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Abstract. For the isotropicO (3) model we prove that percolation in the Wolff representation
is a necessary and sufficient condition for positivity of the spontaneous magnetization.

The distinguishing feature of Wolff's cluster algorithm [W] for models widtin) symmetry
is the apparent fact that the associated clusters percolate precisely at the point of the phase
transition. Although there has been some theoretical understanding of this phenomenon
[A, PS, LH] only recently has a definitive theorem been established [C] and only for the
casen = 2. The purpose of this note is to extend these results at least asdars& A
concise statement will be presented after some definitions and notation.

Consider the standard classical Heisenberg ferromagnét;dehote a graph with bonds
B and sitesS. The Hamiltonian is given by

HZ— Z Ji,jsi'sj_zsi'h‘i (1)

{i.j)eB ieS
wheres; is a unit vector inR3, the h; any vectors inR® and theJ; ; > 0. The partition
function is given by

Z5(p) = / d¥ls e

where the integrations are with respect to the Haar measure on the sphere.

To define the Wolff representation, we single out thdirection as the focus of our
attention. Let us writes; = (a;%;, a;y;, b;o;) whereb; is the absolute value of the projection
of s; onto thez-axis, o; is an Ising variableq; = ,/1 — bl? and the(x;, y;) are the usual
0(2) variables. Usingr;o; = 23,,,, — 1 and temporarily setting; = 0, we have

Z6(p) = [ ¢[00 2 2p) 20 p) @
(i.j)
where, on the right-hand side, the dependence&jaand the(J; ;) has been suppressed
and the various terms are defined as follows. The quantity a configuration of the,
b = (b;]i € Sy—and similarly fora—the objethl[,’] is the Ising partition function written
in Potts form B
Zg](zﬂ) — Z l_[ ezﬁbib//i‘j(%,-af—l)

o (i,j)eB
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and ZIXY1(g) is the XY partition function with couplingd; ja;a; at inverse temperaturg.
expandZQ’] (2B) =Y ,cp Br.2s()2° in the standard FK representation. Here

Byos () = l—[ 1 — e 26bib; l—[ a=2Pbib;

(i,j)ew (i,j)¢w

and ¢(w) is the number of connected components of the bond configuratiorlence a
joint measure is defined on configuratiofis w) of ‘spin projections’ and bonds. This is
the Wolff measure and is denoted V)Y"(—). The bond marginal is denoted B{z(—) and
the b-marginal bypg(—).

For realistic problems, e.g. di, we must discuss boundary conditions. Porc Z¢
we will need to consider free boundary conditions (for which nothing has to be said) and
wired boundary conditions meaningo; = 1 for all i € dA. In general, these measures
with some specification * on the boundary will be denoted by a superscripted¥}.e-)
and pg(—); our notation for free and wired will bg¢ andw. Our principal result can now
be stated.

Theorem 1Let A, denote a thermodynamic sequence of finite boxes;)._1 C A, C Z¢
with A, 7 Z%. Let I1,(8) denote the probability, ng;Ak(—) that the origin is connected
to the boundaryAy. Then the limit

Me(B) = kli_[TQO I (B)
exists and satisfies

Heo(B) 2 m(B) 2 KMo (B)

where m(B) is the spontaneous magnetization. Hekeis a finite and non-singular
function of temperature and coordination number. Hence, the magnetization is positive
iff there is percolation as defined by the conditifin,(8) > 0. Furthermore, in the high-
temperature phase, the spin—spin correlation function and the magnetic susceptibility enjoy
similar bounds by appropriate quantities in the graphical representation. In particular, the
susceptibility is bounded above and below by ‘constants’ times the average of the size of
the cluster at the origin.

The proof of theorem 1 is a consequence of the following technical lemma.

Lemma 2.0n a finite graphgy, the measureg(—) is strong FKG.

Proof. Let u, v € S ande,, ¢, denote numbers (that may be regarded as small). For fixed
b, let §, denote the configuration that agrees witlat each site save where it takes on
the valueb, + ¢,. The configuratiors, is defined similarly and it is assumed, without loss
of generality, that, + ¢,, etc is less than one. It is sufficient to show

pp bV 8,V 8y)pg(b) = pp(bV 8u)pp(b V &y)

where, with apologies, we use the same notation for the density and the measure. Indeed,
a moment of contemplation reveals that it is in fact sufficient to verify the above to lowest
non-vanishing order i, €,. It has been shown [C, equation (A.5)] that

fuac 2l @p 2N 2p) > 2l 2p) 2l @2p). ®)
Thus, it is sufficient to establisE Y}, , \(B)ZL1B) > 280 (B2l ((B). Let us
definen, by a,(b,) —n. = /1 — (b, + €,)2. Unless otherwise specified, the objegtsare
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defined with respect to the reference configuratioWriting the XY spins in vector form:
(x;, ¥;) = t;, the desired inequality amounts to showing that

EEIXY]<eXp{,3Ju.vr/u77vtu * tu} eXp{ - :3 Z Ju,iainutu * tl} exp{ - ﬂ Z Jv,jajnvtv * tj })
i J

P EEXY]<9XP{ - :3 Z Ju,iainutu -t })
XE[aXY]<eXp{ - B Z Ju,jajnvtv . tj })
J

where E[*Y](—) denotes expectation with respect to th& measure defined by the
Hamiltonian with couplings/; ja;a;. Retaining only the terms that are lowest order in
N, Ny, this reduces to showing that (i)

EX(t, - t,) > 0
and that (ii)
EV (@ - t) (o - 1) = BN @, - t)EX @, - ).

