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Coexistence of Partially Disordered�Ordered Phases in
an Extended Potts Model
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We consider a generalization of the standard Potts model in which there are
q=r+s states with an interaction that distinguishes the two subspecies. We
develop a graphical representation (of the FK type) for the system and show
that this representation may be incorporated directly into reflection positivity
arguments. Using combinations of these techniques, we establish detailed
properties of the phase diagram including the existence of sharp triple points.
Whenever relevant, the phases are characterized by the percolation properties of
the underlying representation.
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1. INTRODUCTION

In this paper we consider a variant of the Potts model. As usual, the spins
_ can take on one of q values in a set Q, but here the set Q splits into
disjoint subsets R and S containing, respectively, r and s elements, i.e.,
Q=R _ S, q=r+s. The Hamiltonian is given by the expression:

H(_)=&J :
(x, y)

$_x _y
&} :

(x, y)
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$R
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+$S
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)&h :
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) (1.1)

with }, J>0, h # R, and the symbol (x, y) denoting a nearest-neighbor
pair on Zd. Here $__$=1 if _=_$ and zero otherwise, $R

_ is the indicator
of the event _ # R (and similarly for $S

_), implying that $R
_ $R

_$+$S
_ $S

_$

vanishes unless _ and _$ belong to the same family. Notice that the second
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term causes a repulsion for the neighboring pairs (x, y) with _x # S and
_y # R. The magnetic field h acts on the entire set R or S; hence as
h � �(&�) we recover the usual s (r) state Potts model. Throughout, it
will be assumed that r>>s>>1.

It is plausible to expect that the Potts part of the interaction will
govern the symmetry breaking within the families R and S. Thence, for ;
large and h increasing, the system will undergo a first-order transition
between a regime dominated by the R set with r ordered states and a
regime dominated by the S set with s ordered states. On the other hand,
for h large and positive, the system will undergo an order-disorder transi-
tion reminiscent of the s-state Potts model as ; varies, and similarly an
r-state Potts transition for h large negative. Thus, as h increases, a turnover
from R-dominated disordered state to S-dominated disordered state can be
expected at higher temperatures, with a complete symmetry maintained
within each group (R or S) in both states. This latter change may or may
not be signaled by a phase transition, however, certainly not for ;<<1. For
r and s large, we prove that such a transition indeed occurs at intermediate
temperatures.

In the symmetric case, i.e., for r=s, both of these ``R � S '' transitions
occur at h=0, which pretty much completes the picture. An interesting
feature of the asymmetric case is that it makes conceivable, for r>s,
a direct transition from R-disordered to S-ordered phase. Indeed, for r>>s,
we establish this fact along with the existence of two (sharp) triple points
suggested by the presence of such a phase boundary; i.e., essentially the
entire phase diagram depicted in Fig. 1 is established. As the insert shows,
in the symmetric case, these triple points degenerate to a single ``quad-
ruple'' point with 4 coexisting phases representing altogether q+2 different
equilibrium states. In fact, a generalization of the symmetric case has
already been discussed in [LMR], for Q decomposing into q1 different
families with each containing q2 elements (i.e., q=q1 q2), but that only for
h=0. Different aspects (e.g., quasilocality) of the latter��so called ``fuzzy
Potts''��model have been addressed in [MVdV].

In order to facilitate our analysis, we have developed a graphical
representation that is a natural generalization of the random cluster model
for the Potts system. Thus there are ``strong'' and ``weak'' bonds of both the
R and S type. For example, a weak R-bond insists that both end-points are
in the R-set while a strong R-bond induces a matching pair of spin states
of R-type. This graphical representation enjoys an FKG monotonicity that
is useful for various portions of our analysis. In particular, all of the phases
can be described in terms of the percolation of the corresponding bonds.
However, one can only go so far with graphical representations; estimates
for the probabilities of contours are also needed. In this regard, reflection
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Fig. 1. Phase diagram for the model (1.1). Here J, }>0 are fixed, r>>s>>1, and T is the
temperature. The dashed line indicates the percolation thresholds of the ``weak'' bonds and the
dotted line marks the area where Gibbs uniqueness follows from the high-temperature expan-
sion. Insert shows the symmetric case r=s>>1. The question mark prompts that the
suggested behavior at the endpoint of the transition line is hypothetical.

positivity (RP) methods combined with the chessboard estimate provide a
rather effective service.

Somewhat to our surprise, we find that the graphical representations
can be incorporated directly into the RP machinery. (A priori, one might
imagine having to use RP on the spin system and processing this into
a statement about the graphical representation.) This appears to be
a promising technique��especially useful in higher dimensions��that is
apparently generalizable. Thus, all in all, a rather seamless derivation is
permitted. Unfortunately, there are certain limitations to this combination
of RP and graphical representations. In particular, we can prove RP only
for values of the parameters in the graphical representation that correspond
to genuine spin-systems, i.e., integer values of r and s. In fact, this may
represent a genuine ``limitation:'' It was recently shown by one of us [B]
that the usual random cluster model with non-integer q is not RP in the
desired sense. Here is our main result:

Main Theorem. Consider the system as described by the
Hamiltonian (1.1) with }, J>0. Then for r, s and r�s large enough, there is
a ;� <� and an = small such that
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(I) there are four closed and connected regions OR , OS , DR , and
DS covering the set J=[(;, h); ;�;� , h # [&�, �]], where the following
translation-invariant states exist

(i) r ``ordered'' states ( } ) j
OR

, j=1,..., r, in OR

(ii) s ``ordered'' states ( } ) k
OS

, k=r+1,..., r+s, in OS

(iii) a single ``disordered'' state ( } )DS
in DS

(iv) a single ``disordered'' state ( } )DR
in DR

These states are characterized by the relations

($_x j $_x _y
) j

OR
�1&=, ($S

_x
$S

_y
(1&$_x _y

)) DS
�1&=

($_x k $_x_y
) k

OS
�1&=, ($R

_x
$R

_y
(1&$_x _y

)) DR
�1&=

valid for any pair x, y of neighbouring sites, any 1� j�r and any r+1�
k�r+s.

(II) The intersections (OR _ OS) & (DR _ DS)=COD and (OR _ DR)
& (OS _ DR)=CRS constitute two continuous non-selfintersecting curves
COD and CRS , where the order�disorder and the R�S states coexist, respectively.
The curve COD admits a parametrization by ;h, whereas CRS is parametriz-
able by ;. On the complement of these curves, the inequalities

($_x_y
$R

_y
)�1&=, ($S

_x
$S

_y
(1&$_x _y

))�1&=

($_x_y
$S

_y
)�1&=, ($R

_x
$R

_y
(1&$_x _y

))�1&=

hold for every translation-invariant Gibbs state in the respective region and
any pair x and y of nearest-neighbor sites.

(III) There are exactly two triple points, where OS+OR+DR and
OS+DS+DR meet, respectively. These triple points are connected by a
single line of coexistence between s-order and r-disorder.

(IV) In the high-temperature region (i.e., for ;}, ;J<<1) the condi-
tions of complete analyticity are met. In particular, the set of all Gibbs
measures is a singleton in this region.

(V) The phases OS and OR can alternatively be characterized by
spontaneous magnetization and�or percolation. In DS and DR , there is per-
colation of the corresponding disordered bonds.

The organization of the remainder of this paper is as follows. In
Section 2 we introduce the graphical representation, establish some of its
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useful properties, and relate the percolation characterization of the respec-
tive phases to the non-vanishing of an order parameter. Section 3 is devoted
to the proof of the Main Theorem. In this section, Lemma III.3 is of special
interest for the asymetric case, because it directly rules out quadruple
coexistence (whenever r>>s). For reader's convenience, the computations
based on chessboard estimates are performed here only in the two-dimen-
sional case. We relegate the full (and somewhat clumsy) arguments to the
Appendix.

2. THE GRAPHICAL REPRESENTATION

In this section we develop a graphical representation of the model and
establish its various useful properties. To simplify our derivations, we will
restrict ourselves to free (or periodic) boundary conditions in these
preliminary discussions and defer the detailed analysis of boundary-condi-
tion issues to a later subsection.

