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Intermediate phases in mixed nematic/Heisenberg spin models
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Abstract. We prove that in three or higher dimensions, an isotropic, ferromagnetic, nearest-
neighbour perturbation of an O(N) nematic liquid crystal model has an intermediate phase. In this
intermediate phase, the liquid crystal order parameter is non-zero but the spontaneous magnetization
is zero while at low temperatures, these systems exhibit magnetization.

This paper concerns the (lattice) nematic liquid crystal model. Here, at each sitei of a
regular lattice, resides anN -dimensional spin variable,Esi . (We will take|Esi | = 1; for physical
considerations, one focuses onN = 2 or 3.) This variable, in some approximation, is supposed
to represent a rod-like molecule (or density thereof) that is symmetric about its centre. Thus
the spin–spin interaction usually boils down to the square of the standard Heisenberg exchange
interaction. If the coefficient is negative, the model is attractive; this is the case we consider.
Such models can have a low-temperature phase, called the nematic phase. The nematic
states are translation invariant and are characterized by the non-vanishing of the nematic order
parameter, i.e. the matrix

Qα,γi = sαi sγj −
1

N
δαγ (1)

does not average to zero. Needless to say in these models the spins themselves have zero
average at all temperatures.

Standard mean-field theory (see, e.g., [dGP]) indicates a first-order transition forN > 3
(butnot forN = 2). Presumably this is the case in dimension three and higher as indicated by
simulations and Bethe lattice calculations [BZCP, KJ] (see also [dGP, CL] and references
therein). Such models have also been investigated mathematically in [AZ, Z] (and more
recently [TI]; cf the remark below). For the standard nearest-neighbour model ind > 3, the
existence of a nematic phase was established in the first reference. In [Z] the low-dimensional
long-range versions of these systems were studied with similar success. (However, to the
authors’ knowledge there is, as of yet, no rigorous statement concerning the order of the
transitions.)

Entirely different physics is exhibited in the ‘antiferromagnetic’ versions—where the
coupling favours anti-alignment. We refer the interested reader to a sample of the extensive
literature on this subject [BFMS, BFMS2, BFMS3, KS, R]. Unfortunately, except for the rather
trivial case ofN = 2, these systems cannot be treated by the present methods. (The technical
obstructions will be clarified below.)

In this paper, we wish to consider a situation where the liquid crystal molecules have some
asymmetry along the axis of the rod, which will become physically relevant at sufficiently low
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temperatures. For example, the ‘head’ and ‘tail’ ends of the molecules may have different
interactions that tend to align the heads of the molecules, as was discussed in [LG]. Thus the
natural model to consider is the standard liquid crystal model (e.g. as written down in [AZ])
with the Hamiltonian perturbed by a Heisenberg term. Formally,

−H = J
∑
〈i,j〉

Tr[QiQj ] + ε
∑
〈i,j〉
(Esi · Esj ). (2)

This is precisely the sort of system that was analysed in [LG] by renormalization group methods
for the caseN = 2 andd = 2. There it was convincingly argued that the system exhibits an
intermediate phasedistinguished from the low- and high-temperature phases by the asymptotic
behaviour of various correlation functions. Here, mostly for technical reasons, we will focus
on d > 3. Then the techniques of reflection positivity and infrared bounds [FSS, FILS] tell
us that both the liquid crystal and the magnetic order parameters have associated transition
temperatures below which they are non-zero. The purpose of this paper is to show that these
temperatures can be distinct, and consequently the existence of an intermediate phase for
these systems as well. Of course in these cases, the intermediate phase is characterized by
a positive nematic order parameter and zero magnetization. We use a generalized graphical
representation of the type discussed in [CM] to distinguish these temperatures.

After the submission of this work, it was pointed out to us that nearly an identical problem
had been studied in [TI] where many of the same results had been derived. However, there are
various features that distinguish the present work from that of [TI]. The methods of proof of
the principal result (section 5 in [TI], theorem 3 in the present work) are quite different. In [TI]
it was assumed that the term causing the nematic order was of a very particular form—which is
satisfied by the interaction in equation (2)—in order that it may be reduced to aferromagnetic
Ising system. In contrast, our argument only requires that: (a) the total Hamiltonian produces
nematic order, and (b) the ‘non-magnetic’ portion is invariant under the reversal of any spin.
In particular, suppose that the nematic interactions contain a (small) higher-order multi-pole
disturbance. For example, the interaction in equation (2) is replaced by

