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Abstract

We consider a general class of (intersecting) loop models in d dimensions, including those
related to high-temperature expansions of well-known spin models. We find that the loop models
exhibit some interesting features — often in the ** unphysical’’ region of parameter space where all
connection with the original spin Hamiltonian is apparently lost. For a particular n=2, d=2
model, we establish the existence of a phase transition, possibly associated with divergent loops.
However, for n> 1 and arbitrary d there is no phase transition marked by the appearance of large
loops. Furthermore, at least for d =2 (and n large) we find a phase transition characterised by
broken trandational symmetry. © 2000 Elsevier Science B.V. All rights reserved.

PACS: 05.50.+q; 64.60.-i; 75.10.Hk
Keywords: Loop models; Reflection positivity; Phase transitions

1. Introduction

In recent years there has been much interest in various loop models. Loop models are
graphical models defined by drawing closed loops along the bonds of the underlying
lattice. The loops may come in n different flavours (colours). No two loops can share a
bond, while sharing a vertex is generally allowed. Explicitly, the bond configurations are
such that each vertex houses an even number — possibly zero — of bonds of each colour.
Each loop configuration is assigned a ‘‘weight’’ that depends on the number of
participating vertices of each type. In the cases of interest these weights are actually
positive hence, at least in finite volume, they define a probability measure on the set of
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al loop configurations. Thus, for a finite lattice the loop partition function may be
written as

Z=Y RwMpl=. pJv, (1.1)
Z

with the sum running over all allowed loop configurations . Here b is the total number
of participating bonds, m, (i = 1,...,V) is the number of vertices of type i and », isthe
corresponding vertex factor.! This definition is slightly different from the one typically
found in literature (cf. Refs. [1,2]) since it also includes the bond fugacity R. Although
strictly speaking it is not needed (since the bond fugacity can always be incorporated
into the vertex factors), we find it convenient to keep R as a separate parameter. We
remark that by relabeling the empty bonds as an additional colour, these models may be
formally regarded as ‘*fully packed’’.

The reason loop models have been extensively studied is because they appear quite
naturally as representations (often approximate) of various statistical-mechanical models.
These include, among others, the Ising model (this approach dates back to Kramers and
Wannier [3] and was later used to solve the model exactly [4,5]), the Potts model
(polygon expansion [6]), O(n) spin models [7—11], 1-D quantum spin models [12], a
supersymmetric spin chain [13], the g-colouring problem [14,15] and polymer models
[16,17].

Here we consider the loop models explicitly related to the high-temperature expan-
sions of the standard O(n), corner-cubic (AKA diagonal-cubic) and face-cubic spin
models. Thisis, in fact, the same set of models that was treated in Ref. [7]. However, in
this paper, we provide a careful treatment of the large n cases — and we treat the
standard d-dimensional lattices. As a result, we arrive at quite unexpected results
concerning the behaviour of these models in the high fugacity region.

In particular, despite the considerable attention the subject has received, most authors
(with certain exceptions, e.g. Refs. [3-5,9,13]) chose to consider models where only
loops of different colours are allowed to cross each other (if at al). On the other hand,
spin systems (in the high-temperature approximation) naturally generate self-intersecting
loops. In order to avoid this issue, an exorbitant amount of work has been done on
lattices with coordination number z=3 (e.g. the honeycomb lattice), where loop
intersections simply cannot occur. Overall this approach appears to be justified since one
is usualy interested in the critical properties of the underlying spin systems. Indeed,
consider the archetypal n-component spin system with |Si|s 1 and let us write
exp(AL; ;,Si - S) ~ I, j,(1+ AS; - S;). Although as a spin system the right-hand side
makes strict sense only if |A|< 1 (the ** physical regime’’), the associated loop model
turns out to be well defined for all A. Since the systems can be identified for | A| < 1 it
can be argued that the critical properties of the spin system and those of the loop model
are the same and are independent of the underlying lattice.

! Many authors consider an additional factor of the form FJiF)2... Fln where F; is a**loop fugacity’ and
I; is the number of loops of the ith colour. Although the objects |; are unambiguous when self-intersections
are forbidden, in the general case they are not easily defined. Nevertheless, the essence of such a term — at
least in the case of integer F; — is captured by the introduction of additional colours.
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Notwithstanding, for n> 1 any phase transition in the actual spin system is not
anticipated until temperatures of order 1/n (i.e. A ~ n), which we note is well outside
the physical regime of the loop model. At first glance this appears to be borne out: the
natural parameter in the loop model (as well as in the spin system) seems to be A/n.
Thus, the loop model could, in principle, capture the essential features of the spin system
up to — and including — the critical point.

We have found such a picture to be overly optimistic. Indeed, depending on the
specific details, e.g. the lattice structure, there may be a phase transition in the region
1 < |A| < n (specifically, A ~n**), well outside the physical regime but well before
the vaidity of the approximation was supposed to break down. Furthermore, it would
seem that both the temperature scale and the nature of the transition (not to mention the
existence of the transition) depend on such details. Finally, we shall demonstrate that in
contrast to their spin system counterparts, the large-n models have no phase transition —
for any value of bond fugacity — associated with the formation of large loops (i.e.
divergent loop correlations).

The structure of this paper is as follows. Section 2 is dedicated to the description of
the spin models and their connection to the loop models. Specific results for those
models with the two-dimensional spin variable (n=2) are presented in Section 3.
Finally, Section 4 contains the discussion of reflection positivity as well as some results
concerning phase transitions in the large n case.

2. n-component models
2.1. O(n) model

Let us start by considering the O(n) model on some finite lattice A € Z9 defined by
the following partition function:

Z=Tr[T(1+1s-S) (2.1)
<L

with S;€ R", |S|=1 and Tr denoting normalised summation (integration) over all
possible spin configurations. The corresponding loop model is readily obtained along the
lines of a typical ‘‘high-temperature’ expansion. We write S-S, = PSP
+...+S"S™ and define n different colours (each associated with a coordinate
direction of the O(n)-spins). Expanding the product, we have n choices for each bond
plus a possibility of a vacant bond. Thus, various terms are represented by n-coloured
bond configurations: & =(%,,...,%,) with &, denoting those bonds where the term
§’S“? has been selected. Clearly, the various Z,’s are pairwise (bond) disjoint. Thus,
for each & we obtain the weight

W,=Tr J1] ASPSP . I ASVS™. (2.2)

i,irez, (i,i>eg,

On the basis of elementary symmetry considerationsit is clear that W, # 0 if and only if
each vertex houses an even number (which could be zero) of bonds of each colour. Once
this constraint is satisfied, we get an overall factor of A®®) — with b(£) being the total
number of participating bonds — times the product of the vertex factors obtained by
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performing the appropriate O(n) integrals. The details and results of these calculations
are presented in Appendix A. In general, it is seen that the vertex factors depend only on
the number of participating colours and the number of bonds of each colour emanating
from a given vertex, i.e. not on the particular colours that were involved nor on the
directions of these bonds.

