supersede the energy and magnetization rules in the remain-
der of this paper.

Later we will argue that the fixed parameter rules pro-
duce, in the thermodynamic limit, the equilibrium system at
the temperature corresponding to the chosen value of the
parameter. This temperature is therefore an output of the
simulation. For first-order transitions, the goal is to find pa-
rameter values in the ‘‘forbidden region,’’ which is in prin-
ciple easy for the magnetization and the susceptibility. For
continuous transitions, we may probe the critical region by
considering a sequence of magnetizations tending to zero or
susceptibilities tending to infinity. For example, choosing
x;Ns with s,1 the transition temperature and the critical
behavior of local observables will again, presumably, emerge
from the output.

The fixed parameter stopping rules are related to ‘‘con-
strained’’ random cluster ensembles. Consider, for example,
the constrained mass ensembledefined by restricting atten-
tion exclusively to bond configurationsv that satisfy the
mass condition~that the largest cluster inv has mass
M5mN) and are otherwise weighted byq raised to the
number of components ofv:

WM~v!51M~v!qC~v!, ~8!

where1M(v) is one ifv satisfies the stated mass condition
and is zero otherwise. Similarly, we may construct thecon-
strained density ensembleand theconstrained susceptibility
ensembleusing weights as in Eq.~8! with 1M replaced by the
appropriate restricting functions.

Although we have not yet attempted a derivation, it would
seem that standard ‘‘equivalence of ensembles’’ arguments
could be developed to show that in the thermodynamic limit,
these measures are identical to the usual random cluster mea-
sures at an appropriate value ofp. In this case, according to
the ideas in@19#, the associated measure in the spin system
converges to the corresponding Gibbs distribution.

Somewhat to our surprise, it is readily shown that the IC
density rule algorithm simulates the constrained density en-
semble. This constitutes the current high water mark as far as
rigorous results are concerned. We present the argument be-
low.

Theorem.In finite volume, the IC algorithm with the den-
sity rule with ruEu5P samples the joint bond-spin distribu-
tion defined by the weights

W~s,v!51P~v!D~s,v!. ~9!

In particular, the random cluster marginal is the constrained
density ensemble defined as in Eq.~8!.

Proof. For a fixed spin configuration with at leastP sat-
isfied bonds, consider the setVP(s) of all bond configura-
tions v consistent with the spin configurations and with
uvu5P:

VP~s!5$vu1P~v!51 andD~s,v!51%. ~10!

We may define an ‘‘algorithm’’ as follows: starting from an
(v,s) with 1P(v)D(s,v)51, the spin moves are identical

to the usual SW or IC spin moves while the bond moves are
defined by selecting, without bias, anyv out ofVP(s). It is
manifestly apparent that this ‘‘algorithm’’ samples the above
joint bond-spin distribution.

We claim that for the density rule, the bond moves are
equivalent to this unbiased selection fromVP(s). Indeed let
s denote a spin configuration. For the purpose of this theo-
rem, let us implement the IC algorithm by assigning random
numbers to the bonds and selecting the lowestP satisfied
bonds. We may writeVP(s)5$v1 , . . . ,vR% with eachvk a
subset of the satisfied bonds of thes and havinguvku5P. It
is clear that under IC dynamics, the criterion for selecting
vk is that the highest bond invk is lower than the highest
bond in any othervPVP(s). Configurations inVP(s) all
have the same number of bonds, hence the probabilities are
unbiased.

III. VALIDITY OF THE IC METHOD

A. Comparison to the Swendsen-Wang algorithm

The IC algorithm is in fact very similar to the SW algo-
rithm and this, to the greatest extent, is the basis of our
intuition concerning the former. In both cases, occupied
bond clusters are grown on top of a spin configuration by
randomly selecting some of the satisfied bonds. When the
growth process is stopped, both algorithms generate the up-
dated spin configuration from the bond configuration by the
same procedure~described in the second paragraph of the
Introduction!. Thus the ‘‘only’’ difference lies in how the
bonds are selected.

In the SW algorithm, satisfied bonds are independently
accepted with probabilityp. If p is identified with a tempera-
ture as in the FK representation@Eq. ~3!# one can show
@2,20# that detailed balance is satisfied for both the spins and
the bonds: For the spins, this is with respect to the canonical
Gibbs measure, and for the bonds it is with respect to the
random cluster measure. The key observation@20# is that the
SW algorithm simulates a joint measure on spinand bond
configurations that is defined by the weights

W~s,v!5puvu~12p! uEu2uvuD~s,v!. ~11!

In the above,D(s,v) insures consistency between the bond
and spin configurations:D(s,v) is one if all occupied bonds
in the configuration are satisfied, otherwiseD(s,v) is zero.

It is worth pointing out that the SW algorithm can in fact
be described in the framework of an IC algorithm. Let
S5S(s) denote the number of satisfied bonds in a given
spin configuration. LetAp(s) denote the random variable
that is chosen according to binomial statistics:

P„Ap~s!5A…5~A
S!pA~12p!S2A. ~12!

