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Discontinuity of the Magnetization in Diluted
O(n)-Models
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We study the annealed site-diluted versions of the classical O(n) Heisenberg
ferromagnets. It is shown that if the temperature is low enough, then at some
value of the chemical potential there is phase coexistence between a magnetized,
high-density state (liquid-crystal state) and a low-density state (gaseous state)
with no magnetic order.

KEY WORDS: Annealed dilute systems; magnetic order; aggregation; phase
separation.

1. INTRODUCTION

A subject of continuing interest is the behavior of (annealed) dilute spin-
systems with continuous symmetry. The prototypical model is the diluted
XY-model in d-dimensions that is described by the formal Hamiltonian
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where the sum �(r
�
, r

�
$) runs over all n.n. bonds, �r

�
is the sum over all sites,

nr
�
=0 or 1 denotes the presence or absence of a particle at the site r

�
# Zd

and % is the usual angular variable: 0�%<2?. Such models are of physical
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relevance e.g., to nematic liquid crystals, cf. the brief discussion in [Z],4

a standard reference is [dGP]. Here, let us discuss the case J>0, *�0,
;>>1 while + varies between minus and plus infinity. For + large and
negative it is clear that the interaction is completely analytic. Hence one
has a dilute paramagnetic phase. In [AZ], it was proved that in d�3, for
+ sufficiently large and positive there is non-vanishing spontaneous
magnetization. The results of [CKS1], [CKS2] are of a different nature.
There it was shown that there is a discontinuous transition in the particle
density at some +t (=+t(;, *)). Such results are not peculiar to the XY-
model; both sets of results hold for models of the above type with O(n)-
symmetry, n�2. The principal purpose of this paper is to combine these
results. That is to say if d�3, * is nonnegative and the temperature is low,
the two transitions are one and the same. In other words, the main result
of the present paper states that in our model there is just one transition,
which occurs between the low density non-magnetized phase and high den-
sity magnetized one, see Theorems 2.3, 2.4, 3.3 below for precise formulation.

We caution the reader that these results are by no means ``generic.''
For negative values of *, there is a crystalline nonmagnetized phase (featur-
ing preferential occupation of the even or odd sublattice) which may
separate the region of complete analyticity from the magnetized phase as
+ is varied [CKS2]. Further, if *>>Jt1, it is not hard to show (as we
do here) that at fairly high values of ; there is a phase transition in the
particle density but no possibility of magnetization. In these cases there are
two transitions, along certain curves in the (+, ;) plane.

Let us briefly discuss the origins of these phenomena, cf. [CKS1] and
[CKS2]:

For the case J=0 and *>0 the behavior of the system is obvious:
since the (1.1) is nothing but the lattice-gas model, for very low tem-
peratures the energetics will push particles (occupied sites) together into a
big cluster (aggregation), which means that there is a discontinuity of the
particle density at some +t(;, *).

Turning on J>0, one changes both the energetics and the entropy of
the model. Now for very low temperatures two nearest neighbour particles
will be nearly aligned, cos(%r

�
&%r

�
$)r1, so the energetics still pushes par-

ticles together. So, a non-zero magnetization favors the aggregation, i.e.,
there is a positive feedback between magnetic interaction and the particle
interaction which causes increasing of the effective particle attraction
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4 For such systems, due to the symmetry of the molecules that the spins represent, the angular
interactions are usually given by cos 2(%r� &%r� $) rather than what appears in Eq. (1). How-
ever, by change of variables, it is easy to see that the ``cos %'' and ``cos 2%'' models are equiv-
alent. For O(n) models with n>2 one presumes that the differences are more substantial.



between aligned spins by a value proportional to J>0. In the present
paper we argue that the same mechanism produces for a certain +t>&dJ
a simultaneous jump both of the magnetization and of the particle density.
In fact, at ;=� and +>&dJ the ground state for *�0 corresponds to a
uniform configuration: nr

�
=1 and %r

�
=%, r

�
# Zd (d�3), and we show that

on the part of the line +t(;, *) corresponding to very low temperatures
there is phase coexistence between a magnetized, high-density state and a
low-density state with no magnetic order.

An open question is how does this mechanism works for the O(n)-
model with n�2 and d=2 when there is no magnetization but only the
Kosterlitz-Thouless order.