In the case of a square lattice (d = 2) we have only three main types of (non-empty)
vertices: those where two bonds of the same colour join together, those with two pairs of
bonds of two different colours and those with four bonds of the same colour. These have
weights of 1/n, 1/n(n+2) and 3/n(n+ 2) correspondingly. Rescaling the bond
fugacity from R= A to R= A/n we arrive at the vertex weights v, = 1, v, =n/(n+ 2)
and v;=3n/(n+ 2).

The factor of 3 relating v, to v, has an interesting interpretation (which, as shown
in Appendix A, turns out to be quite general). Indeed, each vertex of the third type may
be decomposed into three different vertices as shown in Fig. 1. Each of the new vertices
is now assigned equal weight, which is also that of v,. We thus split each & into 3™
different graphs — each of equal weight — in which every vertex with four bonds now
provides explicit instructions relating outgoing and incoming directions of an individual
walk.

Hence in every such graph (now defined with the walking instructions encoded at
every vertex) the individua loops are well defined. Furthermore, changing the colour of
any loop does not change the weight of the graph. Thus we may write

A b(7Z) n m(.Z)
) ( ) n’ o), (2.3)

n+2

2- % ( -
where the summation now takes place over al configurations .z of colourless loop
graphs in which every vertex housing four bonds is resolved by *‘ walking instructions'’,
and / is the number of such loops (being now defined completely unambiguously). In
addition to the advantages of a manifestly colourless expression, the above permits
continuation to non-integer n.

We conclude this subsection with the following series of remarks and observations.

As shown in Appendix A, such vertex decomposition works, in fact, for an
arbitrary lattice in an arbitrary number of spatial dimensions (with the proper
weights for vertices housing 6, 8, etc., bonds).

Notice that only | A| < 1 region of the parameter space is ‘‘ physical’’ (in a sense
of the underlying Hamiltonian: —BH =X ;,In[1+ AS; - S;]), while for [A]>1
one presumes, no spin Hamiltonian can be written at al. The corresponding loop
model, however, makes perfect sense in the entire parameter space.

+:JF+TL++

Fig. 1. Decomposition of atype 3 vertex into three new vertices in the two-dimensional O(n) loop model.
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If we consider a 2D XY model (n= 2), we notice that the factor 27" in Eq.
(2.3) can be obtained by assigning directions to the colourless loops. The above
decomposition of type 3 vertices makes this procedure unambiguous. Having
done that, we can turn this model into a random surface model by assigning
heights to the plaquettes in such a way that a plaguette to the right of a directed
bond is always one step higher than the plaguette to the left. Not surprisingly, this
random surface model turns out to be identical to the one obtained by the
standard means of Fourier-transforming the origina weights in Eg. (2.1) (cf.
Refs. [18,19)).

Finally, it is worth mentioning that in the fully packed limit R— o, the n=2
loop model on the square lattice (with the colour degrees of freedom being
replaced by assigning directions to the loops) turns out to be nothing but the
square ice model (i.e. the six-vertex model with al six weights being equal — see
Ref. [6] for a definition of this model). The mapping between the vertices of these
models is shown in Fig. 2. We remark that the perspective of the ice model (and,
for that matter, other six-vertex models) as a two colour loop model provides
additional flexibility in the analysis of these systems. These issues will be
pursued in a future publication.

2.2. Corner-cubic model

We now consider the following ‘‘discretised’’ modification of the above O(n) model
(given by Eg. (2.1)):

Z=Tr]] |1+ %(a’i(l)oj(l) + a'i(z)a'j(z) . +0'i(n)a'j(n)) (2.4)
<iLi»

with ;" = + 1. For small values of A this model may be viewed as a high-temperature

limit of a corner-cubic model. Indeed, it describes an interaction of the type in Eq. (2.1)

where spins S; are allowed to point at the corners of an n-dimensiona hypercube (with

the origin being placed at the centre of the cube).

Mapping it onto an n-colour loop model is almost identical to the O(n) case, with the
only difference being the vertex factor: (o:®)?%1...(0(M)* = 1. We can choose to
associate the weight of R= A/n with each bond, thus making all vertex weights »; to
be equal to unity. In other words, the resulting loops in this model do not interact with

Jr + = J + =

R R Y N B
_Jr-+ L:._»* Jr+<}t,.=<__>

Fig.2. Mapping of afully packed O(2) model onto the square ice model.
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each other via vertices (there is still a hard core bond repulsion, however). The partition
function is then ssimply

Z=§(

A )b(g). (2.5)

n
2.3. Face-cubic model

Finaly, let us examine a different model with cubic symmetry given by the following
partition function:

z=Tr] [1 +AMuPu® +uPu® . +ui(“’uj(“))] . (2.6)
<Ly

Here ul® =0,+ 1, and for a given site i exactly one of u® (k=12,...,n) has a
non-zero value. In fact, one may think of u's as components of an n-dimensiona unit
vector that is only alowed to point along the coordinate axes (or from the centre to the
faces of an n-dimensional hypercube — thus the name face-cubic). While the corner-cubic
mode! described earlier had 2" degrees of freedom per site (the number of corners of a
hypercube), the present model has only 2n such degrees of freedom (the number of
faces).

Once again, the corresponding loop model is obtained by performing multiplication
in Eq. (2.6) and then summing the resulting terms over all possible values of u's. But
since for each site i only one of the spin components u(® = 0 at a time, we notice that
no terms that mix different k's are allowed. In terms of resulting loops this means
hard-core repulsion of different colours: only loops of the same colour can share a
vertex. The vertex factors are now: zero for any vertex with multiple colours and 1/n
for vertices with two or more bonds of the same colour; the bond fugacity is given by
R=A.

3. Resaults for the n = 2 case
3.1. The n= 2 models with cubic symmetry, Ashkin—Teller and random surface models

In this section we shall restrict our attention to the models with cubic symmetries.
Firstly, let us slightly change the notations for convenience: let 0¥ = ¢, and ¢:® = 7,
for the corner-cubic, while u® =u, and u® =y, for the face-cubic model. The
corresponding partition functions are then written as

A
Ze=Tr[] |1+ E(oia'j-i-TiTj) , (3.1)
<iLj»
Zee =Tr [T [1+ MUy + 0] - (3.2)
<iLj»
While we have seen that the loop models generated by these partition functions are
very different, the spin models themselves turn out to be identical. Indeed, Eqg. (3.2) is
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obtained from Eg. (3.1) by the following transformation: u; = (o; + 1) /2, v; = (0; —
7.)/2. This is equivalent to a 45° rotation in the spin space (along with a V2 /2
rescaling) and is very specific to the n= 2 case. In turn, both models are equivalent to
the Ashkin—Teller model [20] with a particular choice of parameters that will be detailed
in Section 3.3.