The SW algorithm is defined by the stopping rule that on
each round, anAp(s) is drawn, and then the growth stops as
soon as the firstAp(s) satisfied bonds are accepted. Viewed
in this light, the SW algorithm is seen to be quite similar to
some of the IC algorithms under consideration. However,
unlike the SW algorithm, we are unable to write down a joint
distribution similiar to Eq.~11! for any of the IC ensembles
except for the case of the density rule.
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B. Away from criticality: Fixed parameter algorithms

As the title of this subsection indicates, we will provide
separate discussions of the critical and noncritical algo-
rithms. In part, this is because the latter require fewer as-
sumptions about the equilibrium state of the Potts-FK sys-
tem. For the fixed parameter stopping rules, the fundamental
assumption is that the ensemble sampled by the IC algorithm
has the same local properties as the canonical ensemble at a
temperature that yields the chosen value for the thermody-
namic function~e.g., magnetization or susceptibility! that de-
fines the stopping rule. We present the argument for the sus-
ceptibility rule, though similar arguments are possible for
other rules.

Consider a large Potts-FK system in equilibrium at
p,p(bc) ~i.e.,T.Tc). The ‘‘system wide’’ average cluster
sizes will be very close to the mean value which, in turn, is
close to the limiting infinite volume susceptibility,x(p). Ex-
plicitly, for bond configurationvL on a lattice of scaleL, we
may compute

C~vL!5
C1
21•••1Cr

2

N
~13!

and, asL→`, the distribution ofC(vL) will be sharply
peaked aboutx(p).

Now let us contrast the behavior of the SW and IC algo-
rithms on a given spin configuration. Suppose that both the
SW and IC algorithms run by assigning a random number
uniformly in @0,1# to each bond of the lattice. For the IC
algorithm, this provides us with the ordering while for the
SW algorithm at parameterp, the instructions are to occupy
all satisfied bonds with random number less thanp. For the
SW algorithm we may occupy bonds as a function of con-
tinuous timet, 0<t<1. At time t, all satisfied bonds with
value less thant are occupied. Clearly, if we were to stop too
soon, e.g., att5p2e, the value ofC will be, with high
probability, strictly smaller than the equilibrium value. Simi-
larly if we were to go beyondp to t5p1e, we will get a
value ofC that is too large. On the other hand, stopping, at
t5p as we are supposed to, yields a value ofC that, by
definition, is typical of the equilibrium distribution.

Now, starting from thesamespin configuration, let us do
a step of the IC algorithm~with the susceptibility rule! stop-
ping whenC5x5x(p). We may also envision this opera-
tion taking place as a function of continuous time. Now at
time t, the same bonds have been collected in both Monte
Carlo schemes and we can reiterate the previous discussion
to conclude that the algorithm will not stop significantly be-
fore or after t5p. If the system is in equilibrium initially
then the IC algorithm chooses nearly the same stopping time
as the SW algorithm. Since the latter was in equilibrium,
evidently under IC, we stay in equilibrium.

The opposite perspective provides us with an equally
valid argument: Suppose it is the case~as is observed! that
the fractionf of satisfied bonds that are occupied has a dis-
tribution that is sharply peaked. Then, each step of the IC
algorithm amounts to an iteration of the SW algorithm with
parameter value equal tof . If the stopping rule demands that
C5x(p), it follows that f5p.

Of course for an actual simulation in finite volume, the
above arguments are by no means a rigorous proof: To

achieveC5x(p), the algorithm stops att5p1hL where
hL is a random variable depending on the spin configuration.
Even if we know thatuhLu→0 asL→`, we cannot, as of
yet, control the effects that these fluctuations have on the
limiting distribution for the IC algorithm. Indeed, the IC dis-
tribution will differ from the canonical distribution in finite
volume. However, it is hard to believe that these objects do
not tend to the same distribution in the infinite volume limit;
all we lack is a proof. Nevertheless, to summarize our argu-
ment, the assumption that the spin-bond configurations typi-
cal of the Gibbs distribution are close to the ones of the IC
ensemble is self-consistent in and of the fact that iterations of
the IC algorithm keep us in the vicinity of the Gibbs distri-
bution.

Let us now turn our attention to a discussion of the situ-
ation when the spin configuration is not typical of the desired
equilibrium distribution; here the arguments will be some-
what less complete. We will again consider a given spin
configuration and compare what happens under SW vs IC
dynamics. Suppose, for example, that the spin configuration
is at too high a temperature. We may imagine that we have a
configuration that is typical of the Gibbs distribution at an

inverse temperatureb̃ such that 12e2b̃[ p̃,p[12e2b. If
we do a single iteration of the SW algorithm, again collect-
ing our bonds according to the time parametert, as always,
we stop whent5p. Because the temperature of the spin
configuration was higher than 1/b, the percentage of satisfied
bonds will be relatively lower than typical for configurations
that are at the right temperature. Evidently, when we stop,
with large probability the average bond cluster size will be
smaller thanx(p) but larger thanx( p̃). The resulting spin
configuration will therefore be of intermediate character be-
tween those that are typical of temperatures 1/b and tem-
peratures 1/b̃. By contrast, whent5p, the invaded cluster
algorithm does not stop. Hence, the fractionf of satisfied
bonds that get occupied under IC dynamics is in excess of
p and the new configuration~also of intermediate character!
is further towards the low temperature side. It is thus appar-
ent that away from equilibrium, we are pushed in the right
direction and, as this example illustrates, we are pushed
harder in the direction of equilibrium under IC dynamics
than under SW dynamics. Similar arguments apply to the
casep, p̃ and show that nowf,p. We believe this ‘‘nega-
tive feedback mechanism’’ is ultimately responsible for the
immense reduction~or complete absence! of critical slowing
down that results from using IC dynamics.