The above arguments were entirely based on the energy arguments.
But if two neighbouring spins are nearly aligned the available configuration
space volume is drastically reduced with respect to the full rotation
freedom the spins enjoy being not the nearest neighbours! In other words,
it creates an entropic repulsion between particles. For some *<0 and inter-
mediate temperatures it can be stronger than the above mentioned effective
attraction of particles, and is in fact able to create an intermediate phases
characterized by the occupation and vacancy of staggered sublattices, see
[CKS2]. Since the sum �(r

�
, r

�
$) in (1.1) runs over all n.n. bonds, the

preferential occupation of the even�odd sublattices means that effective and
direct magnetic and particle interactions between sites are almost sup-
pressed, i.e., we deal with an entropy-driven phenomenon. We conjecture
that the transition from these staggered phases into high density phase is
also accompanied by the jump in the magnetization. Different scenarios
involving the competition of the energy�entropy balance with abrupt
aggregation and magnetization is known for the mean-field ferrofluid
version of the model (1.1), see [GZ]. Of course, there one obviously misses
the intermediate phases.

The rest of this paper is organized along the following lines: In Sec-
tion 2 we discuss our principal tools, namely various standard estimates
and results using reflection positivity. Most of the material in this Section 2
appears elsewhere; this section is included for completeness and is intended
for readers already familiar with reflection positivity arguments. Those who
are unfamiliar with these methods are encouraged to consult the standard
references e.g., [FILS], [FL], [FSS], [S]. On the basis of these tools, we
can immediately establish that (under the conditions described at the end
of the first paragraph) there is a +t above which the magnetization��and
hence the particle density��is close to one, and below which the particle
density��and hence the magnetization��is close to zero. This result is not
completely satisfactory since, on physical grounds, one expects that for
+<+t , the magnetization should actually vanish. The vanishing of the
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magnetization for +<+t is established in Section 3. Finally, in Section 4,
we discuss the cases where *�J is large.

Although physical motivations for various details of the interactions
may be of importance in certain contexts, it seems to the authors that the
results presented here hold in a variety of systems. The important features
are a ferromagnetic interaction and a mechanism for proving a ferro-
magnetic transition. We will forego great generality and treat the simplest
continuous cases, namely the O(n) versions of the Hamiltonian in (1.1)
with n�2.

For n=1 the Hamiltonian (1.1) coincides with the Blume-Griffiths-
Capel model which is a particular case of [CKS1]. Our arguments below
cover this case as well.

2. BASIC TOOLS AND BASIC RESULTS

Here we recapitulate the results in [CKS1], [CKS2], [AZ] and [Z].
Consider the O(n) version of the Hamiltonian in (1.1) on the d-dimen-

sional torus 4L of side L written in the form
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In the above, Mr
�
, r

�
$=&2d if r

�
=r

�
$, Mr

�
, r

�
$=1 if |r

�
&r

�
$ |=1 and vanishes

otherwise, the spins s� r
�

are unit n-dimensional vectors and we assume that
*�0. Since it is not strictly necessary, we have omitted J as an independent
parameter.

Assuming further that L is even, let P denote any ``plane between
sites'' (i.e., [r

�
| xi=k+1�2] _ [r

�
| xi=k+1�2+L�2]) and �P the reflection

in P. It is easy to see that &HL is of the form �k Ak�PAk+
�l [Bl+�PBl] and hence is reflection positive with respect to �P .

The well known argument for the infrared bounds goes as follows: Let
h=(h9 r

�
| r

�
# 4L) denote a spatially varying magnetic field and let
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(Notice, that due to our definition of Mr
�
, r

�
$ , a constant h is equivalent to

h=0.) Finally let

ZL(h)=Tr e&;HL(h) (2.3)

Using the reflection positivity, one can show that ZL(h) is maximized by a
constant field, see [FILS], Theorem 4.7, which is equivalent to the state-
ment that ZL(h)�ZL(0).
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By judicious choices of h, we obtain the so called infrared bounds: Let
p� denote a reciprocal lattice vector, p� =( p1 ,..., pd )=(2?�L)(k1 ,..., kd ) with
ki=0, \1, ..., \(L�2&1), L�2, let v� r

�
#nr

�
s� r

�
and v̂p� the Fourier transform

of v� ,

v̂p� =
1

|4L |1�2 :
r
�
# 4

v� r
�
eip� } r

�

Let (&) L; ;, +, * denote expectation with respect to then Gibbs measure on
4L induced by the Hamiltonian in (2.1). Then for p� different from zero we
have