The two-colour loop models generated by Eq. (3.1) and Eq. (3.2) are given by the
following sets of parametersin Eq. (1.1): R= A /2, with all vertices having weight one,
and R= A, with al multi-colour vertices given weight zero and all other non-empty
vertices given weight one-half respectively.

Turning our attention to the particular case of two spatial dimensions, we remark that
in the former model one can sum over all possible colourings to obtain the following
result for the partition function:

A b(Z")
:

z=Y 27N (3.3)
P

with b(£”’) being the total number of occupied (colourless) bonds and f(£”) being the
total number of faces in the clusters they form. The number of faces is the minimum
number of bonds that one must remove in order for the remaining clusters to be
tree-like. For example, the cluster in Fig. 3 has five faces, while it can at most consist of
four loops. Curiously enough, this result appears to have no simple generalisation for
n> 2.

It appears that the two-dimensional loop model derived from the corner-cubic model
can not be mapped directly onto a random surface model. However, the other loop
representation (the one obtained via expansion of the face-cubic model) does correspond
to a random surface model. Indeed, consider the following ‘‘recipe’’: take a loop
configuration generated by a particular term in the expansion of Eq. (3.2). Let red be the
colour of loops originating from u’s, while blue corresponds to v's. Take al plaquettes
at the outermost region to be at height zero (these plaguettes are said to form a
substrate). On this substrate we have clusters of loops. The outermost boundaries of
these clusters are themselves closed loops. The plagquettes immediately adjacent to these
boundaries are assigned the height of + 1 if the loop forming a boundary isred, or —1
if it is blue. These plaguettes, along with any other plagquette accessible from them
without crossing coloured bonds are said to form a plateau and thus have the same

a b c

Fig.3. A fragment of a possible two-dimensional loop configuration for an intersecting loop model. Three
different possible colourings (out of the total of 32 in the case of n= 2) for aloop model of corner-cubic type
are represented here as (a), (b) and (c). For the face-cubic type, only monotonous clusters like () remain
allowed.
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height.? Inside such a plateau region there may be other loop clusters, that may or may
not touch the boundary of a plateau (only corners are allowed to touch, since no bond
sharing between the loops is possible). Every such cluster is now treated in the same
way: its boundary defines the ‘‘secondary’’ plateau with the height being that of the
““primary’’ plateau +1 depending on the colour of the boundary. This procedure is
repeated until all plaguettes are assigned their heights. As an example, consider the
cluster in Fig. 3a, which may now only consist of the bonds of a single colour. If this
were a red cluster, the heights would be +1 for the plaquettes 1-4 and +2 for the
plaquette 5.

In fact, this description is essentially identical to that given in Ref. [21] in the context
of wetting transition with the only difference that we allow for two-coloured clusters
instead of single-coloured, and therefore the heights in our case may be both positive
and negative.®

The important feature of this random surface model is that it must have a phase
transition whenever the underlying Ashkin—Teller model undergoes a transition.

3.2. Random cluster representation

Let us derive yet another graphical representation for the n=2 (Ashkin—Teller)
model considered in the previous section, this time it will be a random cluster
representation closely resembling the FK representation for the Potts model. We start
from Eq. (2.4) (with n = 2), and with the help of the identity o, o; = 25,, — Lrewriteit
as follows:

Zoo X TT [2+0(8,,,+8.,)] (3.4)

o <L

with v = A /(1 — A). The random cluster representation is generated by evaluating the
product over al bonds in Eq. (3.4) and then summing over the possible values of o’s
and 7’s. If we think of the bonds originating from the o variables as green (g), and the
bonds originating from the = variables as orange (0), then each of the resulting termsiin
the partition function can be graphically represented as a collection of green and orange
clusters as well as empty sites. The clusters of different colours may share sites, but not

2 The strict definition is as follows: plaguettes A and B are said to belong to the same plateau if and only if
there exits an unbroken path along the bonds of a dual lattice that connects the centre of plaguette A to the
centre of plaguette B without crossing a single coloured bond of the direct lattice.

® This random surface model, however, has a few important differences with those of a more conventional
type (like the one obtained for the O(2) case). Firstly, due to an irreducible four-leg vertex factor, it cannot be
described by a nearest-neighbour Hamiltonian (i.e. a Hamiltonian that depends only on the height difference of
neighbouring plaquettes). Secondly, since no directions are assigned to the loops separating the plateaux, there
is no way of deciding on the sign of their relative height difference without going through the necessary
construction steps starting from the outside. By contrast, the O(2)-related random surface model can be
constructed starting from any plaguette — a particular choice simply determines the overall additive constant.
In this sense the mapping between the present random surface and the loop model is non-local.
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bonds. Denoting the configurations of green and orange bonds as o
tively, we can then write the partition function as

Z Z pPl@g) ,blwo) gc(wg) D c(wo) (3_5)

w

g and w, respec-

with b(w) being the total number of bonds (of a specified colour), and c(w) being the
number of corresponding connected components. The rule for counting the connected
components is as follows: every site that is not a part of a green cluster is considered to
be a separate connected component for the purposes of ¢( wg), even if this siteis a part
of an orange cluster, and vise versa. In particular, the quantities v°“92%“9 and
pP(@2)2%(@0) gre to be interpreted exactly as in the usual random cluster models.

3.3. Sf-duality and criticality at A =1

The duality relations for such random cluster representation of the standard AT model
in two dimensions were established in Refs. [22,23]. Firstly, let us write the generic AT
Hamiltonian as

_BH=<§JK(QM+BWJ+LQQQWL (3.6)

The graphical representation for the partition function is then obtained along the lines

of the previous section. The only difference is that this time double-coloured (i.e. green

and orange at the same time) bonds are also allowed. The graphical weight of a given
bond configuration o is

W(w) = Ab(@gV @)Bb(wg A 05)9(wg) c(wo) (3.7)
where
elt2K _2eK 11
A=eX-1, B:T' (3.8)

Observe that Eq. (3.5) describes a particular case of this model provided that A=v =
A/(1—)) while B=0.