Unfortunately, we now leave terra firma in order to dis-
cuss the case where the configurations cannot be character-
ized in terms of a single temperaturelike parameter. In gen-
eral, dynamically generated configurations are out of
equilibrium, however we can consider the following pro-
posal for the definition of an effective temperature: For a
given configurationsL let C(sL ,t) be the mean square clus-
ter size @as defined in Eq.~13!# observed when we have
occupied all satisfied bonds with value less thant. Let
C̄(sL ,t) be the average of this quantity over all realizations
of random numbers on the bonds. A measure of the effective
temperature of the configurationsL is to compareC̄(sL ,t)
with x(p), the actual~equilibrium! susceptibility as a func-
tion of the temperature parameterp. If there is a single~non-
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zero! point where these curves cross, this may be identified
as an effective temperature. In any case, ifC̄(sL ,t5p) is
smaller thanx(p) we can assert that the temperature is
higher than that corresponding to the parameterp while if
C̄(sL ,t5p).x(p) it is lower. Obviously the colder con-
figurations should be heated up and the hotter configurations
should be cooled down. For spin configurations and target
susceptibility x, the typical simulation temperature of a
move will be given byt(x) such thatC̄„sL ,t(x)…5x(p).
Since the curveC̄(sL ,t) is monotone we again see the nega-
tive feedback mechanism—if the spin configuration is colder
than that corresponding top the simulation temperature will
be higher than that corresponding top and vice versa.

Of course these considerations apply as well to the other
fixed parameter IC algorithms where we would argue—just
as persuasively—that the magnetization vst or energy vst
profiles of a spin configuration can be used to measure an
effective temperature. It is worth remarking that there is one
system where these suppositions are exact, namely the long-
ranged mean-field Ising model. Here, for anN site system,
each site interacts with every other site via a coupling that
scales inversely withN. At noncritical temperatures, the SW
algorithm drives this system to equilibrium exponentially
quickly ~as expected! while, by contrast, the IC algorithm
achieves equilibrium in at most two Monte Carlo steps@16#.

C. At criticality: Spanning algorithms

The general philosophy that underpins our belief in the
validity of the critical algorithms is quite similar to the non-
critical cases. The important differences lie in the implicit
assumptions we have made concerning the behavior of the
graphical representation at criticality, in particular in finite
volume. Indeed, for a Potts system with a continuous transi-
tion, if we ask for the value of the parameter where the
susceptibility is equal to a certain value, the answer is unam-
biguous. Furthermore, provided thatL is large compared to
the typical size of bond clusters, the statistics in a finite lat-
tice of sideL should represent an excellent approximation to
the infinite volume behavior.

For the critical algorithms, the entire premise begins with
nontrivial questions about the equilibrium critical behavior
of the random cluster model in finite volume. For example,
in a large system is there a single cluster with the following
two properties?~i! The extent of the cluster is the scale of the
system.~ii ! The cluster does not contain two~or more! dis-
joint subsets each of which satisfy condition~i!. Under the
standard~long list of! assumptions concerning the nature of
the critical point the following picture, in the graphical rep-
resentation, emerges: AboveTc , the probability that there is
any such cluster goes to zero exponentially in the scale of the
system. BelowTc , there is a single large cluster that ex-
hausts a fraction—equal to the spontaneous
magnetization—of the system. Within this cluster, there are
many separate paths that are the scale of the system. To
prevent this large cluster from happening requires a fluctua-
tion presumably as rare as exp@2constLd21#. By process of
elimination, the only place that a cluster with the above prop-
erties could exist on all scales is the critical point.

This is not to say that the above line of reasoning proves
that these or other kinds of spanning clusters are indeed typi-

cally observed at the critical point~e.g., they could be power
law rare!, however, as we will see, the full validity of such
an assertion is not essential for the broader features of our
argument.

Indeed, the basic reasoning is now pretty much the same
as in the noncritical case: If the distribution off ~the fraction
of satisfied bonds that are occupied! is sharply peaked, the
central value must correspond to that of the critical param-
eter, p(bc). If this central value were too small, then the
correlation length would be a small fraction of the system
and the clusters would not get big enough. If the peak value
is so large that the~low temperature! correlation length is
small compared to the system size, the biggest cluster would
be too big. Thus, the value off has to be close enough to the
critical point to ensure that the correlation length is at least a
scaling fraction of the system size.

If the required spanning cluster is itself, somehow, atypi-
cal of criticality, the above argument is still valid. As a con-
crete example, consider a stopping rule that terminates the
cluster growth when there is a cluster of sizeAL. Such a bad
choice of a spanning cluster will nonetheless heavily favor
the critical value off over any noncritical value. The worst
that could happen is that the scaling of the spanning cluster
itself might be of the wrong type but in any case all local
observables will still take on their critical values. Finally,
starting at noncritical spin configurations, the negative feed-
back mechanism discussed in the preceding subsection ap-
plies to these algorithms as well.

The weaker point in our argument concerns our reasoning
as to why the distribution of thef values should be sharply
peaked.~First and foremost, this has been observed in every
critical system.! Let us imagine the problem in an infinite
volume setting and consider a critical spin configuration. We
again regard the process of growing the clusters as an inde-
pendent percolation problem defined on the random graph
that is provided by the satisfied bonds of the spin configura-
tion. Let us first assume that, in the usual sense, this problem
has a sharp percolation threshold,tc . It then follows easily
that tc corresponds to the critical value of the FK parameter;
tc512ebc[p(bc). Indeed, att5p(bc), we have achieved
the critical FK bond configuration and our assumption of a
sharp threshold rules out the possibility of any other value.
Going back to finite volume and starting from a critical con-
figuration, the argument in this case is finished: If we stop at
an f significantly different fromp(bc), we will get the
wrong sort of clusters and stopping atf'p(bc) we keep the
spin configuration critical.