Let us start with the identity

e ;J$__$+;}($_
S $S

_$+$_
R $R

_$)

=1+(e ;}&1)($S
_ $S

_$+$R
_ $R

_$)+e ;}(e ;J&1)($S
__$+$R

__$) (2.1)

where $R
__$ ($S

__$) indicates that both spins coincide and belong to R (S).
The five terms on the r.h.s. give rise to five different species of bonds��
vacant, s-disorded, r-disorded, s-ordered, and r-ordered, with the prefactors
representing the a priori weights of the corresponding bonds. For easier
verbal reference, we will introduce a paralel notation in terms of colors: the
five types of bonds above are called vacant, light-blue, light-red, dark-blue,
and dark-red, in the order of their appearance.

We may label the five species by : # I=[v, sd, rd, so, ro] and define
w(:) to be the corresponding coefficient in the identity (2.1). Thus,
w(v)=1, w(rd)=w(sd)=e ;}&1, and w(ro)=w(so)=e ;}(e ;J&1). Let 4
denote a graph with sites S4 and bonds B4 . Let 04=I B4 denote the set
of bond configurations in 4. As will become clear, not all 04 will be used;
configurations in which blue and red bonds share an endpoint need not be
considered. With the above notations, e&;H4 may be written as

e&;H4(_)= :
| # 04

D(|) `
b # B4

w(|b) /b(|, _) `
x # S4

e ;h($S
_x

&$R
_x

) (2.2)

where /b(|, _) is one of the functions 1, $S
_x

$S
_y

, $R
_x

$R
_y

, $S
_x_y

, $R
_x _y

, accord-
ing to the label |b of the bond b=(x, y) , and D(|) is the indicator that
| fulfils the aforementioned restriction.
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For each such |, we must now perform the trace (sum over spin con-
figurations) to arrive at the weights, W (;, h)

s, r; 4(|), for the graphical represen-
tation. The result is not particularly difficult, but only after the introduc-
tion of some additional notation. For each |, let 4R(|) denote the red
portion of the graph: those bonds that are R-ordered or R-disordered, and
all sites that are endpoints of such bonds. Let NR(|) denote the number of
R-sites in 4R(|). Some of the bonds in 4R(|) are R-ordered bonds. These
divide 4R(|) into ``R-connected'' components; let CR(|) denote the num-
ber of such components. Similar notation applies to the blue portion of the
configuration. Finally, let N<(|)# |S4 |&[NR(|)+NS(|)] denote the
number of sites that do not fall into either category.

It is not hard to see that

W (;, h)
s, r; 4(|)=_ `

b # B4

w(|b)& (se ;h+re&;h)N<(|) e ;hNS (|)e&;hNR (|)sCS (|)rCR (|)

(2.3)

Indeed, each unmatched site just contributes the factor se ;h+re&;h, each
S-site a factor e ;h, and similarly for the R-sites. Finally, the ordered bonds
dictate which fraction of the sNS (or rNR) spin states are actually allowed on
each connected component, resulting thus in the factors sCS (|) (and rCR (|)).

2.1. FKG Monotonicity

From the perspective of ``S above R'' (or blue above red), there is a
natural ordering for the bond variables so osdovord oro, which induces
a partial ordering on the configurations. We show that the graphical
representation is monotone with respect to this ordering.

Proposition II.1. Let &( } )=& (;, h)
s, r; 4( } ) denote the random cluster

measure on a finite graph 4, defined according to the weights (2.3). Then
& is strong FKG w.r.t. the ordering soosdovordoro.

Proof. We must verify the FKG lattice condition. To facilitate matters,
let us exchange ``components for loops.'' Indeed, if BR(|) is the number of
dark-red bonds and lR(|) is the number of independent loops formed by
them, we may write

CR(|)=lR(|)&BR(|)+NR(|) (2.4)
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Thus, the weights may be written as

W (;, h)
s, r; 4(|)=_ `

b # B4

w$(|b)& (se ;h+re&;h) |S4 |

__ se ;h

se ;h+re&;h&
NS (|)

_ re&;h

se ;h+re&;h&
NR (|)

slS (|)rlR (|) (2.5)

Here w$(|b) are changed a priori factors whose value will not play any role
in the following.

As is well known, the verification of the FKG lattice condition may
be done inductively by comparing configurations that disagree on at most
two places. Thus, let b1 , b2 # B4 , let % denote a bond configuration in
B4"[b1 , b2] and let '1 , '2 , `1 , and `2 denote bond variables on b1 and b2

with '1 o`1 and '2o`2 . We use (%, '1 , '2) to denote the configuration
equal to '1 ('2) on b1 (b2) and % elsewhere on B4 , and similarly for
(%, `1 , `2) etc. We must show

W (;, h)
s, r; 4(%, '1 , '2) W (;, h)

s, r; 4(%, `1 , `2)

�W (;, h)
s, r; 4(%, `1 , '2) W (;, h)

s, r; 4(%, '1 , `2) (2.6)

It is clear that the a priori factors (i.e., the bond weights w$) cancel exactly.
Further, it is observed that D(|1), D(|2)=1 imply D(|1 6 |2),
D(|1 7 |2)=1, where |1 6|2 denotes the maximum and |1 7 |2 the
minimum of the two configurations. Thus, we may omit any discussing of
constraints.

We now claim that NS(%, '1 , '2)+NS(%, `1 , `2)�NS(%, `1 , '2)+
NS(%, '1 , `2). Let S(|)/S4 denote the set of sites that touch at least
one blue bond (i.e., the site set of 4S(|)). It is not hard to see that
S(%, '1 , '2)=S(%, `1 , '2) _ S(%, '1 , `2). Indeed, S(%, '1 , '2)#S(%, `1 , '2)
(because the former contains more S-bonds), and similarly with
S(%, '1 , `2). So S(%, '1 , '2) contains the union of both. Now suppose that
x # S(%, '1 , '2). If this is caused by an S-bond in %, then x # S(%, `1 , '2) and
x # S(%, '1 , `2). If not, then x is either the endpoint of one (or both) of '1

or '2��say '1 , in which case x belongs to S(%, '1 , `2)��or the end-point
of !1 or !2 , and then it also pertains to both sets. On the other hand, we
only claim that S(%, `1 , `2)/S(%, `1 , '2) & S(%, '1 , `2) (with the inclusion
sometimes being strict). This is clear since S(%, `1 , `2)/S(%, `1 , '2) and
S(%, `1 , `2)/S(%, '1 , `2). Hence we have

1175Extended Potts Model



NS(%, '1 , '2)+NS(%, `1 , `2)

=|S(%, '1 , '2)|+|S(%, `1 , `2)|

�|S(%, `1 , '2) _ S(%, '1 , `2)|+|S(%, `1 , '2) & S(%, '1 , `2)|

=|S(%, `1 , '2)|+|S(%, '1 , `2)|=NS(%, `1 , '2)+NS(%, '1 , `2) (2.7)

with the third line by inclusion-exclusion.
Thus we are down to showing the necessary inequalities among the

loop counting functions. However, most of these are actually equalities; the
only exception is when '1 , '2 , `1 , and `2 are all bonds of the same family
in which case the desired inequality reduces to the usual argument for the
random cluster model. K

As an immediate consequence we obtain a domination comparison:

Corollary. If h(1)>h(2), then

& (;, h (1))
s, r; 4 ( } )�FKG & (;, h (2))

s, r; 4 ( } )

Proof. It suffices to show that W (;, h (1))
s, r; 4 (|)�W (;, h (2))

s, r; 4 (|) is an increasing
function (assuming that both quantities are nonzero). Using formula (2.5)
and defining

e&:S (h)#
se ;h

se ;h+re&;h and e&:R (h)#
re&;h

se ;h+re&;h (2.8)

we have

W (;, h (1))
s, r; 4 (|)

W (;, h (2))
s, r; 4 (|)

=84(h(1), h(2)) _e&:R (h (1))

e&:R (h (2))&
NR (|)

_e&:S (h (1))

e&:S (h (2))&
NS (|)

(2.9)

where 84(h(1), h(2)) is a number independent of | (note that the modified
weights w$ are independent of the external field). It is thus sufficient to
establish that e&:R (h) is monotone decreasing and e&:S (h) is monotone
increasing as functions of h. This is easily checked. K

Remark. It is noted that the measures are perfectly well defined for
non-integer r and s and that the above monotonicities hold for all r and s
with r, s�1. However, in this paper, we will need to make explicit use of
the underlying spin-system; hence, we will not discuss these more general
cases. Finally, we remark that all of the results of this subsection hold for
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an arbitrary (finite) graph with arbitrary fields hi and arbitrary (non-
negative) couplings Jx, y and }x, y . In particular, FKG dominations are
established under the condition that h (1)

x �h (2)
x for all x.