The dual model is obtained by placing orange bonds between the sites of a dual
lattice every time when it does not cross a green bond of the origina lattice.
Correspondingly, the green bonds on the dual lattice are dua to the origina orange
bonds. The duality relations are given by

A*=2B"!, B =2A1 (3.9)

And the model becomes self-dual when AB = 2. It is therefore suggestive that our
model becomes self-dual at A = 1 (or v = ). In order to show that it is indeed exactly
self-dual, we shall perform the above duality transformation to the orange bonds only
(w, = g ), leaving the green bonds intact. This results in having green bonds on both
origina and the dual lattices. The green bonds on the dual lattice can be then split into
those traversal to the original green bonds and those traversal to the previously vacant
bonds, or symbolically w, = £,V (). Here w, is the configuration of (green) bonds
dual to the orange bonds while (2, and (2 are the configurations of bonds transversal
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to the origina green and vacant bonds correspondingly. The corresponding weight is
now given by

2\ b(2g)+b(12)
) 26(@g) 20125V 2o, (3.10)

W(w) = Ub(“’g)( —

U

We now observe that b(£2,) = b(w,), and aso that b({2,) — 0 as v — = (the original

random cluster model becomes fully packed according to Eq. (3.5)). Then the weight in
this limit becomes simply

W = 2P(@g) 2e(wg) 26(29), (3.11)

The model described by such weights is manifestly self-dual since oy = £, V (), -
0, and Oy = 0,V 0y — 0, as v - », and there is a symmetry between the green and
the orange bonds.

It is tempting to speculate that a phase transition occurs exactly at the self-dual point.
Although this is plausible, it is not the only possibility. In particular, there may be a
phase transition at some A, < 1. However, we can say the following: If at A = 1 thereis
no magnetisation (i.e. percolation of green or orange bonds) then the theorem proved by
two of us[24] applies; A = 1isacritical point in the sense of infinite correlation length
and infinite susceptibility. The only other possibility is positive magnetisation at A =1
which implies a magnetic transition — which could be continuous or first-order — at
some A, < 1. (In particular, this is shown to happen, with a first-order transition for the
large-q versions of these models [25]). Although we find these dternative scenarios
unlikely, we have, in any case, established the existence of a transition in this model for
some value of A between zero and one.

3.4. Speculative remarks on relation to the critical 4-state Potts model

As mentioned above, in our opinion the most likely scenario is that a phase transition
occurs precisely at A = 1. The interesting question then is that of the universality class.
Without any supporting mathematical statements, we suggest that at this point our
model behaves similarly to the 4-state Potts ferromagnet at its critical point. In order to
substantiate this claim, let us first recall the random cluster representation for a g-state
Potts model:

Z= Y Kbge), (3.12)

For q< 4 this model is universally accepted to have a continuous transition at the
self-dua point K = \/a . Thus for the q =4 model at the self-dual point we have

Z =Y 25w ge(e), (3.13)

w

On the other hand, we can use Eg. (3.11) to rewrite the partition function of our model
a A= 1asfollows

Z o Y 2b@) go(e) pe()=c(w), (3.14)

w
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The difference between the two modelsisiin the last factor of 269~ %) in Eq. (3.14). It
is, however, reasonable to speculate that it can be neglected. Indeed, on average
c(2) =c(w), and therefore one would expect the typical value of the difference
c(2) — c(w) to be sublinear in the system size. By contrast, the individual terms c({£2)
and c(w) indeed scale linearly with the size of the system so this correction may be
““unimportant’’.

This, however, does not mean that the two models approach the self-dual point in a
similar fashion. In other words, we expect the exponents associated with the critical
point itself (such as  and &) of the two models to be the same, while this needs not be
true for the exponents associated with the approach to the critical point (such as «, 8
and »). In fact, the A =1 point of our model may well be an edge of a critical
Kosterlitz—Thouless phase in which case the approach exponents would take on extreme
vaues (zero or infinity).

4. Reflection positivity and phase transitions in the large n limit
4.1. Reflection positivity

This section concerns the reflection positivity property of the loop models defined by
Eg. (1.1) which in turn permits the analysis of their large n limit. Let A denote a
d-dimensional torus. Here, and for the remainder of this paper, it will be assumed that
the linear dimensions of A are all the same, and are of the form L = 2. We denote by
N=L" the number of sites in the torus. Let & denote the set of all possible loop
configurations on A. Findly let % denote a hyperplane perpendicular to one of the
coordinate axes which cuts through the bonds parallel to this axis dividing the torus into
two egual parts. Let £, and &, be the bond configurations on the two sides of the
“‘cut’”, with the bonds intersected by & belonging to both sets. Thus £=2,0U%Z,,
while £,=2,n%, contains only the intersected bonds. We now define a map
9,:%,— %, such that it simply reflects the configuration on the *‘left’’ to that on the
“right'”. Let f:2, — R be afunction that depends only on the bond configuration on
the right and define 9, f(g o) = f(9,(g ) for any g , € Z.,.. A probability measure u
on the set & is said to be reflection positive if for every such & and any functions f
and h as described above { f 9, f ), > 0 and (hd, ), = (fI,h),.

Theorem 1. The measures u determined by the weights in Eqg. (1.1) are reflection
positive on any even d-dimensional torus.

Proof. Let A denote one such torus and % denote one of the above described planes.
Let g€ %2, be a configuration of bonds going through this plane. Assuming that
u(g ) # 0, let us consider the measure (- | g ). Our claim is that this splits into two
measures, which we will cal p.(-1g,) and u,(-1g,), defined on £, and Z,
which are independent and identical under the reflection 9.

Indeed, it is not hard to see that u(g.) # 0 if and only if g, has an even number of
bonds of each colour. In each half of the torus, the endpoints of these bonds serve as
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“*source/sinks”’ for bond configurations. In other words, a configuration in, say, £
must contain lines of the appropriate colour that pair up these sources. But, aside from
having to satisfy these ** boundary conditions’’, the weights are the same as given in Eq.
(1.1). These two measures defined accordingly on &, and &, are the above mentioned

me(-1g,)and uy,(-1g,) respectively.
It is cleer that if g, €%, then

Re(82180) =pa(9(82)1as)- (4.1)

Furthermore, if g, isaconfiguration and g . is any configuration that agrees with g
and has non-zero weight then for every g, € £, we see that

pa(87185) =m(as185). (4.2)

Thence, for every f that is determined on &, we have

<f1933f>p.= Zﬂ(gﬂ)<f|g?>ﬂy<ﬂﬁf|g9>ﬂy: Z'u’(gg)<f|g9>iﬂ (43)

A Sz

which cannot be negative. Similarly we get that (hd,, f ), = (f9,h),. O

One of the important consequences of reflection positivity is a Cauchy—Schwartz-type
inequality:

(f9,h), < (9, ).(hd,h), . (4.4)

which in turn leads to the chessboard estimates to be described below. (The reader
interested in a more detailed description of reflection positivity is referred to the review
[26] and the references therein).

4.2. Uniform exponential decay for large n

In this subsection we will consider some n-colour models with n> 1 and vertex
factors that are uniformly bounded above and below independently of n: 0<c<
vy, ..., ¥, < C. Examples include the O(n)-type models and the corner-cubic models
discussed in Section 2. However, the face-cubic model does not fall into this category
since al the multi-coloured vertex factors vanish. It is no coincidence that we cannot
treat these models since, as is obvious such models have a colour-symmetry broken
phase for high enough value of bond fugacity (for brevity we omit a formal proof).

