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Abstract

Ž .We consider a general class of intersecting loop models in d dimensions, including those
related to high-temperature expansions of well-known spin models. We find that the loop models
exhibit some interesting features – often in the ‘‘unphysical’’ region of parameter space where all
connection with the original spin Hamiltonian is apparently lost. For a particular ns2, ds2
model, we establish the existence of a phase transition, possibly associated with divergent loops.
However, for n41 and arbitrary d there is no phase transition marked by the appearance of large

Ž .loops. Furthermore, at least for ds2 and n large we find a phase transition characterised by
broken translational symmetry. q 2000 Elsevier Science B.V. All rights reserved.

PACS: 05.50.qq; 64.60.-i; 75.10.Hk
Keywords: Loop models; Reflection positivity; Phase transitions

1. Introduction

In recent years there has been much interest in various loop models. Loop models are
graphical models defined by drawing closed loops along the bonds of the underlying

Ž .lattice. The loops may come in n different flavours colours . No two loops can share a
bond, while sharing a vertex is generally allowed. Explicitly, the bond configurations are
such that each vertex houses an even number – possibly zero – of bonds of each colour.
Each loop configuration is assigned a ‘‘weight’’ that depends on the number of
participating vertices of each type. In the cases of interest these weights are actually
positive hence, at least in finite volume, they define a probability measure on the set of
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all loop configurations. Thus, for a finite lattice the loop partition function may be
written as

Zs Rbn m1n m2 . . . n mV , 1.1Ž .Ý 1 2 V
GG

with the sum running over all allowed loop configurations GG. Here b is the total number
Ž .of participating bonds, m is1, . . . ,V is the number of vertices of type i and n is thei i

corresponding vertex factor.1 This definition is slightly different from the one typically
Ž w x.found in literature cf. Refs. 1,2 since it also includes the bond fugacity R. Although

Žstrictly speaking it is not needed since the bond fugacity can always be incorporated
.into the vertex factors , we find it convenient to keep R as a separate parameter. We

remark that by relabeling the empty bonds as an additional colour, these models may be
formally regarded as ‘‘fully packed’’.

The reason loop models have been extensively studied is because they appear quite
Ž .naturally as representations often approximate of various statistical-mechanical models.

ŽThese include, among others, the Ising model this approach dates back to Kramers and
w x w x.Wannier 3 and was later used to solve the model exactly 4,5 , the Potts model

Ž w x. Ž . w x w xpolygon expansion 6 , O n spin models 7–11 , 1-D quantum spin models 12 , a
w x w xsupersymmetric spin chain 13 , the q-colouring problem 14,15 and polymer models

w x16,17 .
Here we consider the loop models explicitly related to the high-temperature expan-

Ž . Ž .sions of the standard O n , corner-cubic AKA diagonal-cubic and face-cubic spin
w xmodels. This is, in fact, the same set of models that was treated in Ref. 7 . However, in

this paper, we provide a careful treatment of the large n cases – and we treat the
standard d-dimensional lattices. As a result, we arrive at quite unexpected results
concerning the behaviour of these models in the high fugacity region.

In particular, despite the considerable attention the subject has received, most authors
Ž w x.with certain exceptions, e.g. Refs. 3–5,9,13 chose to consider models where only

Ž .loops of different colours are allowed to cross each other if at all . On the other hand,
Ž .spin systems in the high-temperature approximation naturally generate self-intersecting

loops. In order to avoid this issue, an exorbitant amount of work has been done on
Ž .lattices with coordination number zs3 e.g. the honeycomb lattice , where loop

intersections simply cannot occur. Overall this approach appears to be justified since one
is usually interested in the critical properties of the underlying spin systems. Indeed,
consider the archetypal n-component spin system with S '1 and let us writei

Ž .exp lÝ S PS ;Ł 1qlS PS . Although as a spin system the right-hand sideŽ .² i, j: i j ² i, j: i j

Ž .makes strict sense only if l (1 the ‘‘physical regime’’ , the associated loop model
turns out to be well defined for all l. Since the systems can be identified for l <1 it
can be argued that the critical properties of the spin system and those of the loop model
are the same and are independent of the underlying lattice.

1 Many authors consider an additional factor of the form F l1F l2 . . . F ln where F is a ‘‘loop fugacity’’ and1 2 n i

l is the number of loops of the ith colour. Although the objects l are unambiguous when self-intersectionsi i

are forbidden, in the general case they are not easily defined. Nevertheless, the essence of such a term – at
least in the case of integer F – is captured by the introduction of additional colours.i
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Notwithstanding, for n41 any phase transition in the actual spin system is not
Ž .anticipated until temperatures of order 1rn i.e. l;n , which we note is well outside

the physical regime of the loop model. At first glance this appears to be borne out: the
Ž .natural parameter in the loop model as well as in the spin system seems to be lrn.

Thus, the loop model could, in principle, capture the essential features of the spin system
up to – and including – the critical point.

We have found such a picture to be overly optimistic. Indeed, depending on the
specific details, e.g. the lattice structure, there may be a phase transition in the region

3r4Ž .1< l <n specifically, l;n , well outside the physical regime but well before
the validity of the approximation was supposed to break down. Furthermore, it would

Žseem that both the temperature scale and the nature of the transition not to mention the
.existence of the transition depend on such details. Finally, we shall demonstrate that in

contrast to their spin system counterparts, the large-n models have no phase transition –
Žfor any value of bond fugacity – associated with the formation of large loops i.e.

.divergent loop correlations .
The structure of this paper is as follows. Section 2 is dedicated to the description of

the spin models and their connection to the loop models. Specific results for those
Ž .models with the two-dimensional spin variable ns2 are presented in Section 3.

Finally, Section 4 contains the discussion of reflection positivity as well as some results
concerning phase transitions in the large n case.

2. n-component models

( )2.1. O n model

Ž . dLet us start by considering the O n model on some finite lattice L;Z defined by
the following partition function:

ZsTr 1qlS PS 2.1Ž .Ž .Ł i j
² :i , j

n Ž .with S gR , S s1 and Tr denoting normalised summation integration over alli i

possible spin configurations. The corresponding loop model is readily obtained along the
lines of a typical ‘‘high-temperature’’ expansion. We write S P S s SŽ1.SŽ1.

i j i j
Žn. Žn. Žq . . . qS S and define n different colours each associated with a coordinatei j

Ž . .direction of the O n -spins . Expanding the product, we have n choices for each bond
plus a possibility of a vacant bond. Thus, various terms are represented by n-coloured

Ž .bond configurations: GGs GG , . . . , GG with GG denoting those bonds where the term1 n ll
Ž ll . Ž ll . Ž .S S has been selected. Clearly, the various GG ’s are pairwise bond disjoint. Thus,i j ll

for each GG we obtain the weight

W sTr lSŽ1.SŽ1. . . . lSŽn.SŽn. . 2.2Ž .Ł ŁGG i j i j
² : ² :i , j gGG i , j gGG1 n

On the basis of elementary symmetry considerations it is clear that W /0 if and only ifGG

Ž .each vertex houses an even number which could be zero of bonds of each colour. Once
bŽGG . Ž .this constraint is satisfied, we get an overall factor of l – with b GG being the total

number of participating bonds – times the product of the Õertex factors obtained by
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Ž .performing the appropriate O n integrals. The details and results of these calculations
are presented in Appendix A. In general, it is seen that the vertex factors depend only on
the number of participating colours and the number of bonds of each colour emanating
from a given vertex, i.e. not on the particular colours that were involved nor on the
directions of these bonds.