( |v̂p� |
2) L; ;, +, *�

n
2;

1
M� p�

#
n

2;
1

�d
j=1 (1&cos pj )

Since for the sum over all p� s we have |4L | &1 �p� ( |v̂p� |
2) L; ;, +, *=

(n0) L; ;, +, * (i.e., the particle density) we conclude

Theorem 2.1. Let \=\(;, +, *)=lim supL � �(n0) L; ;, +, * and
suppose \ satisfies

\>
n

2; |
[&?, ?]d

d dp
M� p�

(which necessitates d�3). Then there is positive spontaneous magnetization.

Proof. See [AZ], [Z]. K

We now turn to the discontinuity. Let P denote a plane containing
sites (i.e., [r

�
| xi=k] _ [r

�
| xi=k+L�2]) and �P be the reflection in P; it

leaves P invariant. Since the interaction is nearest neighbor, HL is reflection
positive with respect to the reflections �P as well.

To establish a discontinuity in the particle density along the lines of
the argument in [KS], it is sufficient to establish that the following items
hold for some infinite subsequence of L: (i) For \+=M (where M may
be taken as large as needed) the density (n0) L; ;, +, * is within some small
= of 1

2\ 1
2 . (ii) For any r

�
, the quantity (n0(1&nr

�
)) L; ;, +, * must be ``small''

for all + # [&M, +M].
The former item is essentially trivial. As for the latter, we may identify

contour elements as neighboring pairs of sites with one occupied and the
other vacant; indeed whenever n0(1&nr

�
)=1, either the origin or the site at

r
�

must be ``surrounded'' by a contour composed of such pairs. Once we can
prove that the contour elements have small weights, the chessboard estimate
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allows us to run a Peierls argument and establish that (n0(1&nr
�
)) L; ;, +, *

is itself small. The estimate for these contour elements is not difficult and
will be needed for future purposes:

Proposition 2.2. Let 4L denote the d-dimensional torus of side L
where, for convenience, we take L=2l for integer l. Let HL be as defined
in (2.1). Then, for ; large, the quantity (n0(1&n r̂)) L; ;, +, * , where r̂ is a
unit vector, is uniformly small: for all =>0

(n0(1&n r̂)) L; ;, +, *� 1
2 N&1�2

= e&;(1+*�2&d=)

with proper N= .

Proof. To estimate (n0(1&n r̂))L; ;, +, * we use the Schwartz
inequalities that are enabled by the various reflections: For the coordinate
plane orthogonal to r̂, we use repeated reflections in its shifts passing
through sites, until an alternating loop of . . . -occupied-vacant-occupied-
vacant- . . . sites circles the torus. For each coordinate plane parallel to r̂, we
use repeated reflections in its shifts passing halfway between sites. The
result is alternating ``stripes'' of d&1-dimensional configurations, empty
and full, of unit thickness. Thus

(n0(1&n r̂)) L; ;, +, *�_[Z<; d&1
L Z f ; d&1

L ]L�2

Zd
L &

1�Ld

�
[Z<; d&1

L Z f ; d&1
L ]1�(2Ld&1)

[Z<; d
L +Z f ; d

L ]1�Ld (2.4)

where Zd
L denotes the total partition function, while Z<; q

L and Z f ; q
L are

the partition functions corresponding to the restriction of the Hamiltonian
(2.1) to the subsets of configurations on a q-dimensional subtorus 4q

L of the
d-dimensional torus 4L . Namely, the partition function Z<; q

L is calculated
over the subset of configurations with no particles (i.e., over a subset with
just one configuration), while the partition function Z f ; q

L is obtained by
summing over fully occupied configurations. Note that due to our defini-
tion of Mr

�
, r

�
$ in (2.1), the partition functions Z f ; q

L are d-dependent; that is
why for example Z f ; d&1

L {Z f ; d&1
L . Clearly, Z<; q

L =Z<; d
L =1 and

Z f ; q
L =e ;+Lqeq;*Lq

Zu; q
L , Z f ; d

L =e ;+Lded;*LdZu; d
L , where Zu; q

L , Zu; d
L are the

partition functions of the uniform (i.e., nr
�
=1) O(n) spin systems. Thus we

must estimate Zu; q
L and Zu; d

L from above and below.
For the upper bounds, we take evident estimates

Zu; d&1
L �e&2;Ld&1

and Zu; d
L �1 (2.5)
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For the lower bounds, we restrict the summation to spin configurations
where each spin is ``close'' to a given direction e� . Namely, we choose an =
and we consider the configurations s� r