Unfortunately, ind52, it is not the case that the under-
lying percolation problem has a sharp transition. Specifically,
in the Ising model on the two-dimensional square lattice it
was shown in@27,28# that percolation of one spin type is
necessary and sufficient for the existence of a positively
magnetized phase.~The analog of this result for the general
q-state Potts models was proved in@29#.!

In particular, this means that in a critical configuration,
there is no infinite cluster of satisfied bonds and thus, even if
t51, there is no percolation in our secondary process. Evi-
dently the percolation clusters on the critical spin configura-
tion will themselves look critical for allt betweenp(Tc) and
1. It is easy to believe~but hard to prove, so we will spare the
reader the details of the heuristics! that the clusters will not
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go critical until t5p(Tc). Thus, the algorithm will not stop
collecting bonds until at least this point. However, in finite
volume, there are, undoubtedly, typical critical spin configu-
rations that forbid the existence of a spanning cluster. For
example, if there are star-connected chains~meaning that
neighbors and next nearest neighbors both count as con-
nected! of plus spins and of minus spins winding both ways
around the torus, the topological condition cannot be satis-
fied. At the critical point, such configurations presumably
have uniformly positive probability on all scales. Of course
this kind of disaster is ruled out by the mechanics of the
algorithm: whatever the stopping condition, if it was satisfied
on the last iteration, it is satisfiable on the next one. How-
ever, near disasters can occur causing ‘‘bottlenecks’’—
situations where one of a relatively few bondsmustbe occu-
pied in order to achieve a spanning cluster. This would have
a tendency to drive us to higher values off .

We believe that these bottlenecks do occur and, in fact,
are responsible for the relatively broad tails in the distribu-
tion of f in the regionp(bc), f,1 that have been observed
in our two-dimensional simulations. However, we also be-
lieve that these events affect only the details of how the
L→` limit is achieved, not the limit itself, since there are
alternate routes circumventing bottlenecks occurring on all
scales. Nevertheless, the finite-size scaling is sometimes
quite complicated and, in certain instances, we must resort to
semiempirical fitting of the data.

An interesting feature of the IC algorithm~using spanning
rules! is that the approach to equilibrium is along a critical
trajectory. For example, if the starting configuration is char-
acteristic of zero temperature, the initial bond configuration
is typical of ordinary bond percolation at threshold. Thus
some sort of power law correlations are actually established
on the first step.

IV. NUMERICAL METHODS AND RESULTS

A. Implementation of the algorithm

The most difficult part of the IC algorithm is the construc-
tion of a cluster configuration from a spin configuration. The
first step is to produce a random permutation of the set,E of
bonds of the lattice (uEu5dLd here!. This is accomplished
through uEu random pairwise permutations. Initially, let
p:$1, . . . ,uEu%→E be some conventional initial order on
E. For j51 to uEu, p is updated by choosing a random
number,r in the rangej to uEu; then thej th andr th elements
of the permutation are interchanged,p( j )
p(r ). It is well
known that afteruEu steps,p is a random permutation. The
computational work involved in making the random permu-
tation is nearly linear in the number of bonds.

Bonds are explored in the order given by the random per-
mutation. If a bond is satisfied it is added to the cluster
configuration. The data structure for the cluster configuration
and its updating is done in the same general way as for other
cluster and percolation algorithms using the Hoshen-
Kopelman~or ‘‘disjoint set forests’’! method. Each cluster of
sites is described as a rooted tree and when two clusters are
combined; the root of the smaller cluster becomes a son of
the root of the larger cluster. When two clusters of the same
size are combined, the conventional direction associated with
the bond that joined the clusters determines which site is to

be the root. Information concerning the current state of the
cluster as a whole, such as its mass, is stored with the root.

After the cluster configuration is updated by the addition
of a bond, it is necessary to check whether the current cluster
satisfies the stopping rule. For the fixed parameter rules this
is straightforward. For the other spanning rules, it is neces-
sary to associate with each site a vector from the site to the
root of its cluster. The set of distance vectors$v i% is updated
in the natural way when two clusters are combined. The sites
in the larger cluster retain their previous coordinates relative
to the root. The sites in the smaller cluster take new coordi-
natesv8,

v i8←v i2vk2ejk1v j , ~14!

whereejk is the unit vector of the new bond added to the
lattice, j is the site in the larger cluster which connects to
k in the smaller cluster. For the topological rule, stopping
can only occur if the new bond is added as an internal bond.
If the new bond̂ j ,k& is an internal bond, we evaluate

vk*←v j2ejk . ~15!

If vk*Þvk the current cluster is multiply connected and the
topological rule is satisfied.

For the extension rule, each cluster must have associated
with it the coordinates of the 2d sites which are the most
distant from root along thed axes in the positive and nega-
tive directions. Updating these coordinates after two clusters
are combined is somewhat tedious due to periodic boundary
conditions and is described in@30#.

The invaded cluster algorithm requires 1.831025 sec per
update per spin on a DEC Alpha 2100 workstation. The run-
ning speed is about a factor of 2 slower than for the SW
algorithm.

For the results reported here we start with an initial or-
dered (T50) configuration. Unless otherwise stated, the sys-
tem is allowed to equilibrate for 200 Monte Carlo steps
~MC’s! before data collection. If no error bars are shown in a
figure, the error is smaller than the symbol size.