2.2. Reflection Positivity

We begin with some preliminary notations. Let TL denote a d-dimen-
sional (lattice) torus, assumed for convenience to have an even number L
of sites in all directions, and let P denote the intersection of TL with a
hyperplane orthogonal to one of the coordinate directions. (Thus P con-
sists of two disconnected ``planes of sites.'') The set P divides TL into left
(TL

L ) and right (TR
L ) halves��both halves defined to include P.

Let | # 0T4
denote bond configurations (such as the ones described

above) on TL and let FL (FR ) be the set of functions of bond configura-
tions restricted to TL

L (TR
L ). Finally, let �P be the reflection operator that

maps bond configuration on the left to configurations on the right and vice
versa (i.e., |L W �P|L ). For f # FR , define �P f # FL by [�P f ](|R )=
f (�P|L ). Let P( } ) denote a probability measure on bond configurations
and E the expectation with respect to this measure. Then P is said to be
reflection positive if for every g, f # FR one has

E( f�Pg)=E(g�P f ) (2.10)

and

E( f�P f )�0 (2.11)

Proposition II.2. Let T denote the d-dimensional torus and let
&( } )#& (;, h)

s, r; T( } ) denote the random cluster measures as defined by the
weights (2.3). Then & is reflection positive with respect to reflections
through all planes P containing sites.

Proof. The proof follows from the reflection positivity of a certain
joint measure on bond-site configurations��the Edwards�Sokal measure��
that contains the random cluster measure and the Gibbs measure of the
considered spin system as marginals. This measure is essentially defined by
the r.h.s. of (2.2). Namely, let us write

W (;, h)
ES, s, r; T(|, _)=_D(|) `

b # BT

/b(|, _)& `
b # BT

w(|b) `
x # ST

e ;h($S
_x

&$R
_x

)

#D(|, _) `
b # BT

w(|b) `
x # ST

e ;h($S
_x

&$R
_x

) (2.12)
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The weights W ( ;, h)
ES, s, r; T define the Edwards�Sokal measure & (;, h)

ES, s, r; T abbre-
viated hereafter as &ES . In the above language, Eqs. (2.2) and (2.3) read

e&;HT(_)=:
|

W (;, h)
ES, s, r; T(|, _) (2.13a)

and

W (;, h)
ES, s, r; T(|)=:

_

W (;, h)
ES, s, r; T(|, _) (2.13b)

which verifies the preceding claim concerning the marginals. Our proof
amounts to showing that the full ES-measure is reflection positive; here,
of course, with respect to reflection operators acting on the larger space
of bond-spin configurations and functions thereof. (Notwithstanding, we
will make no notational distinctions.) Thus, let f denote a function that is
determined by the bond-spin configurations on the ``right'' and consider
EES( f�P f ), where EES( } ) denotes expectation with respect to the measure
&ES . Let (|P , _P) denote a bond-spin configuration in the plane P; that is
to say a spin value on each x # P and a bond value on each (x, y) with
x, y # P. We may write

EES( f�P f )= :
(|P , _P)

&ES(|P , _P) EES( f�P f | |P , _P) (2.14)

The conclusion now follows from the observation that the restrictions
of the conditional measures &ES( } | |P , _P) to the left and right half of the
torus are independent and identical under reflections. Indeed, the ``identical
under reflections'' property is an obvious consequence of the underlying
symmetry of the model. Independence is established as follows:

Let us write (|, _)=(|P , _P ; |R , _R ; |L , _L ) corresponding to the
configurations in P, TR

L , and TL
L , respectively. Let DP(|P , _P) denote the

analogue of the function D(|, _), defined in (2.14), that here checks the
consistency of the configuration only in P. Further, let DR (|R , _R | |P , _P)
be the function that indicates consistency only for the right half of the con-
figuration given (|P , _P) and similarly for DL (|L , _L | |P , _P). It is not
hard to check that

D(|, _)=DP(|P , _P) DR (|R , _R | |P , _P) DL (|L , _L | |P , _P)

(2.15)
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for every (|, _). By checking the terms in (2.6), we easily see that the
weights factorize, which is equivalent to independence. Thus we have

EES( f�P f )= :
(|P , _P)

&ES(|P , _P)[EES( f | |P , _P)]2 (2.16)

which is manifestly non-negative. Similarly one establishes

EES( f�Pg)=EES(g�P f ) (2.17)

and the proof is complete. K

The use of RP for establishing the existence of discontinuous transi-
tions is based on two standard Lemmas [FL, KS]. Here ``behavioral
pattern'' refers to a particular set of configurations (typically on a box). Let
TL denote a torus of size L and let ( } ) L#( } ) (;, h)

s, r; TL
be a state on the

configurations in BTL
.

Lemma II.3. Let [cl] be a collection of (possibly overlapping)
cubes of size one, and consider a behavioral pattern bl associated with each
cube cl . Let /bl

(cl) indicate the occurence of bl on cl . If ( } ) L is reflection
positive and L is even, then

�`
l

/bl
(cl)�L

�`
l

((/bl
(TL)) L)1�|Ld |

where /bl
(TL) enforces the appropriate mirror image of the pattern bl to all

translates of cl .

Lemma II.4. Let a and b denote two distinct patterns on a cube
c # TL . Let H be a Hamiltonian that depends on the parameter : that
varies in the range [:a , :b], and let ( } )L, : denote the Gibbs state on TL

induced by the Hamiltonian H at the parameter value :. Let A # ( 1
2 , 1] and

B # [0, 1
4] be such that B�[ 1

2&-
1
2&(A�2)]2, and let =a , =b # (0, 1

2). Sup-
pose that for all : # [:a , :b], all c, c~ # TL , and all L large enough

(0) /a(c) /b(c)=0,

(i) (/a(c)+/b(c)) L, :�A,

(ii) (/a(c) /b(c~ )) L, :�B,

and

(iiia) (/a(c)) L, :a
>1&=a

(iiib) (/b(c)) L, :b
>1&=b .
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Then there is an :c # [:a , :b] and two distinct translation invariant
Gibbs states ( } ) a

:c
and ( } ) b

:c
such that

(/a(c)) a
:c

�1&=� and (/b(c)) b
:c

�1&=�

where =� ==� (A, B) is such that =� � 0 as A � 1 and B � 0.

Remark. We remark that in the above formulation it has been
assumed that we are dealing with Gibbs distributions defined according to
some particular Hamiltonian. In fact this is not really necessary in order to
ensure that Lemma II.4 goes through. However, we may circumvent any
possible difficulties by the observation that our system��bonds and all��
can be obtained by considering the (annealed) bond-diluted version of the
given Hamiltonian in the limit of zero temperature. When the bonds are
integrated out, we recover the original model at some effective finite tem-
perature. However, if we keep track of the bonds (and integrate out the
spins) we find that these are distributed according to the desired random
cluster measures.

2.3. Boundary Conditions

As already stated, graphical representation (2.3) will be our major tool
of study of the Gibbs phases associated with the Hamiltonian (1.1).
However, we first have to take properly into account the effect of boundary
conditions. In particular, we have to clarify to what extent one can
generalize the FKG domination arguments from the previous subsections.
There are two ways that a random-cluster measure can be associated with
a boundary condition. These lead eventually to two classes of random
cluster measures: S-measures and G-measures, with the former defined by
prescribing a spin boundary condition, whereas the latter is defined by
prescribing a graphical boundary condition.