The first inequality is the standard Griffiths inequality (for rotors) and the second is
the correlation inequality proved by Ginibre; both of these are proved in [G] (see also
[MMP]). O

Corollary 1. Under the same conditions as lemma 2, the measuigs-) are FKG (have
positive correlations).

Proof. Let up28(—) denote thegq = 2 random-cluster measures as described earlier.
Explicitly

1b,26 (@) O Bp,25() 2. 4
We may decompose the measiMig according to

Mg(—) = /bdpﬂ D) pp,28(—). %)
Let A and B denote increasing bond events. Then
Mg(ANB) = /bdp,s D) pp,2(ANB) > /bdpﬁ B pp,2p (A pep,28(B)  (6)

by the FKG property of the random-cluster measures. However, random-cluster probabilities
of increasing events are increasing functions of all the couplings—and hencetof Tineis
wp,28(A) and wp, 25(B) (considered as functions df) are positively correlated and we
conclude, by the result of lemma 2, thdls (A N B) > Mg (A)Mpg(B). O

Corollary 2. Consider adding to the isotropic zero-field Hamiltonian the following types of
terms: (a) A magnetic field term)_; h;0;b; (i.e. h points in thez-direction) with all the
non-zeroh; of the same sign—say positive. (b) A term that modifies the coupling between
the z-components) _; ., K, ;b;b;jo;0; with J; ; + K; ; non-negative. Then the conclusions

of lemma 2 still hold. Furthermore, if one set &f and# is ‘larger’ (in the natural sense

of partial order) than a second, the associated measures are correspondingly FKG ordered.



L258 Letter to the Editor

Proof. Neither of these terms have any effect on thE portion in our proof of lemma 2;

the remainder of what is needed is proved exactly as in [C]: proposition A.1 establishes the
FKG property (when all the/; ; + K; ; are non-negative) and similar considerations were
shown to apply to non-zero (and non-negative) magnetic fields by considering ‘ghost sites’.
The stated FKG dominance was the corollary to this proposition. d

d - -
Corollary 3. Let A; C Z¢ denote a finite set. The,mg’;Al(—) F%Gpg’;,\l(—) and similarly for

the bond measurd¥lz(—). Furthermore letA, C A; and |etp,'3”;/\1|/\2(—) andM;lg;AﬂAz(_)
denote the restrictions of th&; wired measures ta\,. then

w w
pﬁiAllAz(_) F%G '0/3:1\2(_)
and

Mgil\ﬂl\z(_) FEG M?;Az(_)'

Proof. As is not hard to see, the wired measures can be constructed from the free measure—
or the measure on the larger space—by the addition to the Hamiltonian of Epjrand/or

h; which are then taken to infinity. The stated FKG dominations follow from (the limiting
version of) corollary 2. O

An immediate consequence of corollary 3 is the existenc&lgf independent of the
sequencd A, )—this follows from standard monotonicity arguments. In addition, we have
the following corollary.

Corollary 4. Consider a finite graph (with no boundary conditions) in particular some finite
A C Z% with free or periodic boundary conditions. Lét)s denote the corresponding
Gibbs state for the zero-field Hamiltonian (equation (1)) or the infinite-volume limit thereof
(defined, if necessary by subsequence) Bifyd—) the associated bond measure. Then

3Mg(i < ) = (si - 8))p = K*My(i < )

wherei < j is the event that the sitésand j are in the same connected cluster d@ds
a non-singular function o and coordination number. OF, in the single-phase regime,
similar bounds relate the susceptibility to the average cluster size.

Proof. This is exactly as proved in [C]. In brief: it is enough to examifsgs’)s =
(bibjo;o;)g. Decomposing into clusters, it is not hard to see that there is vanishing
contribution from any contribution in which is not connected tg and thato; = o;
whenever it is. Hence the identity

(s7s5)p = V' (bibjTiics ) o

wherel is an indicator. The upper bound is obtained by the observatibn < 1 and

the lower bound by the FKG inequality and consideration of the worst case scenarios on
the neighbours of and j to estimate(b;)s and (b;)g. The result on the susceptibility is
obtained by summing the spin—spin correlation function. O

In a similar fashion, the proof of theorem 1 follows the same lines as the corresponding
result for theXY model.
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Proof of theorem 1The spontaneous magnetization is not smaller than the averagerof
any limiting state. Hence the lower bound. To obtain the upper bound, we set: > 0

and note that for a.ez, m(h) is independent of thermodynamic state. Hence we may
employ wired boundary conditions aAt> 0 and, with a little work, exchange tte| 0 and

infinite-volume limits. Details can be found in [C, proof of theorem 4A]. O
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