Ž . Ž .In the case of a square lattice ds2 we have only three main types of non-empty
vertices: those where two bonds of the same colour join together, those with two pairs of
bonds of two different colours and those with four bonds of the same colour. These have

Ž . Ž .weights of 1rn, 1rn nq2 and 3rn nq2 correspondingly. Rescaling the bond
Ž .fugacity from Rsl to Rslrn we arrive at the vertex weights n s1, n snr nq21 2

Ž .and n s3nr nq2 .3
ŽThe factor of 3 relating n to n has an interesting interpretation which, as shown2 3

.in Appendix A, turns out to be quite general . Indeed, each vertex of the third type may
be decomposed into three different vertices as shown in Fig. 1. Each of the new vertices
is now assigned equal weight, which is also that of n . We thus split each GG into 3m3

2

different graphs – each of equal weight – in which every vertex with four bonds now
provides explicit instructions relating outgoing and incoming directions of an individual
walk.

ŽHence in every such graph now defined with the walking instructions encoded at
.every vertex the individual loops are well defined. Furthermore, changing the colour of

any loop does not change the weight of the graph. Thus we may write

Ž .b KK Ž .m KKl n
ll Ž KK .Zs n , 2.3Ž .Ý ž /ž /n nq2KK

where the summation now takes place over all configurations KK of colourless loop
graphs in which every vertex housing four bonds is resolved by ‘‘walking instructions’’,

Ž .and ll is the number of such loops being now defined completely unambiguously . In
addition to the advantages of a manifestly colourless expression, the above permits
continuation to non-integer n.

We conclude this subsection with the following series of remarks and observations.

P As shown in Appendix A, such vertex decomposition works, in fact, for an
Žarbitrary lattice in an arbitrary number of spatial dimensions with the proper

.weights for vertices housing 6, 8, etc., bonds .
ŽP Notice that only l (1 region of the parameter space is ‘‘physical’’ in a sense

w x.of the underlying Hamiltonian: ybHsÝ ln 1qlS PS , while for l )1² i, j: i j

one presumes, no spin Hamiltonian can be written at all. The corresponding loop
model, however, makes perfect sense in the entire parameter space.

Ž .Fig. 1. Decomposition of a type 3 vertex into three new vertices in the two-dimensional O n loop model.
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Ž . ll ŽGG
X .P If we consider a 2D XY model ns2 , we notice that the factor 2 in Eq.

Ž .2.3 can be obtained by assigning directions to the colourless loops. The above
decomposition of type 3 vertices makes this procedure unambiguous. Having
done that, we can turn this model into a random surface model by assigning
heights to the plaquettes in such a way that a plaquette to the right of a directed
bond is always one step higher than the plaquette to the left. Not surprisingly, this
random surface model turns out to be identical to the one obtained by the

Ž . Žstandard means of Fourier-transforming the original weights in Eq. 2.1 cf.
w x.Refs. 18,19 .

P Finally, it is worth mentioning that in the fully packed limit R™`, the ns2
Žloop model on the square lattice with the colour degrees of freedom being

.replaced by assigning directions to the loops turns out to be nothing but the
Žsquare ice model i.e. the six-vertex model with all six weights being equal – see

w x .Ref. 6 for a definition of this model . The mapping between the vertices of these
Žmodels is shown in Fig. 2. We remark that the perspective of the ice model and,

.for that matter, other six-vertex models as a two colour loop model provides
additional flexibility in the analysis of these systems. These issues will be
pursued in a future publication.

2.2. Corner-cubic model

Ž .We now consider the following ‘‘discretised’’ modification of the above O n model
Ž Ž ..given by Eq. 2.1 :

l
Ž . Ž . Ž . Ž . Ž . Ž .1 1 2 2 n nZsTr 1q s s qs s . . . qs s 2.4Ž .Ž .Ł i j i j i jn² :i , j

with s Žk .s"1. For small values of l this model may be viewed as a high-temperaturei
Ž .limit of a corner-cubic model. Indeed, it describes an interaction of the type in Eq. 2.1
Žwhere spins S are allowed to point at the corners of an n-dimensional hypercube withi

.the origin being placed at the centre of the cube .
Ž .Mapping it onto an n-colour loop model is almost identical to the O n case, with the

Ž Ž1..2 k1 Ž Žn..2 k nonly difference being the vertex factor: s . . . s s1. We can choose toi i

associate the weight of Rslrn with each bond, thus making all vertex weights n toi

be equal to unity. In other words, the resulting loops in this model do not interact with

Ž .Fig. 2. Mapping of a fully packed O 2 model onto the square ice model.
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Ž .each other via vertices there is still a hard core bond repulsion, however . The partition
function is then simply

Ž .b GG
l

Zs . 2.5Ž .Ý ž /nGG

2.3. Face-cubic model

Finally, let us examine a different model with cubic symmetry given by the following
partition function:

Ž . Ž . Ž . Ž . Ž . Ž .1 1 2 2 n nZsTr 1ql u u qu u . . . qu u . 2.6Ž .Ž .Ł i j i j i j
² :i , j

Žk . Žk . Ž .Here u s0,"1, and for a given site i exactly one of u ks1,2, . . . ,n has ai i

non-zero value. In fact, one may think of u’s as components of an n-dimensional unit
Žvector that is only allowed to point along the coordinate axes or from the centre to the
.faces of an n-dimensional hypercube – thus the name face-cubic . While the corner-cubic

n Žmodel described earlier had 2 degrees of freedom per site the number of corners of a
. Žhypercube , the present model has only 2n such degrees of freedom the number of

.faces .
Once again, the corresponding loop model is obtained by performing multiplication

Ž .in Eq. 2.6 and then summing the resulting terms over all possible values of u’s. But
since for each site i only one of the spin components uŽk ./0 at a time, we notice thati

no terms that mix different k’s are allowed. In terms of resulting loops this means
hard-core repulsion of different colours: only loops of the same colour can share a
vertex. The vertex factors are now: zero for any vertex with multiple colours and 1rn
for vertices with two or more bonds of the same colour; the bond fugacity is given by
Rsl.

3. Results for the ns2 case

3.1. The ns2 models with cubic symmetry, Ashkin–Teller and random surface models

In this section we shall restrict our attention to the models with cubic symmetries.
Firstly, let us slightly change the notations for convenience: let s Ž1.ss and s Ž2.sti i i i

for the corner-cubic, while uŽ1.su and uŽ2.sÕ for the face-cubic model. Thei i i i

corresponding partition functions are then written as

l
Z sTr 1q s s qt t , 3.1Ž . Ž .ŁCC i j i j2² :i , j

Z sTr 1ql u u qÕ Õ . 3.2Ž . Ž .ŁFC i j i j
² :i , j

While we have seen that the loop models generated by these partition functions are
Ž .very different, the spin models themselves turn out to be identical. Indeed, Eq. 3.2 is



[ ] ( )L. Chayes et al.rNuclear Physics B 570 FS 2000 590–614596

Ž . Ž . Žobtained from Eq. 3.1 by the following transformation: u s s qt r2, Õ s s yi i i i i
o '. Žt r2. This is equivalent to a 45 rotation in the spin space along with a 2 r2i

.rescaling and is very specific to the ns2 case. In turn, both models are equivalent to
w xthe Ashkin–Teller model 20 with a particular choice of parameters that will be detailed

in Section 3.3.
Ž . Ž .The two-colour loop models generated by Eq. 3.1 and Eq. 3.2 are given by the

Ž .following sets of parameters in Eq. 1.1 : Rslr2, with all vertices having weight one,
and Rsl, with all multi-colour vertices given weight zero and all other non-empty
vertices given weight one-half respectively.