(1) S-measures. Given a finite set 4/Zd, let �4 be its boundary,
i.e., the set of sites in Zd whose distance from 4 equals one. To implement
the first possibility, we take a spin configuration _~ and define the
Edwards�Sokal measure on _'s in 4 _ �4 and |'s on the bonds thereof,
however, with the spins at �4 fixed to _~ . Let &4, _~ denote the |-marginal
of this measure. Of particular interest are the limits of these measures as
4ZZd: we denote by S the set of all possible accumulation points, closed
under convex combinations and closed in the weak topology on probability
measures. We call these S-measures (they were called equilibrium random
cluster measures in [ACCN]).

Our major object of interest is the original spin system (1.1). Even
though all properties of the graphical marginals are derived starting from
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the spin system, not all information is retained by the marginals. This may
actually cast doubts whether the representation (i.e., the S-measures) is
still capable of capturing the important features of the spin system, e.g.,
the non-uniqueness of Gibbs states. This is (partially) answered in the
following.

Lemma II.5. The existence of two distinct S-measures +1 and +2

implies the existence of two distinct Gibbs measures &1 and &2 for the
Hamiltonian (1.1). Moreover, if +1 and +2 can be obtained for (expanding)
sequences [4 (1)

n ], [4 (2)
n ], and boundary conditions _1 , _2 , respectively,

then &1 and &2 can be generated by ([4 (1)
n ], _1) and ([4 (2)

n ], _2), respec-
tively, as (possibly subsequential) limits of finite-volume states.

Proof. See Appendix.

Let SC be the translation invariant measures in S. Note that any
accumulation point + of the torus states is an SC-measure. Namely, if we
go to a subsequence for which also the distribution functions for the spins
at the exterior boundary of any finite volume converge, we see that the
expectation of any cylinder function of bonds in the set A can be written as
the combination of (S-class) states in any 4 encompassing A, where the spin
boundary condition is now a subject of average. Moreover, the expectation
is independent of 4 and thus only the tail of the boundary condition matters,
but in that case the average runs over infinite-volume S-class measures, so
+ is indeed an S-measure. The translation invariance of + is trivial.

(2) G-measures. To implement the other possibility, i.e., to define
boundary conditions directly in the graphical representation, one may
explicitly consider a ``graphical'' boundary configuration |~ , modify
appropriately the weights in (2.3) for clusters that stick out of the finite
volume so that a consistent family of measures is recovered, and then study the
DLR measures associated therewith. While the techniques based on the DLR
condition are well developed in the spin language (see, e.g., [Ge]), for the
random-cluster measures the theory is still rather ``weak in the knees,''
mainly for the lack of quasilocality (see [vEFS] Section 4.5.3 for a concrete
problem of the latter kind, whose solution was given in [Gr] and [PVdV]).
Therefore, we refrain from discussing it in its full generality.5 On the other
hand, we would like to have some way of incorporating explicit ``graphical''
boundary conditions into our considerations, because only then the full
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power of FKG-ordering can be employed. To this end, we will consider a
restricted class of boundary conditions.

Let �B(4) to denote the (exterior) bond-boundary of 4, i.e., the set of
bonds with one end in �4 and the other in 4. A boundary condition (i.e.,
a ``graphical'' configuration on �B(4)) for the random cluster problem is
said to be of the G-class6 if

�4 is divided into disjoint components C B
1 ,..., C B

k ; C R
1 ,..., C R

l

and C f
1 ,..., C f

t . Each of the components C R
1 ,..., C R

l act as a single
site but always in a red state and similarly C B

1 ,..., C B
k act as

single blue sites and, finally, the components C f
1 ,..., C f

t act as
``free'' sites with some a priori weights for red or blue.

Given a boundary condition from G-class, the weight (2.3) is modified to
the effect that CS(|) and CR(|) are now counting the connected com-
ponents including the boundary components. The infinite-volume states
generated by a G-boundary condition from thus modified finite-volume
measures will be denoted (with a slight abuse of notation) also by G.

It is clear from the definition of the G measures that they can all be
generated by convex combinations of measures with a spin boundary condi-
tion. Hence, G/S. On the other hand, while constant red (blue) boundary
condition gives rise to red-(blue-)wired G-states & (;, h)

4, red-w (& (;, h)
4, blue-w) (the

``wiring'' refers to connecting all boundary sites by bonds of the respective
dark color to an auxiliary site), other spin boundary conditions do not
necessarily yield a measure in the G-class. Indeed, if in the spin system one
sets half of the boundary spins to one of the red-type spin-states and the
other half to another type of red-state, the resulting random cluster
measure is the red-wired measure conditioned on having no dark-red con-
nection between the two halves. The conditioning here is crucial and one
cannot specify this measure using only G-boundary conditions.

The fact that G does not embody all Gibbs measures of interest is an
unpleasant problem for techniques based on graphical representations.
These difficulties (which have been encountered in other systems, c.f. [C])
can, to some extent, be circumvented but only after a certain amount of
work. For our purposes, the key practical implication here is the lack of
FKG (or at least of its proof ) outside the G-class. (In the G-class, wherein
each of the boundary conditions can be simulated on an extended graph,
FKG follows from the observation that the FKG lattice condition is in
power even after conditioning on a set of bonds taking a definite value.)

We close this section with the statement of two lemmas that concern
ordering and uniqueness of the S-measures. In addition to the aesthetic
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appeal, the following will be crucial in our subsequent analysis of the phase
diagram. Both proofs are, for brevity of exposition, relegated to the
Appendix. Note that the limits

& (;, h)
blue-w= lim

4ZZd
& (;, h)

4, blue-w and & (;, h)
red-w= lim

4ZZd
& (;, h)

4, red-w (2.18)

exist by FKG and are measures both of G and SC-class.

Lemma II.6. Consider the system defined by the Hamiltonian
(1.1) with ; fixed and h varying in (&�, +�). Then for Lebesgue-a.e. h,
both the sets of G-measures and SC-measures are singletons (and then
necessarily G=SC).

Lemma II.7. Let &(;, h) be either a G-measure or a SC-measure.
Then

& (;, h)
blue-w( } )�FKG &(;, h)( } )�FKG & (;, h)

red-w( } )

Moreover, for h(1)>h(2), any SC-measure at h(1) FKG dominates every
SC-measure at h(2), and similarly for G.

2.4. Percolation and Magnetization

The phases that we will study are all characterized by ``percolation'' of
one sort or another. A priori, there are five distinct situations: Percolation
of dark-blue bonds, percolation of blue bonds without percolation of dark-
blue bonds, similarly for the reds, and no percolation at all. However, some
caution is needed: the partially ordered phases (here defined by the inter-
mediate sort of percolations) certainly do not represent genuine thermo-
dynamic phases, except perhaps when they coexist. For this reason, it is
mainly the dark-bond percolation that plays the role of an order parameter.

Given ; and h, let 6 B
�(;, h) (6 R

�(;, h)) be the probabilities that dark-
blue (dark-red) bonds percolate under the measures & (;, h)

blue-w (& (;, h)
red-w , respec-

tively). It is an easy corollary to Lemma II.7 that 6 B
� is actually the maxi-

mal probability at which dark-blue bonds can percolate under any
G _ SC-measure, and similarly for 6 R

� . As is standard, 6 B
� and 6 R

� are
easily related to the spin order parameters, namely, to the blue and red
magnetization. Here the red magnetization is defined by adding a sym-
metry breaking term of the type &hR �x [$_x j&(1�r) $R

_x
] (with j # R) to

the Hamiltonian and calculating the derivative of the free energy evaluated
at hR=0+. Similarly for the blue magnetization.
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Proposition II.8. Consider the system on Zd described by the
Hamiltonian (1.1) and let MR(;, h) and MB(;, h) denote the red and blue
spontaneous magnetizations. Then

MR(;, h)=
r&1

r
6 R

�(;, h)

and

MB(;, h)=
s&1

s
6 B

�(;, h)

Proof. As follows from convexity of the free energy in the param-
eter hR, the red magnetization can alternatively be defined by optimizing
$_0 j&(1�r) $R

_0
over all possible translation-invariant Gibbs states (for an

argument proving an analogous assertion see the proof of Lemma II.7 in
the Appendix). Given ; and h, all Gibbs states are parametrized by the
spin boundary conditions. Fixing the boundary condition to _~ , it is
straightforward to establish that the expected value of $_0 j&(1�r) $R

_0
under

the Potts measure exactly equals (1&(1�r))-times the probability under the
corresponding graphical marginal that x is connected by a path of dark-red
bonds to an j component of _~ , i.e.,

($_0r1
&(1�r) $R

_0
) _~

4=\1&
1
r+ & (;, h)

_~ , 4 ([0 wwww�
dark-red

�4j (_~ )]) (2.19)

Here �4j (_~ )=[ y # �4 : _~ y= j ], ( } ) _~
4 is the spin state in 4 with boundary

condition _~ and &(;, h)
_~ , 4 is the corresponding S-measure.