−H = J
∑
〈i,j〉

Tr[(Qi − ηDi )(Qj − ηDi )] + ε
∑
〈i,j〉
(Esi · Esj ) (2′)

whereQi = Qi ⊗ I andDi = Si ⊗ Si − 1/N2 I⊗ I, with Sα,γi ≡ sαi sγi . A ‘nematic’ phase for
such a model is easily established using reflection positivity. Due to the mixed term, the purely
ferromagnetic nature of the reduced Hamiltonian used in [TI] is ruined and the dipolar term
cannot be controlled. Here, no such technical obstructions are encountered and the existence
of the intermediate phase could be provedmutatis mutandis. Furthermore, as it turns out, the
argument used here is extremely simple.

The set-up for this model in finite volume consists of a box3 ⊂ Zd , d > 3, with bonds
B, and a ‘liquid crystal rod’ (i.e. an O(N) variable) centred at each site. The ends of the rod
are antipodal points on the(N −1)-dimensional unit sphereSN−1 and the (matrix) observable
for this molecule isQα,γi as defined in equation (1). Since we need reflection positivity
techniques to ensure the existence of regions where the various order parameters are positive,
we must implement some restrictions: first, the interaction itself must be quadratic—in some
set of variables—and attractive. This is precisely what disallows the study of anti-nematic
interactions by these methods†. The second restriction is to nearest-neighbour interactions or
to long-range interactions of a very particular type (as described in [FILS]). These sorts of
long-range forces (in the present context) were treated in [Z] for the pure nematic problem

† The exceptional case is the O(2) anti-nematic. Here it is seen that a 90◦ rotation of the (internal) axes on the odd or
even sublattice results in an attractive nematic interaction. In the absence of further perturbations, this can be treated
by the existing methods.
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and, with additional work, could be accommodated here. Nevertheless, in this work, we will
confine attention to the simplest system that exhibits the intermediate phase.

Of course we will now have to use periodic boundary conditions. Thus, in the absence
of spatially dependent external fields, the states we consider are automatically translation
invariant, so the magnetization observable is equal toEs0 and the nematic observable equal to
Q0. The full Hamiltonian, including the Heisenberg perturbation and external fields, is given
by

H3(Eh,K) = −
∑
〈i,j〉∈B

(J Tr[QiQj ] + ε(Esi · Esj ))−
∑
i∈3
(Tr[KiQi ] + Ehi · Esi) (2′′)

with Esi ∈ SN−1, Eh ∈ RN , andε > 0. The objectsKi are tracelessN×N self-adjoint matrices:

Kαγi = kαi kγi −
1

N
|Eki |δαγ

whereEki is a vector likeEhi , with componentskαi , α = 1, . . . , N . The external fields,K ≡ Ki
andEh ≡ Ehi are for auxiliary purposes only and will not enter into the final results. The partition
function is given by

Z3(Eh,K) =
∫

d|3|s e−βH3(Eh,K) (3)

where ds denotes the Haar measure onSN−1. We let 〈·〉3;Eh,K denote the Gibbs measure

corresponding toZ3(Eh,K). The order parameters that we will consider are theinfinite volume
quantities〈Es0〉0+,0 and〈Q0〉0,0+. In both cases, the zero-field limit is taken with uniform external
fields pointing along a particular axis.

Using the techniques pioneered in [FSS, FILS], we have first-order phase transitions with
respect toEh andK. Furthermore, we have lower bounds on the transition temperatures for each
order parameter. We will denote the lower bounds on the transition temperatures for〈Es0〉0+,0

and〈Q0〉0,0+ by T spin∗ andT lc∗ , respectively. The actual transition temperatures (below which
〈Es0〉0+,0 and〈Q0〉0,0+ do not vanish and above which they are identically zero) will be denoted
by T spinc andT lcc , respectively. We summarize the current status in the following.

Proposition 1. In dimensiond > 3, there is a first-order phase transition in each variable
Eh and K with 〈Es0〉0+,0 and 〈Q0〉0,0+ serving as the respective order parameters for these
phase transitions. These quantities are non-zero whenT < T

spin
∗ and/or T < T lc∗ ; here

the lower bounds on the transition temperatures are related to the interaction constants
by T spin∗ ≡ 4ε/[ND] and T lc∗ ≡ 8J (N − 1)/[N2(N + 1)D], whereD is the constant in
[FILS, FSS]:

D ≡ (2π)−d
∫

|pm|6π
m=1,...,d

( d∑
m=1

1− cospm

)−1

ddp.