B. Continuous transitions

1. Three-dimensional Ising model

Figure 1 shows data for the mean value of the ratio of
occupied to satisfied bonds,^ f & for the three-dimensional
Ising model as a function ofL21.59. The power ofL is cho-
sen to approximate the inverse of the three-dimensional Ising
correlation length exponent 1/n'1.59. Results for both the
topological and extension spanning rules are shown. Finite-
size corrections are smaller for the topological stopping rule.
The best linear fit to the data for the topological rule yields
0.358 03 in comparison with a recent value
p(Tc)50.358 098~7! from Ref. @31#.

Using ideas made plausible by finite-size scaling theory
we can obtain two independent critical exponents. Figure 2
shows log10(^f&t2^f&e) plotted against log10(L) for the three-
dimensional Ising model wherêf & t is measured using the
topological rule and̂ f &e is measured using the extension
rule. A fit to the data yieldsn50.63, which is in agreement
with the value 0.6289~8! from @31#. A second independent
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exponent can be obtained either from the cluster size distri-
bution or the scaling of the largest cluster. Figure 3 shows
n(s), the number of clusters per site of sizes with the data
binned in octaves. This figure shows that the cluster size
distribution is indeed self-similar and allows us to estimate
the exponentt, defined byn(s);s2t. A straight line fit
yields t52.19 compared to the accepted value of 2.21. A
more efficient way to obtain a second independent exponent
is via the fractal dimension of the spanning cluster. The av-
erage size of the spanning cluster is plotted against the sys-
tem size in the inset of Fig. 3, from which we obtaind
2b/n52.45 compared to the accepted value 2.47.

2. Critical two-dimensional Potts models

Figure 4 shows results for the extension rule applied to
the two-dimensional Ising model. Both the mean and median
value of f are plotted againstL21 ~in accord with finite-size
scaling sincen51 for the two-dimensional Ising model! and
are seen to converge to the exactly known value ofp(Tc).
The fact that the median lies below the mean shows that the
distribution is skewed toward larger values off . This is pre-

sumably caused by the simultaneous percolation of the spins
discussed in Sec. III C. This is in contrast to the three-
dimensional Ising model for which thef distribution is very
symmetrical. The inset to Fig. 4 shows var(f )1/2 plotted
against 1/L. The solid line is a fit to the data whose leading
behavior isL21/2. This curve supports the hypothesis that the
distribution of f becomes sharp asL→`.

Figure 5 is a plot of the average energy per spin~in this
section,« refers to the energy per spin rather than the energy
per bond! vs L21 with the exact value plotted on the vertical
axis. A fit to the data of the form«01«1L

211«2L
22 yields,

«0521.706, which is reasonably close to the exact value
21.7071 . . . . Energy fluctuations are shown in the inset of
Fig. 5. The quantity var(«)N is seen to increase roughly
linearly in L. This is in contrast to the canonical ensemble
where var(«)N is the specific heat and diverges logarithmi-
cally in L for the two-dimensional Ising model. The behavior
of energy fluctuations underscores the difference between the
IC ensemble and the canonical ensemble.

The top panel of Fig. 6 shows the fraction of occupied
bonds vs the mass of the largest cluster for the mass rule.

FIG. 1. ^ f & vsL21/n for the three-dimensional Ising model using
different stopping rules. The infinite volume estimate ofp(Tc) from
Ref. @31# is shown on the vertical axis.

FIG. 2. Double logarithmic plot of̂f & t2^ f &e vsL for the three-
dimensional Ising model.

FIG. 3. Double logarithmic plot of the distribution of cluster
sizesn(s) for the three-dimensional Ising model. The inset shows a
double logarithmic plot of the average size of the largest cluster.

FIG. 4. The mean and the median off vs 1/L for the two-
dimensional Ising model. The solid line shows a linear fit to the
median and the exact infinite volume value is shown on the vertical
axis. The inset shows the standard deviation of thef vs 1/L. A least
squares fit to the formc01c1L

21/21c2L
21 ~solid line! suggests

that the distribution becomes sharp in the infinite volume limit.
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Data collapse for a range of system sizes predicted by the
finite-size scaling ansatz,

@^ f &2p~Tc!#L
1/n;G~mLb/n!, ~16!

is confirmed in the lower panel. These results demonstrate
that the IC algorithm can be used to extract quantitative re-
sults for the critical temperatures and critical exponents us-
ing systems of modest size.

Figure 7 is a log-log plot of the deviation off from its
exact value versus the system size for two-dimensional Potts
models with continuous transitions,q51,2,3,4. Except for
the Ising case, we have used the topological rule. The exten-
sion rule is used for the Ising case. Figure 8 is a log-log plot
of var(f )1/2 vs the system size for the two-dimensional Potts
models with continuous transitions. The figure shows that the
f distribution becomes narrow as a power of the system size
L. Fitting the last five data points for eachq to the form
var(f )1/2;L2b(q) yields b(1)50.71(1), b(2)50.46(2),

FIG. 5. ^«& vs 1/L for the two-dimensional Ising model. The
solid line is a fit to the form«01«1L

211«2L
22 and the exact

infinite volume result is shown on the vertical axis. The inset shows
var(«)N vs L with a linear fit through the data.

FIG. 6. The mass rule applied to the two-dimensional Ising
model. The upper graph shows^ f & vs m. In the lower graph the
same data are scaled as described in the text.

FIG. 7. Double logarithmic plots ofu f2p(Tc)u vs system size
L for the two-dimensionalq-state Potts models. Exact values of
p(Tc) are used.