The suppression of long contours will be established by showing that long lines of
any particular colour are exponentially rare in the length of the line. To prove this we
will need the so called chessboard estimate which in the present context reads as
follows:

Proposition 2. For x€ A let w,, ... w, denote indicator functions for bond events that
are determined by the bonds emanating from the site x. (The w; need not al be
distinct.) For any of these w;, cover the lattice with (multiple) reflections of the
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corresponding event and let Z; denote the partition function constrained so that at each
site, the appropriately reflected event is satisfied. Then

<1‘[wj(x)>M<(%)w...(%)w. (4.5)

j

Proof. See Subsection 2.4 of Ref. [26].
Our principal result of this subsection:

Theorem 3. Consider an n-colour loop model as described by Eqg. (1.1) on the torus A
(which is taken to be ‘‘sufficiently large’’) and suppose that the vertex factors are
bounded below by ¢ > 0 and above by C < « uniformly in n. For sites x and y in A,
let 7, , denote the probability that these sites belong to the same loop. Then, provided
n is sufficiently large, there is a &, > 0 such that for al values of R,

Q(Zé(ynge_\X_Y\/fn, (46)

where | x —y| denotes the minimum length of a walk between x and y and K is a
constant.

Remark. For conceptual clarity, we will start with a proof of the case d = 2; all of the
essential ideas are contained in this case. The problems in d > 2 involve some minor
technicalities and the general proof can be omitted on a preliminary reading.

Proof of Theorem 3 (d = 2). Let us focus on a particular colour — red — and show the
statement is true for red loops; this only amounts to a factor of n in the prefactor. We
define the “‘red event’’ as an event where at least two red bonds are connected to the
site in question. It is clear that there are two main types of red events: those where the
red bonds attached to a given site line up along the straight line and those where they
form the right angle. These two types are shown in Figs. 4la and 4lla respectively. We
will denote by w{*), a = 1,2 the events of the first type and o), B=1,...4 those of

[+
i

o]

[=%

[Ei=]

Fig.4. Chess-board estimate on the ‘‘red’” events of types | and II. The events are shaded in (a). Parts (b) and
(o) represent the results of the first two reflections with respect to the dashed lines. The resulting tilings of the
entire plane (torus) are shown in part (d).
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the second type. Obviously there are only two distinct constrained partition functions
which we respectively denote by Z, and Z,,. Fig. 4 shows these single events (a), the
results of the first two reflections with respect to the dashed lines (b), (c) and finally the
configurations obtained by applying each reflection /d=1log, N times in order to
completely tile the surface of the torus. The grey lines correspond to yet unidentified
bonds — these are the degrees of freedom left after the process of tiling has been
completed.

Let us perform the estimate on Z,,/Z first. We claim that if v, is any legitimate
configuration that contributes to Z,, each of the red squares — of which there are N/4 —
can be independently replaced by vacant bonds or a square loop of any other colour or
left as red. Of course this may cost us an exchange of the “*best’”” for the ‘*worst”
vertex factor but even so, the result is

N/4
z

R* c\" 1 c\"
Z | 1+nR (?) <(nl/“?) ' (47)

Let us now turn attention to the Z, estimate. We start with a factor of RV for the red
bonds already in place — as well as another worst case scenario of CN. As for the lines
that are orthogonal to (horizontal in Fig. 41d) once started in any colour they must
continue until they wrap the torus, a total length of L =+/N. There are n possible
choices of colour for each line as well as the possibility of no bonds at all. Since there
are atotal of L lines atogether, this gives

x

Z, < CMRV(1+nRY)". (4.8)

To obtain our estimate on Z, we simply pick the even (or odd) sublattice of dual sites
and surround each site with one of n coloured elementary loops or with a *‘loop’” of
vacant bonds. Folding in the worst case scenario for the vertex factors this gives
Z>cN(1+nRY"2. (4.9)
The ratio may be expressed as a product of two terms namely [R/(1 + nR*)Y4]N and
(1+nRHL /(1 + nRHN/4 — times an additional (C/c)N. Clearly the first term is
bounded by n~N/4. As for the second ratio, if R< 1 we may neglect nR" for N> 1
and the ratio is bounded by one. On the other hand, if R> 1, we may neglect the 1 and
we get, modulo a factor of n*, another n~N/4; we will settle for the bound of 1.

Thus we have

jim (2 )UN i 4.10
im [ = <|=5— .
N%oc( z nt/4 c) (4.10)
with the same upper bound for (Z,,/Z2)*N valid for al N. We thus denote the mutual
upper bound by €, ~n~'/% The desired result now follows from a standard Peierls
argument: If x and y are part of the same loop, some subset of this loop must be a
self-avoiding walk of length at least 2| x — y|. We enumerate all such walks and use the
chess board estimate on each particular walk. Then if e,A, <1 where A, is the
two-dimensional connectivity constant we write

€hy = exp{ —1/2&} (4.11)
(the factor of 2 because we must go there and back) and the stated result follows. O
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Proof of Theorem 3 (d > 2). The preliminary steps are the same as the two-dimensional
case: There are again only two types of o’s (but with more indices) and two constrained
partition functions which we again denote by Z, and Z,,. The pattern for Z,, is the
two-dimensional pattern in Fig. 4l1d reflected in all directions orthogonal to the plane
visualised. Noting that each reflection doubles the number of red squares, we see that in
the Z,, patterns there are a total of (27)% 2 x L2 = N squares altogether. Repeating
the argument leading to Eq. (4.7) we end up with exactly the same bound. What is a
little harder is the estimates on Z, and the partition function itself.

We first claim that Z can be estimated by

d
—N

Z>cN(1+nRY* . (4.12)

To achieve this, we assert that the following holds: There is a set of plaguettes of the
lattice with the property that each bond of the lattice belongs to exactly one plaquette.
Once this claim is established it is clear that Eq. (4.12) holds; indeed there are just
[1/4] X Nd plaguettes in question, we consider those configurations in which each of
them is independently left vacant or traversed with an elementary loop in one of the n
possible colours. Let us turn to a proof of the above assertion.

Let &,,...8, denote the elementary unit vectors. We adapt the following notation for
plaguettes: If, starting at x € Z¢ we first move in the &, direction then in the &, direction
and then complete the circuit we will denote this plaquette by [&;C@, ], In general we
can have [+ &< + ], and it is noted that [€, 08,1, = [6,08],

Starting with the origin, consider the following list of instructions for plaguettes:

[8,0 —8,], [8,0 — &, .- [BaC — 8], (4.13)

So far so good — each bond emanating from the origin belongs to exactly one plaquette.
If x=(Xy,... Xy) let us define 7;(x) = (—1)* to be the parity of the jth coordinate.
Then a the site x, select the following: [7,()8,C — 7,(X)8, ], ... [7;(X)E,;< —
a(x)&;],. Taking the union of al these lists, it is clear that indeed each bond belongs to
at least one plaguette, the only question is whether there has been an over-counting.
To settle this issue we establish the following assertion: Let x denote a site. Then a
plaquette is specified by the instructions at x if and only if the same plaquette is
specified by the neighbours of x on that plaquette.