Turning our attention to the particular case of two spatial dimensions, we remark that
in the former model one can sum over all possible colourings to obtain the following
result for the partition function:

Ž X .b GG
l Xf ŽGG .Zs 2 3.3Ž .Ý ž /X 2GG

Ž X. Ž . Ž X.with b GG being the total number of occupied colourless bonds and f GG being the
total number of faces in the clusters they form. The number of faces is the minimum
number of bonds that one must remove in order for the remaining clusters to be
tree-like. For example, the cluster in Fig. 3 has five faces, while it can at most consist of
four loops. Curiously enough, this result appears to have no simple generalisation for
n)2.

It appears that the two-dimensional loop model derived from the corner-cubic model
can not be mapped directly onto a random surface model. However, the other loop

Ž .representation the one obtained via expansion of the face-cubic model does correspond
to a random surface model. Indeed, consider the following ‘‘recipe’’: take a loop

Ž .configuration generated by a particular term in the expansion of Eq. 3.2 . Let red be the
colour of loops originating from u’s, while blue corresponds to Õ’s. Take all plaquettes

Žat the outermost region to be at height zero these plaquettes are said to form a
.substrate . On this substrate we have clusters of loops. The outermost boundaries of

these clusters are themselves closed loops. The plaquettes immediately adjacent to these
boundaries are assigned the height of q1 if the loop forming a boundary is red, or y1
if it is blue. These plaquettes, along with any other plaquette accessible from them
without crossing coloured bonds are said to form a plateau and thus have the same

Fig. 3. A fragment of a possible two-dimensional loop configuration for an intersecting loop model. Three
Ž .different possible colourings out of the total of 32 in the case of ns2 for a loop model of corner-cubic type

Ž . Ž . Ž . Ž .are represented here as a , b and c . For the face-cubic type, only monotonous clusters like a remain
allowed.
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height.2 Inside such a plateau region there may be other loop clusters, that may or may
Žnot touch the boundary of a plateau only corners are allowed to touch, since no bond
.sharing between the loops is possible . Every such cluster is now treated in the same

way: its boundary defines the ‘‘secondary’’ plateau with the height being that of the
‘‘primary’’ plateau "1 depending on the colour of the boundary. This procedure is
repeated until all plaquettes are assigned their heights. As an example, consider the
cluster in Fig. 3a, which may now only consist of the bonds of a single colour. If this
were a red cluster, the heights would be q1 for the plaquettes 1–4 and q2 for the
plaquette 5.

w xIn fact, this description is essentially identical to that given in Ref. 21 in the context
of wetting transition with the only difference that we allow for two-coloured clusters
instead of single-coloured, and therefore the heights in our case may be both positive
and negative.3

The important feature of this random surface model is that it must have a phase
transition whenever the underlying Ashkin–Teller model undergoes a transition.

3.2. Random cluster representation

Ž .Let us derive yet another graphical representation for the ns2 Ashkin–Teller
model considered in the previous section, this time it will be a random cluster
representation closely resembling the FK representation for the Potts model. We start

Ž . Ž .from Eq. 2.4 with ns2 , and with the help of the identity s s s2d y1 rewrite iti j s si j

as follows:

ZA 1qÕ d qd 3.4Ž .Ž .Ý Ł s s t ti j i j
² :i , js

Ž .with Õslr 1yl . The random cluster representation is generated by evaluating the
Ž .product over all bonds in Eq. 3.4 and then summing over the possible values of s ’s

Ž .and t ’s. If we think of the bonds originating from the s variables as green g , and the
Ž .bonds originating from the t variables as orange o , then each of the resulting terms in

the partition function can be graphically represented as a collection of green and orange
clusters as well as empty sites. The clusters of different colours may share sites, but not

2 The strict definition is as follows: plaquettes A and B are said to belong to the same plateau if and only if
there exits an unbroken path along the bonds of a dual lattice that connects the centre of plaquette A to the
centre of plaquette B without crossing a single coloured bond of the direct lattice.

3 This random surface model, however, has a few important differences with those of a more conventional
Ž Ž . .type like the one obtained for the O 2 case . Firstly, due to an irreducible four-leg vertex factor, it cannot be

Ždescribed by a nearest-neighbour Hamiltonian i.e. a Hamiltonian that depends only on the height difference of
.neighbouring plaquettes . Secondly, since no directions are assigned to the loops separating the plateaux, there

is no way of deciding on the sign of their relative height difference without going through the necessary
Ž .construction steps starting from the outside. By contrast, the O 2 -related random surface model can be

constructed starting from any plaquette – a particular choice simply determines the overall additive constant.
In this sense the mapping between the present random surface and the loop model is non-local.
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bonds. Denoting the configurations of green and orange bonds as v and v respec-g o

tively, we can then write the partition function as

ZA Õ bŽv g .Õ bŽv o .2 cŽv g .2 cŽv o . 3.5Ž .Ý
v

Ž . Ž . Ž .with b v being the total number of bonds of a specified colour , and c v being the
number of corresponding connected components. The rule for counting the connected
components is as follows: every site that is not a part of a green cluster is considered to

Ž .be a separate connected component for the purposes of c v , even if this site is a partg

of an orange cluster, and vise versa. In particular, the quantities Õ bŽv g .2 cŽv g . and
Õ bŽv o .2 cŽv o . are to be interpreted exactly as in the usual random cluster models.

3.3. Self-duality and criticality at ls1

The duality relations for such random cluster representation of the standard AT model
w xin two dimensions were established in Refs. 22,23 . Firstly, let us write the generic AT

Hamiltonian as

ybHs K d qd qLd d . 3.6Ž .Ž .Ý s s t t s s t ti j i j i j i j
² :i , j

The graphical representation for the partition function is then obtained along the lines
Žof the previous section. The only difference is that this time double-coloured i.e. green

.and orange at the same time bonds are also allowed. The graphical weight of a given
bond configuration v is

W v sAbŽv g k v o .B bŽv g n v o .2 cŽv g .2 cŽv o . , 3.7Ž . Ž .
where

eLq2 K y2eK q1
KAse y1, Bs . 3.8Ž .Ke y1

Ž .Observe that Eq. 3.5 describes a particular case of this model provided that AsÕ'
Ž .lr 1yl while Bs0.
The dual model is obtained by placing orange bonds between the sites of a dual

lattice every time when it does not cross a green bond of the original lattice.
Correspondingly, the green bonds on the dual lattice are dual to the original orange
bonds. The duality relations are given by

A) s2 By1 , B) s2 Ay1 , 3.9Ž .
And the model becomes self-dual when ABs2. It is therefore suggestive that our

Ž .model becomes self-dual at ls1 or Õs` . In order to show that it is indeed exactly
self-dual, we shall perform the above duality transformation to the orange bonds only
Ž ) .v ™v , leaving the green bonds intact. This results in having green bonds on botho o

original and the dual lattices. The green bonds on the dual lattice can be then split into
those traversal to the original green bonds and those traversal to the previously vacant

) ) Ž .bonds, or symbolically v sV kV . Here v is the configuration of green bondso g B o

dual to the orange bonds while V and V are the configurations of bonds transÕersalg B



[ ] ( )L. Chayes et al.rNuclear Physics B 570 FS 2000 590–614 599

to the original green and vacant bonds correspondingly. The corresponding weight is
now given by

Ž . Ž .b V qb Vg B2
bŽv . cŽv . cŽV k V .g g g BW v sÕ 2 2 . 3.10Ž . Ž .ž /Õ

Ž . Ž . Ž . ŽWe now observe that b V sb v , and also that b V ™0 as Õ™` the originalg g B

Ž ..random cluster model becomes fully packed according to Eq. 3.5 . Then the weight in
this limit becomes simply

Ws2 bŽv g . 2 cŽv g . 2 cŽV g . . 3.11Ž .
The model described by such weights is manifestly self-dual since v ) sV kV ™g o B

V and V ) sv kv ™v as Õ™`, and there is a symmetry between the green ando g o B o

the orange bonds.
It is tempting to speculate that a phase transition occurs exactly at the self-dual point.