�
where for each r

�
we have

s� r
�
} e� >1&=�4. For such configurations we have s� r

�
} s� r

�
$>1&=. Introduce

also N==�s� r
�
} e� >1&=�4 ds� r

�
. Then we have

Zu; d&1
L �(N=e&;(2+=(d&1)))Ld&1

and Zu; d
L �(N= e&2=d;)Ld

(2.6)

Combining these estimates we find

(n0(1&n r̂)) L; ;, +, *

�
(e ;+e(d&1) ;*e&2;)1�2

[1+(N=e ;+ed;*e&2d;=)Ld
]1�Ld

=
N&1�2

= e&;(1+*�2&d=)

[(N=e ;+e ;(d*&2d=))&Ld�2+(N=e ;+e ;(d*&2d=))Ld�2]1�Ld (2.7)

For all L and +, this is seen to be less than 1
2 N&1�2

= e&;(1+*�2&d=). K

As a direct consequence of Proposition 2.2, we have

Theorem 2.3. Consider the Hamiltonian as described in (2.1). For
all ; sufficiently large, there is a +t=+t(;, *) and an '='(;, *)< 1

3 such
that for all +>+t , the density exceeds 1&' and for all +<+t , the density
is less than ' while at +=+t both such phases are present.

Proof. The existence of a +t at which there is coexistence of the two
described phases follows from an application of [KS] Theorem 4��for
which we have assembled all the necessary ingredients. Next, we note that
the particle density is, formally, a thermodynamic derivative. Hence, for a.e.
+, the value of the density is independent of the particular state and, if
+1>+2 (with all other parameters equal) the value of the density in any
state with +=+2 cannot exceed the density in any state with +=+1 . This
implies the stated results for +{+t . K

Remarks. (i) If ;* is large and ; is not, the estimate (2.7) results
in the bound re&(1�2) ;*, which also implies a discontinuity. Thus, not
unexpectedly, if *>>1, there will be a phase transition which is due to the
attraction of the particles alone. We will bolster this assertion in Section 4
when we show that, under these circumstances, there is no spontaneous
magnetization accompanying the phase transition.

(ii) A consequence of the estimate in Proposition 2.2 is that below
+t(;) the density is exponentially small in ;��with power law corrections;
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cf. the Remark following Lemma 2.4 in [CKS1]. Thus there is��with
justification��no hope for a proof of magnetization for +<+t(;) since the
coefficient of the spin-wave integral in Theorem 2.1 is only [;]&1.
However, magnetization below +t cannot be ruled out by these methods;
we must resort to different arguments in the next section to achieve this
goal.

Let us summarize what has been proved thus far:

Theorem 2.4. Consider the Hamiltonian in (2.1) and let M(;, +, *)
denote the spontaneous magnetization. Then for ; large enough, for all
+>+t the magnetization exceeds 1&k1[;]&1 while for +<+t the density
does not exceed e&k2; where k1 and k2 are positive numbers of the order
of unity.

Proof. This follows immediately from the results of Theorems 2.1
and 2.3. K

3. THE MAGNETIZATION

In this section we will show that in the phase of low density the spon-
taneous magnetization is in fact zero. To facilitate the analysis of the spon-
taneous magnetization, we will study our system (2.1) in non-zero external
field. Thus consider

&H h
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(3.1)

with h>0 and e� a fixed unit vector.
The previous analysis, Theorems 2.3 and 2.4 may be performed exactly

as before with the same conclusions. The only required modification is that
we now have for Z f ; d

L #Z f ; d
L (;, *, +, h) the bounds

[ed;*e ;(++h)]Ld
�Z f ; d

L �[N=e&2d;=ed;*e ;(++h)]Ld
(3.2)

and analogously for Z f ; d&1
L .