Indeed, consider one such plaguette namely [7,(x)&C — ., (X)&;, 11, (If necessary
we use the convention &,, , = &;). One of the relevant neighbours is x’ = x + m;(x)&;.
But at x’, we have instructions for the plaquette [7;(x")&,& — ;. (X8, 4],,. Since
m(x) = —m(x’) and m;, (x") = 7, ,(x’) this is seen to be the same plaquette. The
other neighbour, a X = x — ;. ;& ;, follows from the same argument. Reversing the
roles of x and x’ (as well as x and X) establishes the ‘only if’ part of the assertion.

It is thus evident that no bond can belong to two plaquettes: If x and x’ are neighbours
and there are instructions coming from x to make some particular plaguette that includes
the bond {(x,x’) then:

(a) These are the only instructions coming from x pertaining to this bond.

(b) The list at x’ (and the other corners of this plaquette) also include this plaguette.
(c) If y is another neighbour of x which is not in this plaguette there cannot be
instructions at y to include the plaguette containing x, X’ and y.



L. Chayeset al. / Nuclear Physics B 570 [FS (2000) 590-614 605

Items (a) and (b) are immediate. To see item (c), note that by the assertion, such
instructions would also have to appear on the list at x. But, by item (a), they do not. Eq.
(4.12) is now established.

Finaly, let us estimate Z, from above. First it is noted that the Z, patterns consist of
paralel lines (pointing in the direction of the origina red bonds) that pass through every
site. Hence the only loops we can draw are confined to the various (d — 1)-dimensional
hyperplanes orthogonal to these lines. Modulo vertex factors — which we estimate by
CN — each hyperplane yields the (d — 1)-dimensional partition function. We thus have

z, <R'CN(E)", (4.14)

where Z is the (d — 1)-dimensional partition function with all vertex factors equal to
unity. (This observation is not of crucial importance — the key ingredient is the number
of available bonds — but it serves to compartmentalise the argument.) Let us tend to the
estimate of 5.

We denote by 5,, the contribution to 5 that comes about when there are exactly M
bonds in the configuration. Given the placement of the bonds, let us count (estimate) the
number of ways that they can be organised into self-returning walks and then indepen-
dently colour each walk. Throwing in a combinatoric factor for the placement of the M
bonds and the fact that there cannot conceivably be more than M /4 loops to colour we
arrive at

|

M<((d_|:\L/|)Ldl)RMnM/4><Y(M), (4.15)

where Y(M) is defined as follows: For M bonds, consider their placement on the lattice
chosen so as to maximise the number of ways in which the resulting (colourless) graph
can be decomposed into distinct loops. (Such decompositions are done by ‘*resolving'’
al intersecting vertices into connected pairs of bonds, similar to Fig. 1.) Then the
quantity Y(M) denotes this maximum possible number of decompositions.

Let 3 (which equals 2(d — 1) — 1= 2d — 3) denote the greatest possible number of
local options for an on-going self-avoiding walk. We claim that

Y(M) < (23)". (4.16)

Indeed, take this optimal placement of M bonds and, starting at some predetermined
bond (and moving in some predetermined direction) draw a loop of length P. There are
no more than 3" possibilities for this loop. Then what is left over cannot yield a total
better than Y(M — P). This must be done for every possible value of P and summed.
Defining Y(0) = 1, we arrive at the recursive inequality

Y(M)< Y 3°Y(M-P) (4.17)
O<P<M

and the bound in Eq. (4.16) can be established inductively. Putting together Egs. (4.15)
and (4.16) we find

_ d-1 _ -1
E< Z((d :A)L )RMnM/4(25)M=(1+23 Rnt/4)@ DL (4.18)
M
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And thus
7, < CUR|(1+ 25 R4y ] . [crRL+ 23R4 Y] (a19)
An estimate for the straight segments is nearly complete. We write
[zl ]1/'“ e R(1+ 23 Rat/4)“ ™Y
z| Tc (1+mry)¥

Let us split the power of the denominator: d/4=1/4+ (d — 1) /4; the first term will
handle the R in the numerator and this ratio is less than n~'/4. Asfor what is left over,
it is easy to see that

(4.20)

1+ 2z3Rnv4 1 ) Rnt/4 Lo (a.21)
= +23 <1+23. )
(1+nRHY 1+ nrHY! (1+nRHY*
Thus we have
Z| 1/N C i1
i < E(l+25) /4 (422)

so again al of the w’s have estimates with the scaling of n~1/4. The remainder of the
argument follows the same course as the two-dimensional argument with modifications
where appropriate. O

4.3. Trandational symmetry breaking and related phase transitions

So far we have shown that for a sufficiently large n, there are no phase transitions
associated with the divergent loop correlation length. However, this does not rule out the
possibility of phase transitions of a totally different nature — in fact we shall see that
such transitions do indeed take place. The type of these transitions happens to be
sensitive to the lattice structure and the vertex factors that correspond to loop intersec-
tions. This leads to a variety of critical phenomena which has not been observed in the
case of a honeycomb lattice [7].

We shall consider the case of all vertex factors being positive and uniformly
bounded. Let the number of colours n be very large and consider the high fugacity limit
of R— oo, The model becomes fully packed in this limit, i.e. every bond is occupied.
But since n is large, according to the estimates of the previous subsection the partition
function is dominated by configurations in which there are as many loops as possible. In
two dimensions, it is clear that these ** maximum entropy states’ break the translational
symmetry: the loops of different colours may run around either odd or even plaquettes
of the lattice. (We remark that in d > 2, the situation is considerably more complicated
and is currently under study.)

On the other hand, if the bond fugacity is low, the system must be trandationally
invariant. Therefore one would anticipate that at some large but finite value of R a
trandational symmetry-breaking transition takes place. Due to a doubly positionally
degenerate nature of the resulting high-density state, we find it natural to expect that
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such transition is of the Ising type. Indeed, it appears to be very similar to the transition
in the Ising antiferromagnet.
Let us now turn to the rigorous arguments supporting this qualitative picture.

Theorem 4. Consider an n-colour loop model on Z? with vertex factors bounded below
by ¢ > 0 and above by C < oo uniformly in n. Then, if n is sufficiently large thereis a
phase transition characterised by the breaking of trandational symmetry. In particular,
there exist e (sufficiently small) and A (sufficiently large) such that for R*n< € all
states that emerge as limits of torus states are trandlation invariant. On the other hand, if
R*n > A, there are (at least) two states with broken translational symmetry.