Although this is plausible, it is not the only possibility. In particular, there may be a
phase transition at some l -1. However, we can say the following: If at ls1 there ist

Ž .no magnetisation i.e. percolation of green or orange bonds then the theorem proved by
w xtwo of us 24 applies; ls1 is a critical point in the sense of infinite correlation length

and infinite susceptibility. The only other possibility is positive magnetisation at ls1
which implies a magnetic transition – which could be continuous or first-order – at

Žsome l (1. In particular, this is shown to happen, with a first-order transition for thet
w x.large-q versions of these models 25 . Although we find these alternative scenarios

unlikely, we have, in any case, established the existence of a transition in this model for
some value of l between zero and one.

3.4. SpeculatiÕe remarks on relation to the critical 4-state Potts model

As mentioned above, in our opinion the most likely scenario is that a phase transition
occurs precisely at ls1. The interesting question then is that of the universality class.
Without any supporting mathematical statements, we suggest that at this point our
model behaves similarly to the 4-state Potts ferromagnet at its critical point. In order to
substantiate this claim, let us first recall the random cluster representation for a q-state
Potts model:

Zs K bŽv .qcŽv . . 3.12Ž .Ý
v

For q(4 this model is universally accepted to have a continuous transition at the
'self-dual point Ks q . Thus for the qs4 model at the self-dual point we have

Zs 2 bŽv . 4cŽv . . 3.13Ž .Ý
v

Ž .On the other hand, we can use Eq. 3.11 to rewrite the partition function of our model
at ls1 as follows:

ZA 2 bŽv . 4cŽv . 2 cŽV .ycŽv . . 3.14Ž .Ý
v
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cŽV .ycŽv . Ž .The difference between the two models is in the last factor of 2 in Eq. 3.14 . It
is, however, reasonable to speculate that it can be neglected. Indeed, on average
Ž . Ž .c V sc v , and therefore one would expect the typical value of the difference
Ž . Ž . Ž .c V yc v to be sublinear in the system size. By contrast, the individual terms c V

Ž .and c v indeed scale linearly with the size of the system so this correction may be
‘‘unimportant’’.

This, however, does not mean that the two models approach the self-dual point in a
similar fashion. In other words, we expect the exponents associated with the critical

Ž .point itself such as h and d of the two models to be the same, while this needs not be
Žtrue for the exponents associated with the approach to the critical point such as a , b

.and n . In fact, the ls1 point of our model may well be an edge of a critical
Kosterlitz–Thouless phase in which case the approach exponents would take on extreme

Ž .values zero or infinity .

4. Reflection positivity and phase transitions in the large n limit

4.1. Reflection positiÕity

This section concerns the reflection positivity property of the loop models defined by
Ž .Eq. 1.1 which in turn permits the analysis of their large n limit. Let L denote a

d-dimensional torus. Here, and for the remainder of this paper, it will be assumed that
the linear dimensions of L are all the same, and are of the form Ls2 ll. We denote by
NsLd the number of sites in the torus. Let GG denote the set of all possible loop
configurations on L. Finally let PP denote a hyperplane perpendicular to one of the
coordinate axes which cuts through the bonds parallel to this axis dividing the torus into
two equal parts. Let GG and GG be the bond configurations on the two sides of theLL RR

‘‘cut’’, with the bonds intersected by PP belonging to both sets. Thus GGsGG jGG ,LL RR

while GG 'GG lGG contains only the intersected bonds. We now define a mapPP LL RR

q : GG ™GG such that it simply reflects the configuration on the ‘‘left’’ to that on thePP LL RR

‘‘right’’. Let f : GG ™R be a function that depends only on the bond configuration onRR

Ž . Ž Ž ..the right and define q f g ' f q g for any g gGG . A probability measure mPP LL PP LL LL LL

on the set GG is said to be reflection positiÕe if for every such PP and any functions f
² : ² : ² :and h as described above f q f 00 and hq f s f q h .m m mPP PP PP

Ž .Theorem 1. The measures m determined by the weights in Eq. 1.1 are reflection
positive on any even d-dimensional torus.

Proof. Let L denote one such torus and PP denote one of the above described planes.
Let g gGG be a configuration of bonds going through this plane. Assuming thatPP PP

Ž . Ž .m g /0, let us consider the measure m PNg . Our claim is that this splits into twoPP PP

Ž . Ž .measures, which we will call m PNg and m PNg , defined on GG and GGLL PP RR PP LL RR

which are independent and identical under the reflection q .PP

Ž .Indeed, it is not hard to see that m g /0 if and only if g has an even number ofPP PP

bonds of each colour. In each half of the torus, the endpoints of these bonds serve as
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‘‘sourcersinks’’ for bond configurations. In other words, a configuration in, say, GGLL

must contain lines of the appropriate colour that pair up these sources. But, aside from
having to satisfy these ‘‘boundary conditions’’, the weights are the same as given in Eq.
Ž .1.1 . These two measures defined accordingly on GG and GG are the above mentionedLL RR

Ž . Ž .m PNg and m PNg respectively.LL PP RR PP

It is clear that if g gGG thenLL LL

m g Ng sm q g Ng . 4.1Ž . Ž . Ž .Ž .LL LL PP RR PP LL PP

Furthermore, if g is a configuration and g is any configuration that agrees with gPP LL PP

and has non-zero weight then for every g gGG we see thatRR RR

m g Ng sm g Ng . 4.2Ž . Ž . Ž .RR RR PP RR LL

Thence, for every f that is determined on GG we haveLL

² : ² : ² : ² :2f q f s m g fNg q fNg s m g fNg 4.3Ž . Ž . Ž .Ý Ým m m mPP PP PP PP PP PP PPRR LL RR

g gPP PP

² : ² :which cannot be negative. Similarly we get that hq f s f q h . Im mPP PP

One of the important consequences of reflection positivity is a Cauchy–Schwartz-type
inequality:

² : ² : ² :f q h ( f q f hq h . 4.4Ž .(m m mPP PP PP

Žwhich in turn leads to the chessboard estimates to be described below. The reader
interested in a more detailed description of reflection positivity is referred to the review
w x .26 and the references therein .