Furthermore, the temperaturesT spinc andT lcc are finite, i.e. there is a genuine high-temperature
phase.

Proof. The temperaturesT spin∗ andT lc∗ are obtained by the methods in section 4 of [FILS]; we
will outline the derivation in [AZ] forT lc∗ .

We use matrices that have a single non-zero entry on or above the diagonal at (α, γ ) to
obtain all of the mixed-term bounds for Gaussian domination:Z3(0,Hαγ ) 6 Z3(0, 0). We
haveN(N + 1)/2 bounds (since there are that many elements on or above the diagonal of an
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N×N matrix). By summing these bounds and following the derivation in [FSS, FILS], we see
that if

〈Tr(Q2
0)〉 −

1

4β

N(N + 1)

2
JD > 0 (4)

there will be multiple phases, and thus for some ergodic stateµ,µ(Q0) 6= 0. This will happen
if T < [N(N + 1)D]−18J 〈Tr(Q2

0)〉 = [N(N + 1)D]−18J (N − 1)/N . The classic derivation
(in [FSS]) results in the value forT spin∗ . Standard high-temperature techniques ([S, V.1.3],
Dobrushin’s uniqueness theorem or the method in [AC]) show that the temperaturesT

spin
c and

T lcc are finite. �

We will now define a graphical representation that is useful for systems of the type
described in equations (2). As a direct consequence we will obtain an upper bound on the
temperatureT spinc (which, we recall is the temperature below which there is magnetic ordering).
The goal of this paper is achieved if our upper bound lies belowT lc∗ ; this, we show, is indeed
the case ifε/J is small.

Let us start this with some preliminary notation. As before, let3 ⊂ Zd be a finite box
with bondsB. LetH(0)3 denote any interaction on configurations of spins{Esi |i ∈ 3} that is
invariant under the reversal of any spin:

H(0)3 (Es1, . . . , Esj , . . . , Es|3|) = H(0)3 (Es1, . . . ,−Esj , . . . , Es|3|). (5a)

We define

Hspin3 = −
∑
〈i,j〉∈B

ε (Esi · Esj + 1) (5b)

andH3 = H(0)3 +Hspin3 . Here we will allow arbitrary boundary conditions on∂3, but these
will not enter into the notation. Observe that in the magnetic term, we have added a constant
(which of course, has no physical consequences).

To find our graphical representation, we write

Z3 = Tr
[
e−βH3

] = Tr

[
e−βH

(0)
3

∏
〈i,j〉∈B

eβε(Esi ·Esj+1)

]
(6)

where the operation of ‘Tr’ includes any special considerations that take place at the boundary.
We expand the product in equation (6) associating each term in the expansion with a
bond configurationω ∈ {0, 1}B. In particular, for each〈i, j〉 we must ‘choose’ the term
(eβε (Esi ·Esj+1) − 1) or +1 which corresponds toω〈i,j〉 = 1 (occupied) orω〈i,j〉 = 0 (vacant),
respectively. It is noted that the contribution from each term in the sum is positive. Thus the
weights

V3(ω) =
∫

d|3|s e−βH
(o)
3

∏
〈i,j〉∈ω

(
eβε (Esi ·Esj+1) − 1

)
(7)

when divided by the partition function may be interpreted as the probability of observing the
configurationω. We denote the associated probability measure byv3(−). We writei ↔ ∂3 if
there is a path of occupied bonds inω connecting the sitei to∂3, andi 6↔ ∂3 if there is no such
path connectingi to ∂3. Although the weights appear rather unwieldy it is straightforward to
obtainboundson certain probabilities. For example, we have:

Lemma 2. Let {e1, e2, . . . , en} denote a given set of edges. Then in any boundary condition,
the probability that all of these edges are occupied,v3(e1 = 1, e2 = 1, . . . , en = 1), is
bounded above by(e2βε − 1)n.
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Proof. This is an elementary observation,

v3(e1 = 1, e2 = 1, . . . , en = 1) =
∑

ω:ω(em)=1
m=1,...,n

Z−1
3

∫
d|3|s e−βH

(0)
3

∏
〈i,j〉∈B

(
eβε (Esi ·Esj+1) − 1

)ω〈i,j〉
6
(
e2βε − 1

)n
v3(e1 = 0, e2 = 0, . . . , en = 0)

6
(
e2βε − 1

)n
. (8)

It is noted that the inequality in equation (8) is independent of boundary conditions. �

This leads immediately to our central result:

Theorem 3. Consider the interactionH3 = H(0)3 + Hspin3 as described above and letT spin0

be defined byexp{2|ε|/T spin0 } − 1 = λ−1 whereλ (which satisfiesλ < 2d − 1 onZd ) is the

connectivity of the lattice. Then forT > T
spin

0 there is no magnetic ordering in any limiting
state of this interaction.