For the purposes of this section, we will assume that ; is large enough
so that the jump in the particle density at +t exceeds 1�2. This, along with
standard convexity arguments provides us with a well defined phase
boundary in the (+, h) plane:

Proposition 3.1. Consider the model defined by the Hamiltonian
in (3.1) with h<1. For ; sufficiently large, there is a +t(h) such that for
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+<+t(h) the density is ``low,'' i.e., less than 1�4 while for +�+t(h) the
density is ``high,'' i.e., greater than 3�4. Furthermore, +t(h) is a continuous
function of h.

Proof. The existence of +t(h) and the behavior of the density for
+{+t(h) follows from identical arguments as in the previous section��the
bounds on the density before and after the jump are ensured by the condi-
tion ;>>1. Thus +t(h) may now be thought of as the point of (the big) dis-
continuity.

To show that +t(h) is continuous, consider a sequence hj with h j � h0

and suppose that +
*

=limj � � +t(hj )>+t(h0). Then we could construct a
state at h=h0 , +=+

*
with a ``low'' density of particles. But this is

impossible by the monotonicity of the particle density��for fixed h=h0��
as a function of + because a high density state already exists at +=+t(h0).
A similar argument rules out the existence of any sequence hj tending to h0

with limj � � +t(h j )<+t(h0). K

The principal result of this section is the following:

Proposition 3.2. For ; large enough and for any +<+t(0), the
magnetization M(h; +, ;, *) satisfies

M(h; +, ;, *)<Dh

for all h>0 sufficiently small (depending on +), with D independent of h.
In particular, the spontaneous magnetization vanishes at any +<+t(0).

Proof. It is sufficient to establish the stated bound in any preferred
state: Indeed, once again invoking thermodynamic arguments, we note that
for a.e. h, the magnetization is the same in all states and is a monotone
function of h.

Let +<+t(0). Then, for h sufficiently small, +<+t(h). Our first goal
will be to show that at these values of parameters, the probability of large
cluster of occupied sites tends to zero rapidly with cluster size. For this we
will need the fact that we are at low density and that contours are rare. Let
N=N(L) denote any set of increasing numbers that are small compared
with L but tend to infinity with L. Let VN denote the box of side N cen-
tered at the point cL=(L�2, L�2,..., L�2)��the back of the torus. For future
reference we denote by UN a similar box centered at the origin. Let QN

denote the event that there is a connected path of vacant sites connecting
cL and the boundary of VN and IQN

be the indicator of this event.
We claim that the probability (IQN

) L; ;, +, *, h is uniformly bounded
away from zero. Indeed, the complementary event consists in existing an
occupied contour in VN , surrounding cL . But the probability of the event
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that a given contour # is occupied is bounded by exp[&c(;) |#|] with c(;)
diverging with ;. This follows from the underlying proof of Theorem 2.3
and the fact that +<+t(h). Thus, there is no occupied contour surrounding
cL with probability close to one. If, in addition this point is vacant��which
also happens with probability close to one��the event is guaranteed.

Let us consider the measures (& | QN) L; ;, +, *, h . Let Gn(r
�
) denote the

event that the site r
�

is occupied and belongs to an occupied (connected)
cluster of size n and IGn(r

�
) be the indicator of this event. Our next claim is

that for all L sufficiently large and n small compared to N the following
holds: if r

�
is in the vicinity of the origin (explicitly, r

�
# UN) we have

(IGn(r
�
) | QN) L; ;, +, *, h�C1e&c2n1�d

(3.3)

with the c's finite and positive. (This estimate is not optimal but sufficient
for our purposes.) Indeed if Gn(r

�
) and QN both occur, there must be a con-

tour somewhere in 4L that separates the cluster at r
�

from the empty path
inside VN . Summing over all such contours, and noting that the smallest
contours start at size tn1�d the result follows easily.

Let r
�
# UN . Let us estimate the magnetization at r

�
in the state

(& | QN) L; ;, +, *, h . To do this, we will employ the Wolff algorithm [W].
(See [C], [CaC] for a detailed mathematical discussion of this procedure.)
The heart of the algorithm is the random map w(s� r

�
) from the set of con-

figurations into itself, which preserves the Gibbs measure. The following is
the description of the probability measures w(s� r

�
).