4.2. Uniform exponential decay for large n

In this subsection we will consider some n-colour models with n41 and vertex
factors that are uniformly bounded above and below independently of n: 0-c(

Ž .n , . . . ,n (C. Examples include the O n -type models and the corner-cubic models1 m

discussed in Section 2. However, the face-cubic model does not fall into this category
since all the multi-coloured vertex factors vanish. It is no coincidence that we cannot
treat these models since, as is obvious such models have a colour-symmetry broken

Ž .phase for high enough value of bond fugacity for brevity we omit a formal proof .
The suppression of long contours will be established by showing that long lines of

any particular colour are exponentially rare in the length of the line. To prove this we
will need the so called chessboard estimate which in the present context reads as
follows:

Proposition 2. For xgL let v , . . . v denote indicator functions for bond events that1 k
Žare determined by the bonds emanating from the site x. The v need not all bej

. Ž .distinct. For any of these v , cover the lattice with multiple reflections of thej
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corresponding event and let Z denote the partition function constrained so that at eachj

site, the appropriately reflected event is satisfied. Then
1rN 1rNZ Z1 k

v x ( . . . . 4.5Ž . Ž .Ł¦ ;j ž / ž /Z Zj m

w xProof. See Subsection 2.4 of Ref. 26 .

Our principal result of this subsection:

Ž .Theorem 3. Consider an n-colour loop model as described by Eq. 1.1 on the torus L

Ž .which is taken to be ‘‘sufficiently large’’ and suppose that the vertex factors are
bounded below by c)0 and above by C-` uniformly in n. For sites x and y in L,
let LL denote the probability that these sites belong to the same loop. Then, providedx , y

n is sufficiently large, there is a j )0 such that for all values of R,n

LL (Key< xyy < rj n , 4.6Ž .x , y

where xyy denotes the minimum length of a walk between x and y and K is a
constant.

Remark. For conceptual clarity, we will start with a proof of the case ds2; all of the
essential ideas are contained in this case. The problems in d)2 involve some minor
technicalities and the general proof can be omitted on a preliminary reading.

( )Proof of Theorem 3 ds2 . Let us focus on a particular colour – red – and show the
statement is true for red loops; this only amounts to a factor of n in the prefactor. We
define the ‘‘red event’’ as an event where at least two red bonds are connected to the
site in question. It is clear that there are two main types of red events: those where the
red bonds attached to a given site line up along the straight line and those where they
form the right angle. These two types are shown in Figs. 4Ia and 4IIa respectively. We
will denote by v Ža ., as1,2 the events of the first type and v Ž b ., bs1, . . . 4 those ofI II

Ž . Ž .Fig. 4. Chess-board estimate on the ‘‘red’’ events of types I and II. The events are shaded in a . Parts b and
Ž .c represent the results of the first two reflections with respect to the dashed lines. The resulting tilings of the

Ž . Ž .entire plane torus are shown in part d .
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the second type. Obviously there are only two distinct constrained partition functions
Ž .which we respectively denote by Z and Z . Fig. 4 shows these single events a , theI II

Ž . Ž .results of the first two reflections with respect to the dashed lines b , c and finally the
configurations obtained by applying each reflection ll ds log N times in order to2

completely tile the surface of the torus. The grey lines correspond to yet unidentified
bonds – these are the degrees of freedom left after the process of tiling has been
completed.
Let us perform the estimate on Z rZ first. We claim that if r is any legitimateII II

configuration that contributes to Z each of the red squares – of which there are Nr4 –II

can be independently replaced by vacant bonds or a square loop of any other colour or
left as red. Of course this may cost us an exchange of the ‘‘best’’ for the ‘‘worst’’
vertex factor but even so, the result is

Nr4 N N4Z R C 1 CII
( ( . 4.7Ž .4 1r4ž / ž /ž /Z c c1qnR n

Let us now turn attention to the Z estimate. We start with a factor of R N for the redI

bonds already in place – as well as another worst case scenario of C N. As for the lines
Ž .that are orthogonal to horizontal in Fig. 4Id once started in any colour they must

'continue until they wrap the torus, a total length of Ls N . There are n possible
choices of colour for each line as well as the possibility of no bonds at all. Since there
are a total of L lines altogether, this gives

LN N LZ (C R 1qnR . 4.8Ž . Ž .I

Ž .To obtain our estimate on Z, we simply pick the even or odd sublattice of dual sites
and surround each site with one of n coloured elementary loops or with a ‘‘loop’’ of
vacant bonds. Folding in the worst case scenario for the vertex factors this gives

Nr2N 4Z0c 1qnR . 4.9Ž . Ž .
w Ž 4.1r4 xNThe ratio may be expressed as a product of two terms namely Rr 1qnR and

Ž L.L Ž 4.Nr4 Ž .N1qnR r 1qnR – times an additional Crc . Clearly the first term is
bounded by nyN r4. As for the second ratio, if R-1 we may neglect nR L for N41
and the ratio is bounded by one. On the other hand, if R)1, we may neglect the 1 and
we get, modulo a factor of nL, another nyN r4; we will settle for the bound of 1.
Thus we have

1rNZ 1 CI
lim ( 4.10Ž .1r4ž / ž /Z cnN™`

Ž .1r Nwith the same upper bound for Z rZ valid for all N. We thus denote the mutualII

upper bound by e ;ny1r4. The desired result now follows from a standard Peierlsn

argument: If x and y are part of the same loop, some subset of this loop must be a
self-avoiding walk of length at least 2 xyy . We enumerate all such walks and use the
chess board estimate on each particular walk. Then if e l -1 where l is then 2 2

two-dimensional connectivity constant we write

� 4e l sexp y1r2j 4.11Ž .n 2 n

Ž .the factor of 2 because we must go there and back and the stated result follows. I
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( )Proof of Theorem 3 d)2 . The preliminary steps are the same as the two-dimensional
Ž .case: There are again only two types of v ’s but with more indices and two constrained

partition functions which we again denote by Z and Z . The pattern for Z is theI II II

two-dimensional pattern in Fig. 4IId reflected in all directions orthogonal to the plane
visualised. Noting that each reflection doubles the number of red squares, we see that in

1 1ll dy2 2Ž .the Z patterns there are a total of 2 = L s N squares altogether. RepeatingII 4 4

Ž .the argument leading to Eq. 4.7 we end up with exactly the same bound. What is a
little harder is the estimates on Z and the partition function itself.I

We first claim that Z can be estimated by

d
N

4N 4Z0c 1qnR . 4.12Ž . Ž .
To achieve this, we assert that the following holds: There is a set of plaquettes of the
lattice with the property that each bond of the lattice belongs to exactly one plaquette.

Ž .Once this claim is established it is clear that Eq. 4.12 holds; indeed there are just
w x1r4 =Nd plaquettes in question, we consider those configurations in which each of
them is independently left vacant or traversed with an elementary loop in one of the n
possible colours. Let us turn to a proof of the above assertion.
Let e , . . . e denote the elementary unit vectors. We adapt the following notation forˆ ˆ1 d

plaquettes: If, starting at xgZd we first move in the e direction then in the e directionˆ ˆj k
w xand then complete the circuit we will denote this plaquette by e ee In general weˆ ˆj k x

w x w x w xcan have "e e"e and it is noted that e ee s e eeˆ ˆ ˆ ˆ ˆ ˆj k x j k x k j x

Starting with the origin, consider the following list of instructions for plaquettes:

e eye , e eye , . . . , e eye . 4.13Ž .ˆ ˆ ˆ ˆ ˆ ˆ1 2 2 3 d 10 0 0

So far so good – each bond emanating from the origin belongs to exactly one plaquette.
Ž . Ž . Ž . x jIf xs x , . . . x let us define p x s y1 to be the parity of the jth coordinate.1 d j

w Ž . Ž . x w Ž .Then at the site x, select the following: p x e eyp x e , . . . p x e eyˆ ˆ ˆ1 1 2 2 x d d
Ž . xp x e . Taking the union of all these lists, it is clear that indeed each bond belongs toˆ1 1 x

at least one plaquette, the only question is whether there has been an over-counting.
To settle this issue we establish the following assertion: Let x denote a site. Then a
plaquette is specified by the instructions at x if and only if the same plaquette is
specified by the neighbours of x on that plaquette.