FIG. 8. Double logarithmic plots of the standard deviation of
f , var(f )1/2 vs system sizeL for the two-dimensionalq-state Potts
models.
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b(3)50.30(2), andb(4)50.23(1). For percolation this re-
sult is close to the expected scaling,b(1)51/n(1). For in-
vasion percolation it is believed that the fullf distribution
scales withL21/n(1). For the other values ofq, b(q) is much
smaller than 1/n(q) and decreasing withq. We do not yet
understand the finite-size scaling of thef distribution.

C. First-order transitions in Potts models

1. Three-dimensional 3-state Potts model

We first discuss results for the topological and extension
stopping rules for the three-dimensional 3-state Potts model.
This model has a weak first order transition. Figure 9 shows
the mean and median values off vs L21 for system sizes
between 10 and 70 for the topological stopping rule and
between 10 and 110 for the extension stopping rule. Data
were taken from samples of 104 MC’s for each lattice size up
to L570 and between 3000 and 6000 MC’s for the larger
sizes. In the case of the topological stopping rule, a fit of the
mean to a function of the formc01c1L

21/21c2L
21

1c3L
22 givesc0 5 0.4232. This is in good agreement with

results obtained with other methods@32#. With the topologi-
cal stopping rule, the median shows no finite-size effects
within the error, as is the case for the three-dimensional Ising
model. It can be fitted to a practically horizontal line, which
extrapolates to 0.4228. Again the median seems to be the
better choice if predictions about the infinite system are to be
made, although it tends to be more noisy. As in the case of
the two-dimensional Ising model, the difference between the
mean and the median results from a tail in the distribution of
f towardsf51.

For the extension stopping rule, the median enters a flat
region starting at aboutL540. The arithmetic mean of the
last seven data points is 0.42336. Current values ofTc @32#
agree in the first four digits, and so does the value that we
obtained from the median in this way. Again, the mean is
above the median and starts to approach it only for very large
system sizes (L>80).

2. Mass rule for first-order transitions

The above results show that spanning rules may be used
to accurately locate a weak first-order transition, however
they perform poorly for strong first-order transitions~large
values ofq). The difficulty is that thef distribution becomes
increasingly broad and asymmetric with a tail extending to-
ward f51. We believe that the tail in thef distribution is
related to the way the spanning condition is met for strong
first-order transitions. The spanning cluster is a nearly linear
object which extends across the system in a background of
small clusters whose size is presumably the correlation
length. For large values ofq the spanning cluster is very
narrow ~somewhat like a river running through a terrain of
small clusters!. This observation is consistent with the in-
crease inp(Tc) with increasingq. In addition, for largeq,
there are severe bottlenecks; one of only a few bonds must
be occupied to meet the spanning condition. This leads to a
broad f distribution with a tail towardf51. Although we
believe the f distribution becomes sharp for largeL, the
convergence is very slow. An additional difficulty in using
either of the spanning rules for strong first-order transitions
arises from the fact that the spanning cluster is nearly repro-
duced in successive Monte Carlo steps so that the autocorre-
lation time is large.

These problems can be avoided with the mass stopping
rule. At the phase coexistence temperatureTc , the magneti-
zation may take any value from 0 toml , whereml is the
magnetization of the pure low temperature phase. Thus we
expect f to approachp(Tc) for every m between 0 and
ml . At ml we expect the derivative off (m) to jump to a
finite value as the systems enters the ordered phase with
T,Tc .

Figure 10 shows a plot̂f & vsm for the two-dimensional
10-state Potts model, obtained from the mass rule for system
sizes 50, 100, and 200. Data were obtained after an equili-
bration of 1000 MC’s from a sample of 23104 to 53104

MC’s. The dashed line denotes the exact value of
p(Tc)5Aq/(11Aq). It is clear that the crossing point of
these curves~nearm50.6) for different system sizes pro-
vides an accurate estimate ofp(Tc). Furthermore, the curves
become increasing flat for largeL and presumably converge
~nonuniformly! to p(Tc). The value ofml can be estimated
from the largest value ofm for which ^ f &5p(Tc). From data
for L550, 100, 150, 200, and 500~the data for 150 and 500
are omitted from the plot for clarity! we find convergence to
the valueml50.8544.

For small values ofm we find a region which moves
increasingly toward zero wheref is significantly greater than
p(Tc). The nonmonotonicity off as a function ofm occurs
only for those Potts models with first-order transition~com-
pare Fig. 12!.

FIG. 9. The mean and median off for the three-dimensional
3-state Potts model. The upper graph shows results from the topo-
logical stopping rule, the solid line is a linear fit to the median. The
lower graph shows results from the extension stopping rule.
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In the inset of Fig. 10 the standard deviation off is plot-
ted vs 1/L. This quantity appears to vanish asL→`, though
at a rate that depends onm. The data are consistent with our
belief that the f distribution approaches ad function at
p(Tc) for anym,ml . Any mixture of low and high tem-
perature phases in the coexistence region can be sampled by
fixing the ratiom/ml . This argument can be confirmed by
looking at the energy per spin. Letnl be the fraction of the
system that is in the low temperature phase and assume that
it is proportional tom. If « l («h) is the energy per spin of the
pure low~high! temperature phase, we expect the energy per
spin « to behave like

^«&5~m/ml !« l1~12m/ml !«h1«s fA/N ~17!

at the transition point. The third term includes the interfacial
energy per unit area«s f and the areaA and should vanish
with system size like 1/L.