Proof. Let3 be a finite box as above and let〈·〉∗3 be the finite-volume Gibbs measure using
the HamiltonianH3 with boundary conditions∗ and the temperature dependence suppressed.
Then, by well known arguments (cf [S, ch III.3]) the spontaneous magnetization is bounded
above by sup∗〈s1

0〉∗3. Thus it is sufficient to show that for large3, this quantity is small in any
boundary condition.

Let us write, according to the preliminary steps of the graphical representation, the identity

〈s1
0〉∗3,β =

∑
ω∈{0,1}B

Z−1
3

∫
d|3|s e−βH

(0)
3 s1

0

∏
〈i,j〉∈ω

(
eβε (Esi ·Esj+1) − 1

)
. (9a)

We claim that for any configurationω such that 06↔ ∂3, the corresponding term in equation (9)
vanishes.

To see this letC0(ω) denote the connected cluster of the origin in the configuration
ω. If C0(ω) does not touch the boundary, then the integrals of all of theEsk, k ∈ C0(ω)

are performed with respect to the full Haar measure. Now consider the change of variables
Esk 7→ −Esk, k ∈ C0(ω). Obviously ifi andj are both inC0(ω), then the termEsi ·Esj is unaffected.
Further, sinceH(0)3 is invariant under all spin reversals (by assumption) there is also no change
(independent of whether or noti ∈ C0(ω)). On the other hand, this transformation will negate
thes1

0 that sits in front and thus the whole term cancels out.
Evidently, we are left with the more restrictive sum where the origin connects to the

boundary:

〈s1
0〉∗3,β = Z−1

3

∑
ω:0↔∂3

∫
d|3|s e−βH

(0)
3 s1

0

∏
〈i,j〉∈B

(
eβε (Esi ·Esj+1) − 1

)
. (9b)

Since|s1
0| 6 1, we see that

|〈s1
0〉∗3,β | 6 v3(0↔ ∂3) (10)

where on the right-hand side we again suppress in our notation any dependence on boundary
conditions.

At this point all we need is a Peierls’ argument. Any configurationω with 0↔ ∂3must
have a connected path of occupied bonds (a self-avoiding walk) between the origin and the
boundary. LetR denote the distance between the origin and the boundary. If{e1, e2, . . . , eS}
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(with S > R) is one such walk, letW(e1, e2, . . . , eS) denote the event that all these edges are
occupied. Using the result of lemma 2 we have

v∗3(0↔ ∂3) 6
∑

all walks,S>R
W(e1,e2,...,eS )

v∗3(W(e1, e2, . . . , eS))

6
∑

all walks,S>R
W(e1,e2,...,eS )

(
e2βε − 1

)S
6 C

(
e2βε − 1

)R
λR (11)

for some constantC independent ofR that is finite if(e2βε − 1)λ < 1. Since these arguments
are uniform in|3| and independent of boundary conditions it follows immediately that when
(e2βε − 1)λ < 1, the spontaneous magnetization vanishes. �

Remark. Improved values forT spin0 can be obtained. Indeed, on the basis of just a little more
effort, it can be established that the measuresv3(−) are dominated by independent (Bernoulli)
measures with parameterp = 1−e−2βε . This may be derived by going to a full blown Edwards–
Sokal measure [ES] along with an associated cluster algorithm. Then, at each bond step,
regardless of the spin configuration, one notices that the maximum bond probability can never
exceed 1−e−2βε . The upshot is that the improvedT spin0 satisfies 1−exp{−2ε/T spin0 } = pc(d)
wherepc(d) is the bond percolation threshold for thed-dimensional lattice.

Corollary. Consider the Hamiltonian described in equation (2) ind > 3. Then if ε/J
is sufficiently small (depending onN and d) there is an intermediate phase where the
magnetization is zero and the nematic order parameter is positive.

Proof. To demonstrate the above, we need only apply theorem 3 to this case and find a
‘window’ betweenT lc∗ andT spin0 . Since, (for fixedN andd) the former scales withJ and the
latter withε (for ε � 1), the desired result follows immediately. �
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