The r.h.s. of (2.19) is dominated by the expectation of the local event
that there is a dark-red path running from 0 outside a fixed volume 2/4.
By taking expectation of both sides w.r.t. a translation invariant spin Gibbs
measure and by taking the limit 4ZZd (possibly along a subsequence), we
recover an SC-measure on the r.h.s. which is FKG dominated by the red-
wired measure from Lemma II.7. Since [0 wwww�dark-red 2c] is an increasing
event, the limit 2ZZd then shows that

($_0r1
&(1�r) $R

_0
) �\1&

1
r+ 6 R

�(;, h) (2.20)

for any translation invariant spin Gibbs state ( } ). However, this inequality
is clearly saturated for the state ( } ) j generated by a constant configuration
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_~ # j, which is translation invariant. Hence, MR(;, h)=((r&1)�r) 6 R
�(;, h)

as we were to prove. The case of blue magnetization is completely analogous.
K

3. THE PROOF OF THE MAIN THEOREM

3.1. Preliminaries

The proof of the Main Theorem hinges on RP techniques as applied
to graphical representations. In order to apply Lemma II.3 and II.4, we
first need some definitions.

We will consider various behavioral patterns which are either good or
bad. The good behavioral patterns will be denoted by OR , OS , DR , DS ;
these are defined by the property that every bond in a unit cube is of the
corresponding type: r-ordered, s-ordered, r-disordered and s-disordered,
respectively. Any other configuration on a cube is deemed to be bad. We
recall that two bonds of differing color cannot share a vertex and hence the
presence of two colors on a cube necessitates the intervention of a vacant
bond. As a consequence, badness can occur for only one of two reasons,
the occurrence of a vacant bond or a pair of adjacent bonds, one ordered,
the other disordered, that are both of the same color. (In the latter case, we
call such pairs mismatched.)

The good patterns are expected to dominate typical configurations in
the low and intermediate temperature regimes. However, as requited by
Lemma II.4(ii), simultaneous occurrence of different good patterns should
be (sufficiently) improbable. The proof of the latter invokes the observation
that a ``barrier'' of bad cubes necessarily separates any pair of different
good cubes. Let us aggregate bad cubes that are joined through at least one
edge into connected components that are called, traditionally, contours.
Item (ii) of Lemma II.4 then boils down to showing that the probability
that a contour ``encircles'' the origin is small. It is this step where the
chessboard estimates (Lemma II.3) provide an effective service. In par-
ticular, all we need to show is that the estimate on the probability of the
various contour elements is small��the rest is easily reduced to a counting
argument which is identical to the one for the Ising contours.

As seen on the right hand side of the display in Lemma II.3, the rele-
vant objects are the partition functions constrained so that the stated
pattern repeats periodically. Of fundamental importance in the present
analysis are the partition functions associated with the (purported) favored
patterns. These will be denoted by ZOR

, ZOS
, ZDR

, and ZDS
, respectively

(the dependence on the scale of the torus will always be understood from
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the context and will be supressed notationally). These objects are readily
computed:

ZOR
=[e&;hed;}(e ;J&1)d ]Ld r (3.1i)

ZOS
=[e ;hed;}(e ;J&1)d ]Ld s (3.1ii)

ZDR
=[re&;h(e ;}&1)d ]Ld

(3.1iii)

and

ZDS
=[se ;h(e ;}&1)d ]Ld

(3.1iv)

Of further interest, there is the ``vacant'' partition function given by

Zv=[re&;h+se ;h]Ld
(3.1v)

The subject of our next lemma is that for all ; sufficiently large (and
for r and s large) the probability of any bad cube is small. Even though the
general proof is not too involved, we relegate it to the Appendix. Here we
provide the proof for d=2 that is particularly simple due to the employ-
ment of the diagonal torus (the SST) which reduces the problem to
estimating single-bond events.

Lemma III.1. Let $>0. Then there exist r� =r� (d, $), s� =s� (d, $), and
;� =;� (}, d, $) so that for any }>0, r�r� , s�s� , and ;�;� such that the
probability of a bad cube is less than $. Namely, limL � �(/OR

+/OS
+

/DR
+/DS

) L>1&$.

Proof (d=2). By the discussion in the second paragraph of the
present section, it is only necessary to show that the probability of a vacant
bond or a mismatched pair is small. Let us start with a vacant bond. We
use standard reflection positivity arguments for the case of two-dimensional
diagonal torus (see [S] for a full discussion or [CM] Lemma 4.3 for a
proof along these lines complete with pictures). Let (i, j) denote any bond
in TL (the diagonal torus of size L). Reflecting the bond n+1 times where
n=w2 log2 Lx we obtain the estimate for the vacant bond:

(D(|(i, j)=v)) L�\Zv

Z +
1�2L2

=
(se ;h+re&;h)1�2

Z1�2L2 (3.2)

An estimate for Z is provided by the r and�or s disordered partition functions,
Z�ZDR

+ZDS
. Since [(seh+re&h)L2

]�[(seh)L2
+(re&h)L2

]�2L2
, we have

(D(|(i, j)=v)) L�
- 2

e ;}&1
(3.3)
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Next we consider the mismatched pairs. Focusing attention, say, on the
s-type, let (i, j) and (i, j $) denote an adjacent pair of bonds. We will con-
sider the event [|(i, j)=sd, |(i, j $)=so]. If we agree to use only ZDS

and
ZOS

in the lower bound of the partition function, a moments thought
shows that the calculation is identical to the s-state Potts model. Thus we
get

lim
L � �

(D(|(i, j)=sd, |(i, j $)=so)) L�s&1�4 (3.4)

The argument is similar for the r-mismatched pairs. K

A second ingredient needed to set Lemma II.4 in motion is the bound
(ii).

Lemma III.2. There exists a function =(d, $), such that =(d, $) � 0
as $ � 0, and a constant $� (d ) such that for any two distinct patterns
P1 , P2 # [OR , OS , DR , DS ] one has

(/P1
(c) /P2

(c~ )) L�=(d, $)

whenever 0<$<$� , }>0, r�r� , s�s� , and ;�;� (with r� , s� , and ;� as in
Lemma III.1).

Proof. As already noted before, by going along any connected path
from c to c~ , one eventually bumps into a bad cube. Hence, on torus of size
L, if the two patterns are to occur simultaneously, the cubes c and c~ have
to be separated by a contour consisting of bad cubes (that either surrounds
one of the cubes or winds around the torus). The probability of such a con-
tour is directly estimated by chessboard estimates: for a contour composed
of |#| bad cubes we get the bound $ |#|.

To get an explicit expression of the function =(d, $), it is actually con-
venient to consider just the surface of the above union of bad cubes, which
is an Ising contour attached to the faces of the bad cubes in #. Since there
are at most 2d plaquettes per each cube in #, each plaquette carries at most
the weight $1�2d. By employing the recent Lebowitz�Mazel [LM] estimate
on the number of Ising contours (which is asymptotically optimal as
d � �), we arrive at the expression

=(d, $)=(2+o(C(d ) $1�2d )) $2d+(1+o(C(d ) $1�2d )) 1
2d(d&1) Ld $Ld&1

(3.5)

Here C(d )=exp(O(log d�d )) is the connectivity constant for the Ising
contours.
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Indeed, by Corollary 1.2 of [LM], the contribution to (/P1
(c) /P2

(c~ )) L

corresponding to a contour surrounding either c or c~ is dominated by the
lowest-order term, provided C(d ) $1�2d<<1. Hence, one gets 2$2d, where
the ``2'' accounts for the uncertainty whether the contour runs around
c or c~ . The case of a contour wrapped around the torus is fairly analogous;
one only needs to observe that the Lebowitz�Mazel counting argument
requires the contours neither to be closed nor to be encircling a given point
��it is only required that the contour contains a given plaquette. Hence,
also in this case the lowest-order term dominates, yielding 1

2d(d&1) Ld $Ld&1
,

where the prefactor counts the possible positions of the plaquette. K

3.2. Proof of (I) and (II)

We will start by setting the parameters. It will be assumed that } and
J are fixed and strictly positive, whereas r and s are to be adjusted such
that the technical ingredients (i.e., Lemmas III.1 and III.2) are in power.
The quantity $ will be our generic ``small parameter,'' i.e., a number chosen
small enough so that Lemma II.4 yields, in conjuction with Lemmas III.1
and III.2, the needed bound. In particular, $<<C(d )&2d must be assumed.