Proof. Let us start with the formal proof of trandation-invariance at low fugacity.

Any given site belongs to zero, two or four bonds. Let ©, © and @ denote the
corresponding events and Z,, Z, and Z, the constrained partition functions in which
every siteis of the stated type. WeW|II estimate Prob(e) < (Ze/Z@)l/n and Prob(@) <
(Z, /29)1/ " obviously Z, = 1. In calculating Z, we notice that in al configurations,
each bond must be coloured and there are at most N/2 separate loops. This gives

z,<[R2n2]"Y(2N), (4.23)

where Y(M) is the same quantity that appears in Eq. (4.15). Similarly, in Z, half the
bonds are used (resulting in a factor of RN) and there are no more than N /4 loops. We
get

Z, < [R/41"Y(N) (4.24)

— essentially the sguare root of the above.

In order to show that there is trandation invariance it is sufficient to establish the
following: Let A and B denote local events, let T, be the translation operator to the
point x € A and let & denote any unit vector. Then we must show that for al x with |x|
large the probabilities of w,( ANT,B) and wu,(ANT,, ,B) are essentially the same.
We note that either the supports of A and T, B are attached by a *-connected path of
sites of type Z, and Z,, or they are separated by a connected circuit of cites of type Z,.
(Two sites are considered *-connected if they share the same plaquette.) However, in
case the support of A is surrounded by a connected circuit of empty sites, it is clear that
for any & A and T, A have the same probability. Thus we arrive at

|MA(Ame B) _MA(Ame+eB)| <ui(Care) (4.25)

where C, 7 g is the event that there is a *-connected path of non-© sites between the
support of A and that of T, B. Now, provided Rn*/# is small, pa(Car ) < e X with
e “ ~ aRn/* for some constant «. Thence trand ation invariance (among the states that
emerge from the torus) is established.

Let us now turn attention to the opposite limit, namely Rn'/4 > 1. We claim that with
high probability the plaguettes on the lattice are of one of the two types: they are either
surrounded by four bonds of the same colour, or by bonds of four different colours.
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We will again define site events representative of the two purported ground states. If a
site is on the even sublattice, we say it is of the A-type if it has four bonds of two
different colours, one colour occupying the positive &, and &, directions and the other,
the negative &, and &, directions. The odd site of the A-type is defined as the mirror
reflection of an even A-type site. A site is said to be of B-type if the roles of the even
and the odd sublattices are reversed — see Fig. 5. Any site which is not of one of these
two types will be called ‘‘bad’’. There are three choices for such bad sites, namely
housing no bonds, only two bonds and a ‘* +'" configuration in which the & and —8&,
directions have the same colour and similarly for the +&, directions. The first two are
the old © and © from the preceding portion of this proof, while the constrained
partition function for the latter event, denoted (for the lack of better notations) by Z,
can be bounded by

Z, < RPNn?N (4.26)

On the other hand, we can always estimate Z from below by [ Rn/*]°N as discussed
previously. Thus we have (as | A| > «)

pua(©) <R 2n1/2, (4.27a)
wa(©) <n /2, (4.27b)
pa(#) <n 174, (4.27c)

Thus almost all sites are either A-type or B-type. However, there is no constraint that A
and B sites cannot be neighbours. But, as we show below, this possihility is also
suppressed for n> 1. Firstly, let us notice that the reflections through bonds map the
even into the odd sites (and vice versa). By definition, the A-even and A-odd events are
mirror images, and similarly for B. Thus, under multiple reflections, A-sites map to
A-sites and B's to B’s. Hence, if (A-B) is the event that the origin is of the A-type and
its right nearest neighbour is of the B-type, we have

ZA_B 2/N
Z )

my(A-B) < ( (4.28)

where Z, _, is the partition function constrained according to the pattern shown in Fig.

6. Now, the interior of the A or B columns still consists of the four-bond loops — just as
a pure A or pure B-type tiling would. However, as is easily seen in Fig. 6, a boundary

Even Odd

i

N
o

Fig.5. Even and odd sites of A- and B-types.
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|| |
I

Fig.6. Tiling of the torus obtained by multiple reflections of the (A-B) event. The sites marked as A, are the
even sites of the A-type, etc. The zigzag lines that form loops wrapping the torus and separating the columns
of A- and B-sites are shown black.

between the columns is formed by a zigzag line of a single colour running around the
torus. Thus we arrive at

In N

Zy_s=R?n* n? (4.29)
and hence, in the large N limit, u,(A-B) <n~1/2,

The rest of the proof follows easily: A connected cluster of A-type sites has, on its
boundary a ‘‘bad’’ site or an A-B pair; similarly for the clusters of B-sites. Thus, if
Rn*4 and n are large enough, the possibility that any given site is isolated from the
origin is small. Thence, given that the origin is of the A-type — which has probability
very near one half — the population of B-type sites is small and vice versa. Evidently,
there are two states, one with an abundance of A-sites and the other with an abundance
of B's. It is not hard to see that in these two states, trandation symmetry is broken —
both are dominated by the appropriate staggered patterns. O

5. Final remarks and conclusions
So far we have succeeded in proving the following general statements:

A generic multi-coloured loop model with all vertex factors vy, ...y, uniformly
bounded from above and below does not have a phase transition corresponding to
the divergence of the loop size in any dimension provided that the number of
colours n is sufficiently large.

In two dimensions these models undergo a different phase transition, presumably
of the Ising type, that is associated with breaking the translational symmetry*.
While the examples of the models that have been considered in this paper all

4 At present it is not clear whether this statement holds in d > 2. While the ** ground states”’ (the states at
R =) of the system are not trandationally invariant, their degeneracy appears to grow very fast with d, and it
is not obvious that the resulting ‘‘entropy’’ will not destroy the transition at any finite value of R.
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have their vertex factors independent of the particular arrangements of different
colours entering the vertex, al these results remain valid even if this is not the
case as long as al different vertex factors are still reflection-symmetric and
bounded from above and below by some positive numbers.

A clear example of a model that does not follow this rule is the loop model derived
from the face-cubic spin model in Section 2.3. Here the bonds of different colours are
simply not alowed to share a vertex, making the corresponding vertex factor vanish. It
is clear that as the bond fugacity R increases, the system will have a phase transition
(possibly of the first-order) associated with breaking the colour symmetry. Indeed, the
only way to *‘ pack’’ more bonds into the system is to force all of them to be of the same
colour. This transition is very similar to the Widom—Rowlinson transition.

