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LETTER TO THE EDITOR

The isotropic O(3) model and the Wolff representation
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Abstract. For the isotropicO(3) model we prove that percolation in the Wolff representation
is a necessary and sufficient condition for positivity of the spontaneous magnetization.

The distinguishing feature of Wolff’s cluster algorithm [W] for models withO(n) symmetry
is the apparent fact that the associated clusters percolate precisely at the point of the phase
transition. Although there has been some theoretical understanding of this phenomenon
[A, PS, LH] only recently has a definitive theorem been established [C] and only for the
casen = 2. The purpose of this note is to extend these results at least as far asn = 3. A
concise statement will be presented after some definitions and notation.

Consider the standard classical Heisenberg ferromagnet; letG denote a graph with bonds
B and sitesS. The Hamiltonian is given by

H = −
∑
〈i,j〉∈B

Ji,jsi · sj −
∑
i∈S
si · hi (1)

wheresi is a unit vector inR3, thehi any vectors inR3 and theJi,j > 0. The partition
function is given by

ZG(β) =
∫

d|S|s e−βH

where the integrations are with respect to the Haar measure on the sphere.
To define the Wolff representation, we single out thez-direction as the focus of our

attention. Let us writesi = (ai x̂i , ai ŷi , biσi) wherebi is the absolute value of the projection

of si onto thez-axis, σi is an Ising variable,ai =
√

1− b2
i and the(x̂i , ŷi) are the usual

O(2) variables. Usingσiσj = 2δσiσj − 1 and temporarily settinghi ≡ 0, we have

ZG(β) =
∫

d|S|b
∏
〈i,j〉

eβJi,j bibjZ [I ]
b (2β)Z [XY ]

a (β) (2)

where, on the right-hand side, the dependence onG and the(Ji,j ) has been suppressed
and the various terms are defined as follows. The quantityb is a configuration of theb,
b = (bi |i ∈ S)—and similarly fora—the objectZ [I ]

b is the Ising partition function written
in Potts form

Z [I ]
b (2β) =

∑
σi

∏
〈i,j〉∈B

e2βbibj Ji,j (δσi σj−1)
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andZ [XY ]
a (β) is theXY partition function with couplingsJi,j aiaj at inverse temperatureβ.

We expandZ [I ]
b (2β) ≡

∑
ω⊂B Bb,2β(ω)2

c(ω) in the standard FK representation. Here

Bb,2β(ω) =
∏
〈i,j〉∈ω

1− e−2βbibj
∏
〈i,j〉/∈ω

e−2βbibj

and c(ω) is the number of connected components of the bond configurationω. Hence a
joint measure is defined on configurations(b, ω) of ‘spin projections’ and bonds. This is
the Wolff measure and is denoted byVWβ (−). The bond marginal is denoted byMβ(−) and
the b-marginal byρβ(−).

For realistic problems, e.g. onZd , we must discuss boundary conditions. For3 ⊂ Zd
we will need to consider free boundary conditions (for which nothing has to be said) and
wired boundary conditions meaningbiσi ≡ 1 for all i ∈ ∂3. In general, these measures
with some specification * on the boundary will be denoted by a superscripted * i.e.M∗β(−)
andρ∗β(−); our notation for free and wired will bef andw. Our principal result can now
be stated.

Theorem 1.Let3k denote a thermodynamic sequence of finite boxes; 0∈ 3k−1 ⊂ 3k ⊂ Zd
with 3k ↗ Zd . Let5k(β) denote the probability, inMw

β;3k (−) that the origin is connected
to the boundary∂3k. Then the limit

5∞(β) = lim
k→∞

5k(β)

exists and satisfies

5∞(β) > m(β) > K5∞(β)
where m(β) is the spontaneous magnetization. HereK is a finite and non-singular
function of temperature and coordination number. Hence, the magnetization is positive
iff there is percolation as defined by the condition5∞(β) > 0. Furthermore, in the high-
temperature phase, the spin–spin correlation function and the magnetic susceptibility enjoy
similar bounds by appropriate quantities in the graphical representation. In particular, the
susceptibility is bounded above and below by ‘constants’ times the average of the size of
the cluster at the origin.

The proof of theorem 1 is a consequence of the following technical lemma.

Lemma 2.On a finite graphG, the measureρβ(−) is strong FKG.

Proof. Let u, v ∈ S andεu, εv denote numbers (that may be regarded as small). For fixed
b, let δu denote the configuration that agrees withb at each site saveu where it takes on
the valuebu + εu. The configurationδv is defined similarly and it is assumed, without loss
of generality, thatbu + εu, etc is less than one. It is sufficient to show

ρβ(b ∨ δu ∨ δv)ρβ(b) > ρβ(b ∨ δu)ρβ(b ∨ δv)
where, with apologies, we use the same notation for the density and the measure. Indeed,
a moment of contemplation reveals that it is in fact sufficient to verify the above to lowest
non-vanishing order inεu, εv. It has been shown [C, equation (A.5)] that

eβJu,vεuεvZ [I ]
b∨δu∨δv (2β)Z

[I ]
b (2β) > Z

[I ]
b∨δu (2β)Z

[I ]
b∨δv (2β). (3)

Thus, it is sufficient to establishZ [XY ]
a(b∨δu∨δv)(β)Z

[XY ]
a(b) (β) > Z

[XY ]
a(b∨δu)(β)Z

[XY ]
a(b∨δv)(β). Let us

defineηu by au(bu)− ηu =
√

1− (bu + εu)2. Unless otherwise specified, the objectsai are
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defined with respect to the reference configurationb. Writing theXY spins in vector form:
(x̂i , ŷi) = ti , the desired inequality amounts to showing that

E[XY ]
a

(
exp{βJu,vηuηvtu · tv} exp

{
− β

∑
i

Ju,iaiηutu · ti
}

exp

{
− β

∑
j

Jv,j ajηvtv · tj
})

> E[XY ]
a

(
exp

{
− β

∑
i

Ju,iaiηutu · ti
})

×E[XY ]
a

(
exp

{
− β

∑
j

Jv,j ajηvtv · tj
})
.

where E[XY ]
a (−) denotes expectation with respect to theXY measure defined by the

Hamiltonian with couplingsJi,j aiaj . Retaining only the terms that are lowest order in
ηu, ηv, this reduces to showing that (i)

E[XY ]
a (tu · tv) > 0

and that (ii)

E[XY ]
a ((tu · ti )(tv · tj )) > E[XY ]

a (tu · ti )E[XY ]
a (tv · tj ).