For a fixed $, let the numbers r�s be such that r�r� (d, $) and
s�s� (d, $), respectively, and the assumptions

(1) ;� (}, d, $)<<(1�Jd ) log s
(2) =� (1&$, 3$2d ) max[1, }�J]<<1

hold (with ;� (}, d, $) from Lemma III.1 and =� (1&$, 3$2d ) from Lemma II.4).

Remark. Since we are clearly about to use Lemma II.4 in the context
of graphical representations, the reader may have doubts whether this
result is really applicable, when the Gibbsianness (i.e., the property defined
by stipulating the DLR condition) of the limiting states is questionable.
But this is only due to the wording of the statement of Lemma II.4��as the
proof shows, actually the existence of two distinct limiting states is estab-
lished, obtained by conditioning from torus states. In particular, the states
emerging from Lemma II.4 are of the SC-class, because they are limits of
the torus states conditioned on densities of the respective patterns having
large enough value. Since any finite volume can be omitted while evaluat-
ing the latter densities, the same argument we used to prove that torus
states are SC-class applies also to these conditional measures.

The proof now comes in two stages.

(1) R�S Transition. Let /R =/DR
+/OR

be the indicator for a red
cube and similarly for /S . Since ;�;� , we have by Lemma III.1 that
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(/R +/S ) ;, h
L is close to one for any h. Clearly, as h � �, the mean value

(/R ) ;, h
L is supressed and as h � &�, the mean value (/S ) ;, h

L

vanishes��both of these uniformly in L. The conditions of Lemma II.4 are
met; for each ;�;� , there is an h; with |h; |<� at which R and S-type
phases coexist: there exist two SC-states ( } ) ;, h;

R and ( } ) ;, h;
S satisfying

(/R ) ;, h;
R �1&=$ (3.6r)

and

(/S ) ;, h;
S �1&=$ (3.6s)

with =$==� (1&$, 3$2d ).
Although the conditions of Lemma II.4 do not rule out the existence,

for a given ;, of several such points (i.e., ``reentrance''), the FKG
monotonicity (as proved in Lemma II.7) resoundingly does. Indeed, any
SC-state at parameters (;, h) with h>h; will FKG dominate the state
( } ) ;, h;

S and similarly for h<h; .
We now claim that the function h; is continuous. Indeed let ;

*
>;�

and consider a sequence [;k] with ;k � ;
*

. Crude estimates show that the
|h;k

| are uniformly bounded so let &�<h
*

<� denote an accumulation
point of [h;k

]. Now at the points (;k , h;k
), we have the S-state where the

inequality (3.6s) holds. It follows by a compactness argument that there
exists a SC-state at (;

*
, h

*
), where the same inequality holds. Thus

h
*

�h;*
. Using the same argument with the r's, we conclude that h

*
�h;*

and continuity is established. The curve given by the function h; will con-
stitute our CRS .

(2) Order-Disorder Transition. The situation with the order-dis-
order transition is similar; the disadvantage is that we do not have an
FKG monotonicity as the temperature varies. This is remedied by con-
vexity arguments, based on the fact that ; couples almost directly to the
relevant observables.

It will be useful to consider the events bO and bD that a given bond
is ordered�disordered respectively: bO =bOS

_ bOR
and similarly for bD . As

above, we may also define the indicators /O and /D for events on cubes.
However we claim that for ;�;� the quantities (/O ) ;, h

L and (/bO
) ;, h

L

are essentially interchangable. Indeed, first (/O ) ;, h
L �(/bO

) ;, h
L . On the

other hand, writing (/O ) ;, h
L =(/bO

) ;, h
L (/O | bO ) ;, h

L and using FKG and
Lemma III.2 we get (/O ) ;, h

L �(/bO
) ;, h

L (1&$).
For this portion of the proof, we will keep h� =;h fixed and allow ; to

vary in [;� , �). It follows by inspection of (3.1i�v) that, provided the
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assumption (1) above holds, the variables /bO
and /bD

satisfy the conditions
of Lemma II.4 and thus there is a ;h� at which two SC-states ( } ) ;h� , h� �;h�

D and
( } ) ;h� , h� �;h�

O coexist satisfying (/bO
) ;h� , h� �;h�

O �1&=$ and (/bD
) ;h� , h� �;h�

D �1&=$.
Consider the ``bond densities'' \O (;, h) and \D(;, h) representing the

thermodynamic density of bonds of the two types. These objects are well
defined in most states��certainly in translation invariant states where they
equal to the expectations of bO and bD��but their value may depend on the
state. To account notationally for such a case, we will indicate different
states by a superscript, e.g., \*O (;, h). However, the densities for different
states are not completely uncorrelated: an examination of the weights in
(2.1) shows that the quantity

Q(;, h)=\k+J
e ;J

e ;J&1+ \O (;, h)+}
e ;}

e ;}&1
\D (;, h)

#AO (;) \O (;, h)+AD (;) \D (3.7)

has the property that if ;1>;2 , then for any translation-invariant states V
and *,

Q*(;1 , h� �;1)�Q*(;2 , h� �;2) (3.8)

This follows because Q represents the derivative of the free energy with
respect to ; with h� =;h held fixed. Note that V, * # S is not required.

In what follows, the treatment is slightly simplified by assuming that
}�J; we will proceed under this assumption and, at the end, discuss briefly
the complementary case. Let ;>;h� with h� =;h and let V denote the trans-
lation-invariant state at (;, h) designed to minimize \O . Then

AO (;) \*O (;)+AD (;) \*D (;)�QO(;h� )�AO (;h� )(1&=$) (3.9)

where the suppressed h's in all arguments are evaluated at h=h� �;h� . Since
both AO and AD decrease with ; we may replace on the left side ; by ;h� :

[AO (;h� )&AD (;h� )] \*O (;)+AD (;h� )�AO (;h� )(1&=$) (3.10)

where we have further used that \*O(;)+\*D(;)�1. If J�} then all the
quantities (e ;J&1)&1, (e ;}&1)&1 are uniformly small by the condition
that all inverse temperatures are larger than ;� . Since AO(;)&AD(;)=
J(1&e&;J)&1&}(e ;}&1)&1

rJ, we arrive at \*O(;)�1&= with =r

=$[J+}]�J.
The argument for ;<;h� is similar but requires the additional

ingredient that for ;>;� , vacant bonds are rare in any SC-state. (Of course
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we already know this for the limit of any torus state.) We will be content
to prove this statement away from the coexistence line CRS . Consider the
point (;, h� �;) with ;<h� �h; (i.e., ``above'' CRS). Now, at the point (;, h;)
the S-state has a blue bond density in excess of 1&=$. Since the (blue-
ordered _ blue-disordered)-bond event is clearly increasing, this probability
is larger in any SC-state at (;, h� �;), by the assumption upon ;. Thus the
vacant bond density is less than =$. A similar argument using in turn red-
bond density shows that vacant bonds are uniformly rare in all SC-states
at (;, h� �;) with ;>h� �h; (i.e., ``below'' CRS).