Figure 11 showŝ «& vs m for L 5 50, 100, and 200
from the same runs as the data of Fig. 10. Error bars obtained
with the jack-knife method are smaller than the symbols.
There is a large region from smallm to aboutml50.855
where the energy is described by a line with negative slope
plus a correction that vanishes asL becomes large. Again,
this statement is also based on additional data forL 5 150

FIG. 10. ^ f & vs m for the two-dimensional 10-state Potts model
using the mass rule. The dashed line marks the exact value,
p(Tc). The inset shows the standard deviation off vs 1/L for
m50.4 ~squares! andm50.85 ~triangles!.

FIG. 11. ^«& vs m for the two-dimensional 10-state Potts model
using the mass rule for several lattice sizesL. The solid line is a fit
to the form c01c1m1c2m

2 for the L5200 data points with
0.05<m<0.5, the intercept with them50 axis is our estimate for
«h , the energy of the high temperature phase at the transition.

FIG. 12. The median off vs m for the two-dimensional Potts
models using the mass rule withq 5 2, 4, 5, 6, and 10 and
L5200. The exact value ofp(Tc) for eachq is shown by a dashed
line.

FIG. 13. f vs m for the three-dimensional 3-state Potts model.
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and 500. This behavior is in good agreement with Eq.~17!.
At ml the energies for differentL collapse, as there is no
interfacial energy left, and the systems enter the ordered
phase belowTc , causing the energy to drop. Only for small
m do the energies leave the presumed curve due to finite size
effects. In order to estimate the energy of the high tempera-
ture phase, we fitted theL5200 data points in the range
0.05<m<0.5 to a function of the formc01c1m1c2m

2,
which gives«h5c0520.969, which agrees well with the
exact result20.9682 . . . @33#. Evaluating the data for the
biggest system used,L5500 atml givesel521.661, which
is close to the exact value21.6642 . . . aswell.

There are few computational methods for reliably distin-
guishing the order of a phase transition@34#. The 3-state
Potts model in three dimensions, for example, at the phase
transition point in many respects behaves just like a second-
order transition. If the magnetization rule is used, however,
even weak first-order transitions seem to behave differently
than continuous ones. We observed thatf is a nonmonotonic
function ofm for first-order transitions. Figure 12 shows the
median value off vs m for Potts models for several values
of q. The known values ofp(Tc) are marked by dashed
lines. Note that the curves are monotone increasing for mod-
els with second-order transitions (q5 2, 4! and nonmono-
tonic for models with first-order transitions (q5 5, 6, and
10!. Nonmonotonicity is also found for the three-
dimensional 3-state Potts model; see Fig. 13. It should be
noted that both the three-dimensional 3-state and two-
dimensional 5-state Potts models have extremely weak first-
order transitions so that this criterion is quite sensitive. It is
useful even if the correlation length is larger than the system
size.

D. Dynamics of the IC algorithm

In this section we study the dynamic properties of the IC
algorithm. The normalized autocorrelation function of an ob-
servableA is defined by

GA~ t !5
^A0At&2^A&2

^A2&2^A&2
, ~18!

wheret is time in Monte Carlo steps. The three sets of points
in Fig. 14 are the normalized autocorrelation functions of the
absolute value of the magnetizationm, energy«, and frac-
tion of occupied bondsf for the two-dimensional Ising
model. Numerical data were collected for the topological
stopping rule from a run of 104 MC’s, which was divided
into 10 groups with errors estimated by the jack-knife
method. In a few steps all three autocorrelation functions
have nearly vanished. The autocorrelation functions off and
« display a negative overshoot on the first step, which be-
comes larger for larger system sizes.

The integrated autocorrelation timetA , which is required
for estimating the errors in measuring the observableA, is
defined by

tA~w!5
1

2
1(

t51

w

GA~ t !, ~19a!

tA5 lim
w→`

tA~w!. ~19b!

The integrated autocorrelation time determines the size of
the standard error in measuringA according to

dA5@2var~A!tA /NMC#1/2 ~20!

with var(A) the variance inA andNMC the number of Monte
Carlo steps. Figure 15 is a plot oftA(w) with A5m, «, and
f as a function ofw for the two-dimensional Ising model.
Similar behavior was found for the three-dimensional Ising
model. The error fortA(w) was estimated by taking the
square root of the sum of the variances ofGA(t)’s for
t<w. For all three observables,tA(w) reaches a plateau in a
few steps.

Table I is a summary of the integrated autocorrelation
time for the two- and three-dimensional Ising model at
w56, where all thet ’s have saturated but still have rela-
tively small errors. The values fort« are compared with
results @3# for the SW and Wolff single cluster algorithm.
The energy autocorrelation time is markedly smaller for the
IC algorithm than the other two cluster algorithm. Further-
more, t« decreases for larger systems while for the other

FIG. 14. Autocorrelation functions of the magnetizationm, en-
ergy «, and occupation fractionf vs time stept for the two-
dimensional Ising model for sizeL5256.

FIG. 15. Integrated autocorrelation times form, «, and f vs in-
tegration timew for the two-dimensional Ising model for size
L5256.
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cluster algorithms it increases.tm appears to be independent
of system size suggesting the possibility that the dynamic
exponent for IC dynamics is zero for both two- and three-
dimensional Ising models.