The first inequality is the standard Griffiths inequality (for rotors) and the second is
the correlation inequality proved by Ginibre; both of these are proved in [G] (see also
[MMP]). �

Corollary 1. Under the same conditions as lemma 2, the measuresMβ(−) are FKG (have
positive correlations).

Proof. Let µb,2β(−) denote theq = 2 random-cluster measures as described earlier.
Explicitly

µb,2β(ω) ∝ Bb,2β(ω)2c(ω). (4)

We may decompose the measureMβ according to

Mβ(−) =
∫
b

dρβ (b)µb,2β(−). (5)

Let A andB denote increasing bond events. Then

Mβ(A ∩ B) =
∫
b

dρβ (b)µb,2β(A ∩ B) >
∫
b

dρβ (b)µb,2β(A)µb,2β(B) (6)

by the FKG property of the random-cluster measures. However, random-cluster probabilities
of increasing events are increasing functions of all the couplings—and hence of theb. Thus
µb,2β(A) and µb,2β(B) (considered as functions ofb) are positively correlated and we
conclude, by the result of lemma 2, thatMβ(A ∩ B) >Mβ(A)Mβ(B). �

Corollary 2. Consider adding to the isotropic zero-field Hamiltonian the following types of
terms: (a) A magnetic field term:

∑
i hiσibi (i.e. h points in theẑ-direction) with all the

non-zerohi of the same sign—say positive. (b) A term that modifies the coupling between
the z-components,

∑
〈i,j〉Ki,j bibjσiσj with Ji,j +Ki,j non-negative. Then the conclusions

of lemma 2 still hold. Furthermore, if one set ofK andh is ‘larger’ (in the natural sense
of partial order) than a second, the associated measures are correspondingly FKG ordered.



L258 Letter to the Editor

Proof. Neither of these terms have any effect on theXY portion in our proof of lemma 2;
the remainder of what is needed is proved exactly as in [C]: proposition A.1 establishes the
FKG property (when all theJi,j + Ki,j are non-negative) and similar considerations were
shown to apply to non-zero (and non-negative) magnetic fields by considering ‘ghost sites’.
The stated FKG dominance was the corollary to this proposition. �

Corollary 3. Let31 ⊂ Zd denote a finite set. Thenρwβ;31
(−) >

FKG
ρwβ;31

(−) and similarly for

the bond measuresMβ(−). Furthermore let32 ⊂ 31 and letρwβ;31|32
(−) andMw

β;31|32
(−)

denote the restrictions of the31 wired measures to32. then

ρwβ;31|32
(−) 6

FKG
ρwβ;32

(−)

and

Mw
β;31|32

(−) 6
FKG

Mw
β;32

(−).

Proof. As is not hard to see, the wired measures can be constructed from the free measure—
or the measure on the larger space—by the addition to the Hamiltonian of someKi,j and/or
hi which are then taken to infinity. The stated FKG dominations follow from (the limiting
version of) corollary 2. �

An immediate consequence of corollary 3 is the existence of5∞ independent of the
sequence(3k)—this follows from standard monotonicity arguments. In addition, we have
the following corollary.

Corollary 4. Consider a finite graph (with no boundary conditions) in particular some finite
3 ⊂ Zd with free or periodic boundary conditions. Let〈−〉β denote the corresponding
Gibbs state for the zero-field Hamiltonian (equation (1)) or the infinite-volume limit thereof
(defined, if necessary by subsequence) andMβ(−) the associated bond measure. Then

3Mβ(i ↔ j) > 〈si · sj 〉β > K2Mβ(i ↔ j)

wherei ↔ j is the event that the sitesi andj are in the same connected cluster andK is
a non-singular function ofβ and coordination number. OnZd , in the single-phase regime,
similar bounds relate the susceptibility to the average cluster size.

Proof. This is exactly as proved in [C]. In brief: it is enough to examine〈szi szj 〉β =
〈bibjσiσj 〉β . Decomposing into clusters, it is not hard to see that there is vanishing
contribution from any contribution in whichi is not connected toj and thatσi = σj
whenever it is. Hence the identity

〈szi szj 〉β = VWβ (bibj I{i↔j}) (7)

where I is an indicator. The upper bound is obtained by the observationbibj 6 1 and
the lower bound by the FKG inequality and consideration of the worst case scenarios on
the neighbours ofi and j to estimate〈bi〉β and 〈bj 〉β . The result on the susceptibility is
obtained by summing the spin–spin correlation function. �

In a similar fashion, the proof of theorem 1 follows the same lines as the corresponding
result for theXY model.
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Proof of theorem 1.The spontaneous magnetization is not smaller than the average ofsz0 in
any limiting state. Hence the lower bound. To obtain the upper bound, we sethi ≡ h > 0
and note that for a.e.h, m(h) is independent of thermodynamic state. Hence we may
employ wired boundary conditions ath > 0 and, with a little work, exchange theh ↓ 0 and
infinite-volume limits. Details can be found in [C, proof of theorem 4A]. �
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