Now consider ;<;h� and assume that (;, h� �;) � CRS . Let * denote the
state at (;, h� �;) designed to maximize \O within the SC-class. We have

=$AO(;h� )+AD(;h� )�QD(;h� )�AO(;) \*
O (;)+AD(;) \*

D (;)

=(AO(;)&AD(;)) \*
O (;)+(\*

O (;)+\*
D (;)) AD(;)

(3.11)

where we have again supressed the h dependence in our arguments. Using
the fact that the density of vacants is always less than =$, we have
\*

O (;)+\*
D (;)�1&=$ and thus

=$(AO(;h� )+AD(;))+AD(;h� )&AD(;)�(AO(;)&AD(;)) \*
O (;) (3.12)

Notice that AD(;h� )&AD(;) is negative (and anyway small). We obtain
\*

O (;)�=, with =r=$(J+2})�J.
If }�J>1 the argument is pretty much the same only we cannot

immediately discard terms like e&;J on the grounds that ;>;� . Two
ingredients are required: First, the $ parameter must be made small enough
(i.e., s must be large enough) so that when the =$ term emerges from the
Lemma II.4, the quantity =$}�J is still small. Second, the value of ;� must be
trimmed so that it can be stipulated that for ;>;� the quantity (e ;J&1) is
no smaller than, say unity. Under these conditions, the proof follows
mutatis mutandis.

The proof of the continuity of ;h� is the same as for h; ; thus we have
our curve COD . These two curves define our four regions: OS , OR , DR and
DS . In the interior of these regions, the characterizations corresponding to
the bounds in (II) of the Main Theorem are clearly satisfied. Namely, if
;<;h� and h>h; , then just about all of the bonds are disordered and blue
in any SC-state. This means that in all translation invariant Gibbs spin
states, each of them being paired with a translation-invariant S-state in an
Edwards�Sokal measure, satisfy ($_x_y

$S
_x

)�1&=. The proof of the other
inequalities is similar. The existence of r and s separate magnetized states
in their respective ordered regions is obvious: All of these emerge from the
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torus states. (These will be discussed further below in the Proof of (IV)

and (V).). K

3.3. Proof of (III)

On the basis of crude estimates, both functions h� [ ;h� and ; [ h; are
bounded away from the boundary of J, hence, it is clear that they must
coincide at least at one point. When r=s, both COD and CRS enjoy the flip
symmetry h � &h, which entails that CRS lies on h=0 and is intersected
by COD at exactly one (quadruple-coexistence) point��this establishes the
phase diagram in the symmetric case. Insofar we have not yet made use of
the condition r�s>>1. It is this condition that forces non-trivial coincidence
of the curves and, consequently, the two triple points. The existence of the
triple points is a consequence of the following claim.

Lemma III.3. Suppose that r>>s and consider the quantities
(/OR

)L , (/OS
) L , (/DR

) L and (/DS
) L . Then for all ; and h, at least one

of these objects is small. In particular, let 3L denote the chessboard
estimate for min[(/OS

) L ,..., (/DS
) L]:

3L=_
min[ZOR

, ZOS
, ZDR

, ZDS
]

ZOR
+ZOS

+ZDR
+ZDS

&
1�Ld

Then there is L0=L0(r�s) such that

3L�2 �s
r

for all L�L0 .

Proof. We first invite the reader to reexamine the weights for
ZOS

,..., ZDS
in (3.1). If h�0, then ZDS

�ZDR
�(s�r)Ld

and we are done.
If h>0, we may have se ;h�re&;h. But then ZOR

�ZOS
=r(e&2;h)Ld�s�

(s�r)Ld&1 and we are again done, provided L is large enough. Thus suppose
re&;h>se ;h. We have

3 Ld

L �
[ZOR

ZDS
]1�2

ZOS
+ZDR

=
r1�2([ABs]1�2)Ld

s[Ae ;h]Ld
+[Bre&;h]Ld

=\s
r+

1�2(Ld&1) r1�2([ABr]1�2)Ld

s1�2[Ae ;h]Ld
+s&1�2[Bre&;h]Ld (3.13)
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where we have abbreviated A=[e ;}(e ;J&1)]d and B=[e ;}&1]d. By
noting that the second ratio at the extreme right is less than a half, the
proof is over once L is large enough. K

For the duration of this portion of the proof, it is more convenient to
use the parametrization by ; and h� , where h� =;h. The argument comes
again in two steps.

(1) Lower Triple Point. In the region ;>>1 the curve CRS separates
OR from OS and in the region h� <<&1, the curve COD separates OR from
DR . Let us follow the curves from these extreme ranges of parameters until
they first touch. This point will be denoted by x#(;x, h� x). At x, we have
coexistence of OR , OS and DR phases. Note, as is thus clear by Lem-
ma III.3, that in a neighborhood of x, the chessboard estimate for (/DS

) L

is small. (In fact, chessboard estimates are continuous in all parameters.
The existence of nearby regions of states of the other types forces the small
one to be DS by Lemma III.3) We will successively establish three claims:

(A) The ``unused'' portions of CRS and COD lie in the quadrant
Q=[h� >h� x, ;<;x].

(B) In this quadrant, in a neighborhood of x, the two curves coincide.

(C) The point x is the unique triple point where OR , OS and DR

coexist.

Let us start on (A). Consider the line segment [h� =h� x, ;� �;<;x].
This is a line where only disordered states can exist because one exists at
x and hence for all higher temperatures with the same value of hx.
Similarly, consider the line segment [;=;x, h� >h� x]. Here only OS states
can exist by FKG-domination from the previous subsection (note that
h>h� x�;x on this segment). Consequently, the unused parts of both COD

and CRS must avoid these segments. Since COD is parametrizable by h� and
CRS by ;, these parts have to lie inside the quadrant defined by these
segments.

We now claim that in this quadrant, in a neighborhood of x, the
curve COD cannot rise above CRS . Indeed, let

Q+=[(;, h� ) # Q : h� >;h;] (3.14)

By definition, everything in Q+ is S-type. If COD has a point inside Q+

then in a neighborhood of this point, there is a region of (exclusive) DS

states. Here we have invoked the continuity of h� [ ;h� , i.e., the function
that determines COD , and the fact that Q+ is an open set. However, if we
are sufficiently close to x, continuity of the chessboard estimate forbids at
least the torus state from being a DS state. By exactly the same argument
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as the rareness of vacant bonds in any SC-state was established in the
paragraph right after (3.9), this implies that the probability of DS patterns
is uniformly low near x in Q+. Hence, COD stays below CRS in the vicinity
of x in Q.

Finally we will show that in Q, the curve COD is never below CRS . This
will finish off (B) and prove (C) as well; however this time the result is
global. Indeed, setting

Q&=[(;, h� ) # Q : h� <;h;] (3.15)

let us suppose there is a point of COD in Q&. It follows that there is a whole
open region of OR -states in Q. By FKG, this implies that all SC-states
below this region are OR and hence ordered. On the other hand, the lower
boundary of the quadrant has already been determined to consist
exclusively of disordered SC-states. Thus the two curves coincide for a
while and, when they eventually split, they must do so in such a way that
COD does not dip below CRS ever more. In other words, the OR states are
gone for good.

(2) Upper Triple Point. The argument for the other triple point is
similar but hindered by the absence of FKG-monotonicity. As the previous
discussion was to rule out the ``bubbles'' below CRS , now the key point will
be to deal with the ``bubbles'' that can appear above CRS .

Following the curves from the high-temperature�high-field side, let
�=(;�, h� �) denote the first point that these curves coincide. The quad-
rant below and to the left of this point will be denoted by K, i.e.,
K=[(;, h� ) : ;>;�, h� <h� �]. Again, ``beyond'' the point �, both curves
are locked into the quadrant. Indeed, [;>;�, h� =h� �] is a line that con-
sists exclusively of ordered states and [;=;�, h� <h� �] is a line that con-
sists exclusively of R-states. (As a matter of fact, DR -states.) We already
know that COD lies above or on CRS all the way down to x. We must rule
out the possibility that it lies strictly above. Explicitly, we will rule out
the existence of DS -states in K. To that end, we note that K can be
reparametrized as

K=[(;, h� ) : ;=;�+:, h=h� �&:2, 0<:��, 2>0] (3.16)

The argument we will use is similar to the one in (3.7)�(3.11), which is just
the case 2=0.