For present purposes, the magnetic field is treated as a single ``ghost''
site g locked into the e� position. Given a spin-particle configuration s� r

�
,

we first define a random bond configuration wb(s� r
�
) as follows: Let vr

�
=

nr
�
|s� r

�
} e� | and let _r

�
=sgn(s� r

�
} e� ). If r

�
$ and r

�
" are neighbors, with _r

�
$=_r

�
" ,

then we give to the bond variable br
�
$r
�
" the value 1 with probability

1&e&;vr
�
$ vr

�
" and 0 with complimentary probability; if the _$ 's disagree, then

the bond variable is zero. Also, if _r
�
$=+1, we give to the bond variable

br
�
$g the value 1 with probability 1&e&2;hvr

�
$ and 0 with complementary

probability. Note that if nr
�
$=0, no bonds are attached to this site.

Next, for every site configuration s� r
�

and every bond configuration b..
we define a random site configuration ws(s� r

�
, b..) as follows: b..-clusters of

spins s� r
�
, which do not contain the ghost site, are flipped with probability 1

2 .
Spins of the cluster which contains the ghost site do not change.

Finally we define

w(s� r
�
)=ws(s� r

�
, wb(s� r

�
))

Consider now the site r
�

and the random variable vr
�
. Under condition

Gn the (random) bond cluster of r
�

contains at most n ``true'' sites, plus,
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possibly, the ghost site. Given the ``true'' sites cluster, the probability that
it is attached to the ghost site can be estimated from above by (1&e&2;hn),
since vr

�
�1. So because of invariance of the Gibbs measure under the trans-

formation w( } ) we conclude that the expected value of vr
�

given the event
Gn is not greater than (1&e&2;hn). Therefore we may write

(s� r
�
} e� | QN)L; ;, +, *, h� :

�

n=1

(IGn(r
�
) | QN)(1&e&2;hn)

� :
�

n=1

C1e&2c2n1�d
(2;nh)�hD

for some D<� independent of h.
Finally, let (&)*N; ;, +, *, h denote the restriction of (& | QN) L; ;, +, *, h to

the box UN and

M*N(h)=
1

N d :
r
�
# UN

(s� r
�
} e� )*N; ;, +, *, h (3.4)

the magnetization in finite volume. Then, uniformly in N we have
M*N(h)�Dh and the desired result is established by taking L and hence N
to infinity in any chosen fashion. K

We may now state:

Theorem 3.3. Consider the Hamiltonian in (2.1) and let M(;, +, *)
denote the spontaneous magnetization. Then for ; large enough, for
all +>+t the magnetization exceeds 1&k3[;]&1 while for +<+t the
magnetization vanishes. At +=+t we have the coexistence of these phases.

Proof. Follows immediately from Theorem 2.4 and Proposi-
tion 3.2. K

4. CASES OF STRONG ATTRACTION

Let us briefly prove the assertions made in Section 2:

Theorem 4.1. Consider the models described by the Hamiltonian
in (2.1) with ; not large; in particular, 1&e&2;<pc(d ) where pc(d ) is the
percolation threshold for bonds on Zd. Then, if *; is sufficiently large, there
is a +~ t(;, *) at which the particle density changes discontinuously; however,
for all +, the magnetization is zero.
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Proof. The existence of +~ t(;, *) is a consequence of Theorem 2.3 and
the subsequent remark. To show the absence of magnetization, we again
appeal to the Wolff algorithm. Let 4/Zd denote a finite connected set
with boundary �4 and consider a specification of spins and particles on �4.
If r

�
# 4, it is not hard to see that the magnetization at r

�
is bounded by the

probability that r
�

is connected to �4 by the bonds described in the proof
of Proposition 3.2. However, for any bond-spin configuration, the maxi-
mum possible probability for any bond is 1&e&2;. Thus, if 1&e&2;<
pc(d ), the magnetization at any site, with any boundary condition goes to
zero exponentially with the distance to the boundary. From this the result
follows easily. K

Remark. We thus see that in the large * models, there are two
distinct phase boundaries. Indeed, let *>>1 and ;1>;2 with ;2 satisfying
the conditions of Theorem 4.1 and ;1 the conditions of Theorem 3.3. Let
+� >max[+~ t(;2), +t(;1)] and consider the path in the (+, ;)-plane:
(&�, ;2) � (+� , ;2) � (+� , ;1). Along the first leg of the journey, we have a
transition in density alone, but by the time we get to (+� , ;1) on the second
leg, there is magnetization. Thus (at a minimum) two phase boundaries
have been crossed, cf. [GZ] scenario C, where one can also find physical
comments concerning the interplay of magnetic and molecular forces in
diluted spin systems.
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