w Ž . Ž . x ŽIndeed, consider one such plaquette namely p x e eyp x e . If necessaryˆ ˆj j jq1 jq1 x
. XXXXX Ž .we use the convention e se . One of the relevant neighbours is x sxqp x e .ˆ ˆ ˆdq1 1 j j

XXXXX w Ž XXXXX. Ž XXXXX. xBut at x , we have instructions for the plaquette p x e eyp x e . Sinceˆ ˆ XXXXXj j jq1 jq1 x
Ž XXXXX. Ž XXXXX. Ž XXXXX. Ž XXXXX.p x syp x and p x sp x this is seen to be the same plaquette. Thej j jq1 jq1

other neighbour, at xsxyp e , follows from the same argument. Reversing the˜ ˆjq1 jq1
XXXXX Ž .roles of x and x as well as x and x establishes the ‘only if’ part of the assertion.ˆ ˜

It is thus evident that no bond can belong to two plaquettes: If x and x XXXXX are neighbours
and there are instructions coming from x to make some particular plaquette that includes

² XXXXX:the bond x,x then:
Ž .a These are the only instructions coming from x pertaining to this bond.
Ž . XXXXX Ž .b The list at x and the other corners of this plaquette also include this plaquette.
Ž .c If y is another neighbour of x which is not in this plaquette there cannot be
instructions at y to include the plaquette containing x, x XXXXX and y.
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Ž . Ž . Ž .Items a and b are immediate. To see item c , note that by the assertion, such
Ž .instructions would also have to appear on the list at x. But, by item a , they do not. Eq.

Ž .4.12 is now established.
Finally, let us estimate Z from above. First it is noted that the Z patterns consist ofI I

Ž .parallel lines pointing in the direction of the original red bonds that pass through every
Ž .site. Hence the only loops we can draw are confined to the various dy1 -dimensional

hyperplanes orthogonal to these lines. Modulo vertex factors – which we estimate by
N Ž .C – each hyperplane yields the dy1 -dimensional partition function. We thus have

LN NZ (R C J , 4.14Ž . Ž .II

Ž .where J is the dy1 -dimensional partition function with all vertex factors equal to
Žunity. This observation is not of crucial importance – the key ingredient is the number

.of available bonds – but it serves to compartmentalise the argument. Let us tend to the
estimate of J .
We denote by J the contribution to J that comes about when there are exactly MM

Ž .bonds in the configuration. Given the placement of the bonds, let us count estimate the
number of ways that they can be organised into self-returning walks and then indepen-
dently colour each walk. Throwing in a combinatoric factor for the placement of the M
bonds and the fact that there cannot conceivably be more than Mr4 loops to colour we
arrive at

dy1 Ldy1Ž . M M r4J ( R n =Y M , 4.15Ž . Ž .M ž /M

Ž .where Y M is defined as follows: For M bonds, consider their placement on the lattice
Ž .chosen so as to maximise the number of ways in which the resulting colourless graph

Žcan be decomposed into distinct loops. Such decompositions are done by ‘‘resolving’’
.all intersecting vertices into connected pairs of bonds, similar to Fig. 1. Then the

Ž .quantity Y M denotes this maximum possible number of decompositions.
Ž Ž . .Let z which equals 2 dy1 y1s2 dy3 denote the greatest possible number of

local options for an on-going self-avoiding walk. We claim that

MY M ( 2z . 4.16Ž . Ž . Ž .

Indeed, take this optimal placement of M bonds and, starting at some predetermined
Ž .bond and moving in some predetermined direction draw a loop of length P. There are

no more than z P possibilities for this loop. Then what is left over cannot yield a total
Ž .better than Y MyP . This must be done for every possible value of P and summed.

Ž .Defining Y 0 s1, we arrive at the recursive inequality

Y M ( z P Y MyP 4.17Ž . Ž . Ž .Ý
0-P(M

Ž . Ž .and the bound in Eq. 4.16 can be established inductively. Putting together Eqs. 4.15
Ž .and 4.16 we find

dy1 Ž . dy 1dy1 Ldy1 L MŽ . M M r4 1r4J( R n 2z s 1q2z Rn . 4.18Ž . Ž .Ž .Ý ž /MM
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And thus

L Ndy 1 Ž .Ž . dy1dy1 LN N 1r4 1r4Z (C R 1q2z Rn s CR 1q2z Rn . 4.19Ž .Ž . Ž .I

An estimate for the straight segments is nearly complete. We write

Ž .dy11rN 1r4Z c R 1q2z RnŽ .I
( . 4.20Ž .dr44Z C 1qnRŽ .

Ž .Let us split the power of the denominator: dr4s1r4q dy1 r4; the first term will
handle the R in the numerator and this ratio is less than ny1r4. As for what is left over,
it is easy to see that

1q2z Rn1r4 1 Rn1r4

s q2z (1q2z . 4.21Ž .1r4 1r4 1r44 4 41qnR 1qnR 1qnRŽ . Ž . Ž .
Thus we have

1rNZ C 1I dy1
( 1q2z , 4.22Ž . Ž .1r4Z c n

so again all of the v ’s have estimates with the scaling of ny1r4. The remainder of the
argument follows the same course as the two-dimensional argument with modifications
where appropriate. I

4.3. Translational symmetry breaking and related phase transitions

So far we have shown that for a sufficiently large n, there are no phase transitions
associated with the divergent loop correlation length. However, this does not rule out the
possibility of phase transitions of a totally different nature – in fact we shall see that
such transitions do indeed take place. The type of these transitions happens to be
sensitive to the lattice structure and the vertex factors that correspond to loop intersec-
tions. This leads to a variety of critical phenomena which has not been observed in the

w xcase of a honeycomb lattice 7 .
We shall consider the case of all vertex factors being positive and uniformly

bounded. Let the number of colours n be very large and consider the high fugacity limit
of R™`. The model becomes fully packed in this limit, i.e. every bond is occupied.
But since n is large, according to the estimates of the previous subsection the partition
function is dominated by configurations in which there are as many loops as possible. In
two dimensions, it is clear that these ‘‘maximum entropy states’’ break the translational
symmetry: the loops of different colours may run around either odd or even plaquettes

Žof the lattice. We remark that in d)2, the situation is considerably more complicated
.and is currently under study.

On the other hand, if the bond fugacity is low, the system must be translationally
invariant. Therefore one would anticipate that at some large but finite value of R a
translational symmetry-breaking transition takes place. Due to a doubly positionally
degenerate nature of the resulting high-density state, we find it natural to expect that
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such transition is of the Ising type. Indeed, it appears to be very similar to the transition
in the Ising antiferromagnet.

Let us now turn to the rigorous arguments supporting this qualitative picture.

Theorem 4. Consider an n-colour loop model on Z2 with vertex factors bounded below
by c)0 and above by C-` uniformly in n. Then, if n is sufficiently large there is a
phase transition characterised by the breaking of translational symmetry. In particular,

Ž . Ž . 4there exist e sufficiently small and D sufficiently large such that for R n-e all
states that emerge as limits of torus states are translation invariant. On the other hand, if

4 Ž .R n)D, there are at least two states with broken translational symmetry.