For the largest systems,G f(1) is close to20.5 and, as a
result, t f is very small. Although the data are not good
enough to draw clear conclusions, it appears thatt f ap-
proaches zero as a power,Lzf with zf'21 . The anticorre-
lation in f and « means that these quantities can be accu-
rately estimated in a small number of Monte Carlo steps.
Indeed, for averaging these variables, the IC algorithm is
better than performing independent sampling from the in-
variant IC measure. For example, Eq.~20! and the behavior
of var(f ) imply that d f;L2a/ANMC, wherea'1.3.

Table II shows results for the integrated autocorrelation
time for the 3- and 4-state Potts models. We find again that
the IC algorithm is much faster than the SW algorithm,
though for q53 and 4 there appears to be some critical
slowing. Based on Table II we can obtain estimates for the
dynamic exponent for the magnetization,zm(3)50.28 and
zm(4)50.63. Note, however, that these values are less than
the Li and Sokal@35# bound for the dynamic exponent for
the SW algorithm (z>a/n).

V. SUMMARY

The invaded cluster method comprises a class of algo-
rithms for sampling equilibrium spin systems. Because clus-

ter growth is controlled by a spanning rule rather than the
temperature, the method is able to simulate the phase transi-
tion point withouta priori knowledge of the phase transition
temperature. The transition temperature is, instead, an output
of the algorithm. We have demonstrated this numerically for
Ising-Potts models in two and three dimensions.

We may also use parametrized stopping rules to explore
either the coexistence region of discontinous transitions or
the critical region near a continuous transition. For these
rules we specify a quantity such as the energy or susceptibil-
ity and learn the corresponding temperature. Using the mass
rule we have been able to sweep through the coexistence
region of first-order transitions and to obtain quantities such
as the energy of the high and low temperature coexisting
phases. The behavior of the effective transition temperature
with the mass parameter apparently yields a very sensitive
method to distinguish continuous from discontinuous transi-
tions.

The invaded cluster algorithm is very similar to the
Swendsen-Wang algorithm except that the occupied bonds
are determined by a stopping rule rather than the tempera-
ture. We argued that this leads to a feedback mechanism that
forces the system to the desired equilibrium state much faster
than is the case for the Swendsen-Wang algorithm. The con-
sequence is that the algorithm is extremely fast. Measured
autocorrelation times are less than unity and decrease with
system size for the energy and estimated critical temperature.
The magnetization integrated autocorrelation time is constant
for the two- and three-dimensional Ising models but grows
slowly for the 3- and 4-state two-dimensional Potts models.
We speculate that the invaded cluster algorithm applied to
Ising critical points has no critical slowing down. For this
reason and because there is no need to know the transition
temperature, we believe the IC method will prove to be the
most efficient approach for high precision measurements of
critical properties.

Although we have tested the algorithm in a number of
settings and supplied nonrigorous arguments for its validity,
much work remains to be done in understanding the method
and putting it on a firm footing. It is important to prove that
the IC ensemble is equivalent to the usual statistical mechan-
ics ensembles. We would also like to understand the finite-
size scaling properties of the IC ensemble since these differ
from our naive expectation in some cases.

In this paper we have confined our attention to Potts mod-
els, however the method is much more broadly applicable. In
a future paper@16# we will show how to use the approach for
a variety of discrete spin systems such as the Ashkin-Teller
model. Similary, the embedding approach described by
Wolff can be used to generalize the method toO(n) models.

Note added.Recently we received a interesting unpub-
lished work@36# that describes a ‘‘fixed cluster’’ algorithm.
This algorithm uses a stopping rule based on the extentl of
the largest cluster. However, in contrast to the fixed param-
eter rules used here,l does not correspond to a thermody-
namic quantity.
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TABLE I. Integrated autocorrelation times for two- and three-
dimensional Ising models for the SW, Wolff, and IC algorithms.
Results for the IC algorithm are measured at time stepw56.

d L t«,SW
a t«,Wolff

a t«,IC tm,IC t f ,IC

2 32 4.13~4! 1.80~1! 0.51~3! 0.88~3! 0.19~3!

2 64 4.92~8! 2.23~3! 0.42~2! 0.78~3! 0.11~2!

2 128 6.00~8! 2.69~4! 0.42~3! 0.80~3! 0.07~3!

2 256 3.17~8! 0.37~3! 0.81~3! 0.06~3!

3 16 5.6~1! 1.36~2! 0.35~2! 0.65~2! 0.09~2!

3 24 6.8~1! 1.50~3! 0.27~2! 0.62~3! 0.07~2!

3 32 7.8~3! 1.72~4! 0.25~2! 0.65~2! 0.05~2!

3 48 9.9~4! 1.90~6! 0.19~2! 0.66~3! 0.02~3!

aReference@37#.

TABLE II. Integrated autocorrelation times for two-
dimensional, 3- and 4-state Potts models for the SW and IC algo-
rithms. Results fort«,IC andt f ,IC for IC dynamics are measured at
time stepw56 while the time stepwm for tm,IC is shown in the last
column. Results for SW dynamics are for sizes 128 and 256 rather
than 120 and 250.

q L t«,SW
a t«,IC t f ,IC tm, IC wm

3 120 30.3~1.2! 0.73~3! 0.08~3! 1.40~4! 6
3 250 39.6~1.7! 0.59~2! 0.06~2! 1.73~5! 11
3 500 0.52~2! 0.06~3! 2.08~6! 15

4 120 115.7~6.1! 1.23~2! 0.11~3! 2.97~7! 16
4 250 232.0~24.6! 1.10~3! 0.09~2! 4.61~10! 27
4 500 0.88~3! 0.05~2! 7.31~16! 57

aReference @35#.
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