Another interesting observation can be made about the two-dimensional loop model
with all two- and four-leg vertices having the same weight (this is the model originating
from the corner-cubic spin model — see Section 2.2). Comparing the states of the system
a R= o when all bonds are occupied (the fully packed limit), and at R=1 when no
additional weight is associated with placing extra loops, we conclude that the (n + 1)-
coloured model & R =« is identical to the n-coloured model a8 R= 1. Indeed, one
should simply consider the vacant bonds a¢ R=1 as being coloured grey to turn the
n-coloured loop system into a fully packed (n + 1)-coloured system.

Now start with the large enough n at R= . The result of Section 4.3 guarantees the
existence of a broken trandational symmetry in this case. By the argument presented
here this means the existence of a broken symmetry in (n— 1)-coloured, R=1 case.
Now let us continuously increase the value of the bond fugacity in this (n — 1)-coloured
model. As R grows, there are only two possible scenarios. the broken translational
symmetry is either lost via a phase transition or is retained all the way to R= . The
former case corresponds to the intermediate symmetry-broken phase surrounded by the
phase transitionsat R< 1 and R> 1. If the latter scenario is realised, then goto R= o0
and repeat the process of mapping it onto a lower n model. Notice that this latter
scenario can not continue all the way to n= 1 because the n= 1, R= 1 case is nothing
but a loop representation for the Ising magnet at T =0 which does not have broken
tranglational symmetry.®> Therefore one must find an intermediate phase at some not
very large value of n (athough we cannot rule out a possibility of it being just the point
R=1).

From the above we also learn that the n=2 (Ashkin-Teller-like) model is not
critical in its fully packed limit (since it is just the T=0 Ising model). On the other
hand, the O(2) loop model discussed in Section 2.1 is critical in this limit (it maps onto
the square ice model). But the only difference between the two is the factor of 3 in the
same-colour four-leg vertex factor.

On the basis of this observation (along with the first two remarks of this section) we
reiterate that the vertex factors and lattice details are often important for determining the
phase diagram of a particular model.

® Indeed, these loops appearing in the T = 0 ** high temperature’” expansion are also the domain walls of the
Ising model on the dua lattice at T —o0. These dua spins are assigned their values independently with
probability 1,2, and the contours separating regions of opposite type are manifestly translation invariant.
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Appendix A. Vertex factor for the O(n) vertices and loop decomposition

In this appendix we present the calculation of the generic vertex factor appearing in
the loop expansion of the O(n)-type model featured in Subsection 2.1. As it turns out,
this calculation is independent of the lattice details (such as the dimensiondity or
coordination number) which is reflected in our notation. Thus let (2, denote the
n-dimensional solid angle and let S=(S,,...S,) denote the components of a n-dimen-
sional unit vector. Since we only consider the spin at one particular site, the actua site
index is conveniently dropped for now. The vertex factor we need to calculate is

1
_ S M d ) Al
le,...mn |Qn|'/:()n d n’ ( )

where | Q,|=27"/?[I(n/2)]" " is the total solid angle and d{2,/|2,| is the Haar
measure. The object v, . is, of course, the “‘ vertex factor’” originating from 2m,
terms from the first component, ...2m, terms from the nth component associated with
these numbers of these types of bonds entering into a vertex.

Proposition 5. Let ¢(2m) — which is equal to (2m— D!! — denote the number of
different ways of dividing 2m objects into m distinct pairs. Then

le,...mn=Dn(M). 1_[ ¢(2mi)' (A'Z)

iim;#0
where M= X" ;m; and

D(M)=2"Y(n/2)/I(M+n/2)=(n=2)1l/(n+2M—2)Il.  (A.3)

Remark. The calculation of the value for v, ., has appeared before, cf. Ref. [27] and
references therein. However, the interpretation that emerges from this formula has, to
our knowledge, not been discussed previoudy (cf. the remark following the proof).

Proof. The proof boils down to the calculation of the above integral. We write
dQ,=sn""2%,d6,d2, ,, (A.4)

where 6, = S- &,. Also,

S=(Tsiné,,cosb,), (A5)
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where T is an (n — 1)-dimensional unit vector. Finally, we note the fact that
v F(g - 1)

THn2)

Starting with the definition (A.1) with the help of Egs. (A.49)—(A.6), the following
recursion relation is obtained:

| 2| = [2,_] (A.6)

y _ 2 [ .. gm™do
Mty o, )

1 I'(n/2
|20-4] 0, \/;F(E_l)

1
X f(:;in@n)2 i; ™72 (cosh, )™ d6,

o(m,+3)G, ,

= R A7
L ‘/;Gn ( )
where
k k
F(Z Z m; + E
i=1
= - A.

Using the recursion relation (A.7) to reduce the dimensionality of the spin space to 1
(and the fact that v, = 1), we arrive at the desired expression:

B I(n/2) .
Vmy,.oom, = w"/ZF(M+n/2) i:l_'[lr(mi_{—i)
I(n/2)

:mi:ﬂo(zmi_l)”- (A.9)

O

Remark. As a consequence of the expression (A.2) we may decompose the coloured
bond configurations to obtain a colourless loop model (which generalises the result of
Eqg. (2.3) obtained for the square lattice). In particular, at each vertex we have a factor
which depends only on the total number of bonds entering the vertex (and the
dimensionality of the spin n) times the number of ways that the bonds of the various
colours can be paired. By choosing a particular pairing scheme at each vertex, the bond
configuration breaks, unambiguously, into a collection of self-returning walks (loops).
Configurations with the same set of loops — that is to say the same set of bonds and the
same pairing schemes (walking instructions) at each vertex — but which differ in the
colours of the loops are seen to have identical weights. Thus we consider configurations



L. Chayeset al. / Nuclear Physics B 570 [FS (2000) 590-614 613

% of loops (bonds + walking instructions) and the partition function becomes the
analog of the expression (2.3):

A b(.Z)
z=1Y (H) pih Ly’ (A.10)
T

with v, being the factor for a vertex with 2p bonds given by
nPI(n/2) n®
2°I(p+n/2) n(n+2)...(n+2p-2)"

We observe that the right-hand side of Eq. (A.10) provides a well-defined model for
al nand can be continued — essentially with no ambiguity — to non-integer values. As
usual, we may define correlation functions via loop probabilities or be content with the
numerators containing strings divided by denominators without.

In the previous discussions of these issues (see Ref. [27] and references therein) the
goal has been to derive the self-avoiding walk as the n— 0 limit of the O(n) models.
Thus the vertex weights themselves get continued without reference to intermediate
models. (And indeed, the self-avoiding walk does emerge as n — 0.) Although we have
only treated the case where the origina spin models were defined by Z=
TrI1;;,(1+AS;-S;) as opposed to Z=TrI1,; ;,exp(AS;-S;) — we claim that the
Iatter case aso Ieads to graphical models that are WeII defined for non-integer n. (The
derivation is somewhat intricate and will eventually appear in a future publication.)
However, we remark that in either case, the n — 0 limit is, in this context, quite smple
to understand.

vy(n) = (A.11)
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