Proof. Let us start with the formal proof of translation-invariance at low fugacity.
Any given site belongs to zero, two or four bonds. Let (, ] and [ denote the
corresponding events and Z , Z and Z the constrained partition functions in which( ] [

Ž . 1r n Ž .every site is of the stated type. We will estimate Prob ] ( Z rZ and Prob [ (Ž .] (

Z rZ 1r n; obviously Z s1. In calculating Z we notice that in all configurations,Ž .[ ( ( [
each bond must be coloured and there are at most Nr2 separate loops. This gives

N2 1r2w xZ ( R n Y 2 N , 4.23Ž . Ž .[

Ž . Ž .where Y M is the same quantity that appears in Eq. 4.15 . Similarly, in Z half the]
Ž N .bonds are used resulting in a factor of R and there are no more than Nr4 loops. We

get

N1r4w xZ ( Rn Y N 4.24Ž . Ž .]

– essentially the square root of the above.
In order to show that there is translation invariance it is sufficient to establish the
following: Let A and B denote local events, let T be the translation operator to thex

point xgL and let e denote any unit vector. Then we must show that for all x with xˆ
large the probabilities of m AlT B and m AlT B are essentially the same.Ž . Ž .L x L xq ê
We note that either the supports of A and T B are attached by a )-connected path ofx

sites of type Z and Z , or they are separated by a connected circuit of cites of type Z .] [ (

Ž .Two sites are considered )-connected if they share the same plaquette. However, in
case the support of A is surrounded by a connected circuit of empty sites, it is clear that
for any e, A and T A have the same probability. Thus we arrive atˆ ê

m AlT B ym AlT B (m C , 4.25Ž . Ž .Ž .Ž .L x L xq L A ,T Be xˆ

where C is the event that there is a )-connected path of non-( sites between theA,T Bx

support of A and that of T B. Now, provided Rn1r4 is small, m C (eyk < x < withŽ .x L A ,T Bx
yk 1r4 Že ;aRn for some constant a . Thence translation invariance among the states that

.emerge from the torus is established.
Let us now turn attention to the opposite limit, namely Rn1r4

41. We claim that with
high probability the plaquettes on the lattice are of one of the two types: they are either
surrounded by four bonds of the same colour, or by bonds of four different colours.
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We will again define site events representative of the two purported ground states. If a
site is on the even sublattice, we say it is of the A-type if it has four bonds of two
different colours, one colour occupying the positive e and e directions and the other,ˆ ˆ1 2

the negative e and e directions. The odd site of the A-type is defined as the mirrorˆ ˆ1 2

reflection of an even A-type site. A site is said to be of B-type if the roles of the evenˆ
and the odd sublattices are reversed – see Fig. 5. Any site which is not of one of these
two types will be called ‘‘bad’’. There are three choices for such bad sites, namely
housing no bonds, only two bonds and a ‘‘q’’ configuration in which the e and yeˆ ˆ1 1

directions have the same colour and similarly for the "e directions. The first two areˆ 2

the old ( and ] from the preceding portion of this proof, while the constrained
Ž .partition function for the latter event, denoted for the lack of better notations by Z

a

can be bounded by

'2 N 2 NZ (R n . 4.26Ž .
a

w 1r4 x2
On the other hand, we can always estimate Z from below by Rn N as discussed

Ž .previously. Thus we have as L ™`

m ( (Ry2 ny1r2 , 4.27aŽ . Ž .L

m ] (ny1r2 , 4.27bŽ . Ž .L

m a (ny1r4 . 4.27cŽ . Ž .L

Thus almost all sites are either A-type or B-type. However, there is no constraint that A
and B sites cannot be neighbours. But, as we show below, this possibility is also
suppressed for n41. Firstly, let us notice that the reflections through bonds map the

Ž .even into the odd sites and vice versa . By definition, the A-even and A-odd events are
mirror images, and similarly for B. Thus, under multiple reflections, A-sites map to

Ž .A-sites and B’s to B’s. Hence, if A-B is the event that the origin is of the A-type and
its right nearest neighbour is of the B-type, we have

2rNZA – B
m A–B ( , 4.28Ž . Ž .L ž /Z

where Z is the partition function constrained according to the pattern shown in Fig.A – B

6. Now, the interior of the A or B columns still consists of the four-bond loops – just as
a pure A or pure B-type tiling would. However, as is easily seen in Fig. 6, a boundary

Fig. 5. Even and odd sites of A- and B-types.
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Ž .Fig. 6. Tiling of the torus obtained by multiple reflections of the A-B event. The sites marked as A are thee

even sites of the A-type, etc. The zigzag lines that form loops wrapping the torus and separating the columns
of A- and B-sites are shown black.

between the columns is formed by a zigzag line of a single colour running around the
torus. Thus we arrive at

1 1
N 'N42 N 2Z sR n n 4.29Ž .A – B

Ž . y1r2and hence, in the large N limit, m A–B (n .L

The rest of the proof follows easily: A connected cluster of A-type sites has, on its
boundary a ‘‘bad’’ site or an A-B pair; similarly for the clusters of B-sites. Thus, if
Rn1r4 and n are large enough, the possibility that any given site is isolated from the
origin is small. Thence, given that the origin is of the A-type – which has probability
very near one half – the population of B-type sites is small and vice versa. Evidently,
there are two states, one with an abundance of A-sites and the other with an abundance
of B’s. It is not hard to see that in these two states, translation symmetry is broken –
both are dominated by the appropriate staggered patterns. I

5. Final remarks and conclusions

So far we have succeeded in proving the following general statements:

P A generic multi-coloured loop model with all vertex factors n , . . . n uniformly1 m

bounded from above and below does not have a phase transition corresponding to
the divergence of the loop size in any dimension proÕided that the number of
colours n is sufficiently large.

P In two dimensions these models undergo a different phase transition, presumably
of the Ising type, that is associated with breaking the translational symmetry 4.
While the examples of the models that have been considered in this paper all

4 ŽAt present it is not clear whether this statement holds in d)2. While the ‘‘ground states’’ the states at
.Rs` of the system are not translationally invariant, their degeneracy appears to grow very fast with d, and it

is not obvious that the resulting ‘‘entropy’’ will not destroy the transition at any finite value of R.
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have their vertex factors independent of the particular arrangements of different
colours entering the vertex, all these results remain valid even if this is not the
case as long as all different vertex factors are still reflection-symmetric and
bounded from above and below by some positive numbers.

A clear example of a model that does not follow this rule is the loop model derived
from the face-cubic spin model in Section 2.3. Here the bonds of different colours are
simply not allowed to share a vertex, making the corresponding vertex factor vanish. It
is clear that as the bond fugacity R increases, the system will have a phase transition
Ž .possibly of the first-order associated with breaking the colour symmetry. Indeed, the
only way to ‘‘pack’’ more bonds into the system is to force all of them to be of the same
colour. This transition is very similar to the Widom–Rowlinson transition.

Another interesting observation can be made about the two-dimensional loop model
Žwith all two- and four-leg vertices having the same weight this is the model originating

.from the corner-cubic spin model – see Section 2.2 . Comparing the states of the system
Ž .at Rs` when all bonds are occupied the fully packed limit , and at Rs1 when no

Ž .additional weight is associated with placing extra loops, we conclude that the nq1 -
coloured model at Rs` is identical to the n-coloured model at Rs1. Indeed, one
should simply consider the vacant bonds at Rs1 as being coloured grey to turn the

Ž .n-coloured loop system into a fully packed nq1 -coloured system.
Now start with the large enough n at Rs`. The result of Section 4.3 guarantees the

existence of a broken translational symmetry in this case. By the argument presented
Ž .here this means the existence of a broken symmetry in ny1 -coloured, Rs1 case.

Ž .Now let us continuously increase the value of the bond fugacity in this ny1 -coloured
model. As R grows, there are only two possible scenarios: the broken translational
symmetry is either lost via a phase transition or is retained all the way to Rs`. The
former case corresponds to the intermediate symmetry-broken phase surrounded by the
phase transitions at R(1 and R01. If the latter scenario is realised, then go to Rs`

and repeat the process of mapping it onto a lower n model. Notice that this latter
scenario can not continue all the way to ns1 because the ns1, Rs1 case is nothing
but a loop representation for the Ising magnet at Ts0 which does not have broken
translational symmetry.5 Therefore one must find an intermediate phase at some not

Žvery large value of n although we cannot rule out a possibility of it being just the point
.Rs1 .

Ž .From the above we also learn that the ns2 Ashkin–Teller-like model is not
Ž .critical in its fully packed limit since it is just the Ts0 Ising model . On the other

Ž . Žhand, the O 2 loop model discussed in Section 2.1 is critical in this limit it maps onto
.the square ice model . But the only difference between the two is the factor of 3 in the

same-colour four-leg vertex factor.
Ž .On the basis of this observation along with the first two remarks of this section we

reiterate that the vertex factors and lattice details are often important for determining the
phase diagram of a particular model.

5 Indeed, these loops appearing in the T s0 ‘‘high temperature’’ expansion are also the domain walls of the
Ising model on the dual lattice at T ™`. These dual spins are assigned their values independently with
probability 1r2, and the contours separating regions of opposite type are manifestly translation invariant.



[ ] ( )L. Chayes et al.rNuclear Physics B 570 FS 2000 590–614 611

Acknowledgements

The authors would like to thank J. Kondev, R. Kotecky and T. Spencer for the
interesting discussions. L.C. and K.S. were supported in part by NSA Grant No.
MDA904-98-1-0518 and NFS Grant No. 99-71016; L.P.P. was supported in part by
DOE Grant No. DE-FG02-90ER40542.

( )Appendix A. Vertex factor for the O n vertices and loop decomposition

In this appendix we present the calculation of the generic vertex factor appearing in
Ž .the loop expansion of the O n -type model featured in Subsection 2.1. As it turns out,

Žthis calculation is independent of the lattice details such as the dimensionality or
.coordination number which is reflected in our notation. Thus let V denote then

n-dimensional solid angle and let Ss S , . . . S denote the components of a n-dimen-Ž .1 n

sional unit vector. Since we only consider the spin at one particular site, the actual site
index is conveniently dropped for now. The vertex factor we need to calculate is

1
2 m 2 m1 nn s S . . . S dV , A.1Ž .Hm , . . . m 1 n n1 n V Vn n

n r2 y1w xwhere V s2p G nr2 is the total solid angle and dV r V is the HaarŽ .n n n

measure. The object n is, of course, the ‘‘vertex factor’’ originating from 2mm , . . . m 11 n

terms from the first component, . . . 2m terms from the nth component associated withn

these numbers of these types of bonds entering into a vertex.

Ž . Ž .Proposition 5. Let f 2m – which is equal to 2my1 !! – denote the number of
different ways of dividing 2m objects into m distinct pairs. Then

n sD M f 2m , A.2Ž . Ž . Ž .Łm , . . . m n i1 n
i : m /0i

where MsÝn m andis1 i

D M s2yMG nr2 rG Mqnr2 s ny2 !!r nq2 My2 !! . A.3Ž . Ž . Ž . Ž . Ž . Ž .n

w xRemark. The calculation of the value for n has appeared before, cf. Ref. 27 andm , . . . m1 n

references therein. However, the interpretation that emerges from this formula has, to
Ž .our knowledge, not been discussed previously cf. the remark following the proof .

Proof. The proof boils down to the calculation of the above integral. We write

dV ssinny2u du dV , A.4Ž .n n n ny1

where u sSPe . Also,ˆn n

Ss Tsinu , cosu , A.5Ž . Ž .n n
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Ž .where T is an ny1 -dimensional unit vector. Finally, we note the fact that

n'p G y1ž /2
V s V . A.6Ž .n ny1

G nr2Ž .
Ž . Ž . Ž .Starting with the definition A.1 with the help of Eqs. A.4 – A.6 , the following

recursion relation is obtained:

1
2 m 2 m1 nn s S . . . S dVHm , . . . m 1 n n1 n V Vn n

1 G nr2Ž .
2 m 2 m1 ns T . . . T dVH 1 ny1 ny1 nV Vny1 ny1 'p G y1ž /2

=

ny 1

2 m qny2 2 mi nÝsinu cosu duŽ . Ž .H n n nis1

1
G m q GŽ .n ny12

sn , A.7Ž .m , . . . m1 ny1 'p Gn

where

k k
G 2 m qÝ iž /2is1G s . A.8Ž .k

G k 2Ž .
Ž .Using the recursion relation A.7 to reduce the dimensionality of the spin space to 1

Ž .and the fact that n s1 , we arrive at the desired expression:m1

nG nr2Ž .
1

n s G m qŽ .Łm , . . . m i 2n r21 n p G Mqnr2Ž . is1

G nr2Ž .
s 2m y1 !! . A.9Ž . Ž .Ł iM2 G Mqnr2Ž . i : m /0i

I

Ž .Remark. As a consequence of the expression A.2 we may decompose the coloured
Žbond configurations to obtain a colourless loop model which generalises the result of

Ž . .Eq. 2.3 obtained for the square lattice . In particular, at each vertex we have a factor
Žwhich depends only on the total number of bonds entering the vertex and the

.dimensionality of the spin n times the number of ways that the bonds of the various
colours can be paired. By choosing a particular pairing scheme at each vertex, the bond

Ž .configuration breaks, unambiguously, into a collection of self-returning walks loops .
Configurations with the same set of loops – that is to say the same set of bonds and the

Ž .same pairing schemes walking instructions at each vertex – but which differ in the
colours of the loops are seen to have identical weights. Thus we consider configurations
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Ž .KK of loops bonds q walking instructions and the partition function becomes the
Ž .analog of the expression 2.3 :

Ž .b KK
l

m m ll Ž KK .1 kZs n . . . n n A.10Ž .Ý 1 kž /nKK

with n being the factor for a vertex with 2 p bonds given byp

n p G nr2 n pŽ .
n sn n s s . A.11Ž . Ž .p p p2 G pqnr2 n nq2 . . . nq2 py2Ž . Ž . Ž .

Ž .We observe that the right-hand side of Eq. A.10 provides a well-defined model for
all n and can be continued – essentially with no ambiguity – to non-integer values. As
usual, we may define correlation functions via loop probabilities or be content with the
numerators containing strings divided by denominators without.

Ž w x .In the previous discussions of these issues see Ref. 27 and references therein the
Ž .goal has been to derive the self-avoiding walk as the n™0 limit of the O n models.

Thus the vertex weights themselves get continued without reference to intermediate
Ž .models. And indeed, the self-avoiding walk does emerge as n™0. Although we have

only treated the case where the original spin models were defined by Zs
TrŁ 1qlS PS as opposed to ZsTrŁ exp lS PS – we claim that theŽ . Ž .² i, j: i j ² i, j: i j

Žlatter case also leads to graphical models that are well defined for non-integer n. The
.derivation is somewhat intricate and will eventually appear in a future publication.

However, we remark that in either case, the n™0 limit is, in this context, quite simple
to understand.
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