Let 'R denote the density of R-sites. As differentiating of the free
energy with respect to : (with 2 fixed) reveals, in any translation-invariant
state at (;, h� )=(;�+:, h� �&:2), the quantity AO(;) \O +AD (;) \D +
22'R must be larger than its value in any translation-invariant state at
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(;�, h� �). Let 2, : be fixed and let C denote any such state. By comparison
to the OS -state at � we have

AO (;) \C
O +AD (;) \C

D +22'C
R �AO (;�)(1&=$) (3.17i)

and similarly, by comparison with the DR state at �,

AO (;) \C
O +AD (;) \C

D +22'C
R �AD (;�)(1&=$)+22(1&=$) (3.17ii)

This easily finishes the proof. Namely, let 22�AO (;�)&AD (;�).
Then by the same arguments as in (3.8)�(3.9) we get

[AO(;�)&AD (;�)](\C
O +'C

R )+AD (;�)�AO (;�)(1&=$) (3.18i)

However, this entails that the bigger of the quantities \C
O , 'C

R is close to a
half, which rules out that C is any DS state. If 22>AO (;�)&AD (;�),
then (assuming without loss of generality 'C

R �1&=$) we are led to

[AO (;�)&AD (;�)] \C
O +=$AD (;�)

�[AO (;�)&AD (;�)](1&=$&'C
R ) (3.18ii)

which again cannot be satisfied if both \C
O and 'C

R are small.
Since 2 was arbitrary, there is no alternative to the scenario that the

curves coincide down to x, where the ``new'' OR states enter the play. But
this proves that there are just two triple points and that they are indeed
connected by a single line of OS+DR coexistence. K

3.4. Proof of (IV) and (V)

Item (IV) is a standard high temperature result that is particularly
easy to justify in the graphical representation. Consider any infinite-volume
spin Gibbs measure & and its (arbitrary) Edwards�Sokal coupling &ES.
Then we claim that under the | marginal of &ES (and ; small), most of the
configuration is actually in the vacant state. Namely, if two neighboring
sites are of the same spin-type but not the same spin-state, then the only
other possibility is a disordered bond-state, whose relative weight is then
1&e&;}. Similarly, if two neighboring sites are in the same state, the
relative weight of an ordered bond is 1&e&;J and of a disordered bond is
e&;J (1&e&;}).

Let us call non-vacant bonds ``open'' and the vacant ones ``closed.''
Since the bond states are independent under the measure &ES( } | _), the
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``open�closed'' marginal of &ES( } | _) is FKG-dominated by the ordinary
bond percolation on Zd with parameter p=1&e&;(J+}), where J, }>0 is
used to bound the other possibilities. Let now p<pc(d ), where pc(d ) marks
the onset of bond percolation on Zd. Then a classical result [MMS, AB]
yields that the size of the maximal cluster intersecting a fixed finite volume
4 has an exponentially small tail, with a 4-independent rate (if we are con-
tent to restrict p and, consequently, ; only to small values, then this follows
already from a Peierls argument). The FKG domination says the same
applies to the graphical marginal of &ES( } | _) for &-a.s. _.

It is not difficult to observe that this actually implies the exponential
decay of all truncated correlations with a uniform decay rate, because dis-
connected regions act independently of each other. Namely, let (Ai )

N
i=1 be

disjoint finite sets of sites, �i be a cylindric function in Ai , let /=/(A1 ,..., AN)
indicate that all Ai 's are connected and let l(A1 ,..., AN) denote the minimal
number of bonds needed for this connection. Let ( } ) 4 be any state in
4#�i Ai with some fixed boundary condition. Then the logarithmic
generating function

H4(z1 ,..., zN)=log _ (e�N
i=1 zi �i) 4

(e�N
i=1 zi �i | [/=0]) 4

& (3.19)

of the functions fi (note that the denominator plays no role for truncated
correlators involving all functions fi ) exists for any zi # C such that |zi | is
small enough, and it satisfies the inequality

|H4(z1 ,..., zN)|�C \`
N

i=1

e2 |zi | &�i &+ e&$l(A1 ,..., AN ) (3.20)

as is verified by splitting the numerator in (3.18) depending whether /=0
or 1 and then using that log(1&x)�x&1

0 log(1&x0) x for 0�x�x0<1
and that (/) 4�O(1) e&$l(A1 ,..., AN ), where $ is the rate of the connectivity
function in the percolation model above. Note that C is finite and inde-
pendent of 4 whenever maxi[ |zi | &�i &] is small enough. The multidimen-
sional Cauchy theorem then implies that condition llc stating that the
truncated correlator obeys the bound

|(�k1
1 ;...; �kN

N ) 4 |�k1 ! } } } kN ! C� k1+ } } } +kNe&$l(A1 ,..., AN ) (3.21)

and consequently all the other conditions in [DS] (or, alternatively, the
condition in [vdBM]) for complete analyticity are satisfied.

In order to prove item (V), note that in the interior of OR , OS , DR

and DS there is percolation of the appropriate type. Indeed, in any
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SC-state, we know that the probability of the dominant type of bond is
close to one in any SC-state and, on the torus, we know that contours are
rare. Thence the event that two bonds at the opposite ends of the torus are
connected by a-path of relevant bonds is close to one uniformly in the size
of the torus. Thus, in any torus state, percolation of the appropriate bond-
type is inevitable.

We will finish by showing that, for the interior points, in every SC-state
there is no percolation of any of the sub-dominant types. First note that,
throughout the interior of the regions, one can produce SC-states where no
other than the relevant bonds percolate. Namely, in the torus states, the
probability that the non-appropriate bonds form a contour running around
the torus tends to 0 in the thermodynamic limit, hence, conditioning on the
complement event yields an SC-state in this limit, assigning a uniformly
positive probability to the event that any two sites are connected by the
relevant bonds. With this in the hand, percolation of non-relevant bonds
can be immediately ruled out inside the O-regions, using FKG domination
from Lemma II.7, because ``non-appropriate percolation'' is a monotone
event in this case. In the D-regions, one first rules on the percolation of
O-bonds of the respective color (again by FKG) and then the percolation
of the bonds of the complementary color. K

APPENDIX

A1. Proof of Lemma II.5

The measures +1 and +2 are distinct, hence they are distinguished by
the expectation of a local function g. Since both have been obtained essen-
tially as limits of finite-volume states, it is enough to show that the expecta-
tion of the bond configuration function g under the corresponding Edwards�
Sokal measure can be expressed as an expectation, under the same measure,
of a local function f depending only on spin configuration _. The compact-
ness of the space of all measures (in the weak-* topology) then proves the
existence of the two desired distinct spin-states in the respective sets of
cluster points.

The function g can be rewritten as g( } )=�| g(|) $[|]( } ). Thus, rely-
ing also on the inclusion-exclusion principle, without loss of generality
it suffices to construct the function f only for g that indicates a fixed
configuration |� on a finite set of bonds 7, with no vacant bonds. Then,
7 decomposes into the disjoint union of the sets 7OR

, 7DR
, 7OS

, and 7DS

of those bonds where |� is dark-red, light-red, dark-blue, and light-blue,
respectively. Now, the corresponding f|� will be the product f|� (_)=
>b=(x, y) # 7 f|� b

(_x , _y), where

1197Extended Potts Model



f|� b
(_x , _y)=

e;J&1
e;J $S

_x_y
b=(x, y) # 7OS

e;J&1
e;J $R

_x _y
b=(x, y) # 7OR

e;}&1
e;} \1&

e;J&1
e;J $S

_x_y+ $S
_x

$S
_y

b=(x, y) # 7DR

e;}&1
e;} \1&

e;J&1
e;J $R

_x_y+ $R
_x

$R
_y

b=(x, y) # 7DS

(A.1)

Observe that for every b # 7 we have (note that |� b{v)

f|� b
(_x , _y) :

|b

w(|b) /b(|b , _x , _y)=w(|� b) /b(|� b , _x , _y) (A.2)

(see (2.2) to recall the meaning of w's and /'s), where in the arguments of
/ we have retained only the relevant terms. By noting that the external-field
terms have not been tampered with at all during this operation we can
easily convince ourselves that

:
|, _

f|� (_) W ;, h
ES, s, r; 4(|, _)= :

|, _

$|� (|) W ;, h
ES, s, r; 4(|, _) (A.3)

where W ;, h
ES, s, r; 4 is the corresponding Edwards�Sokal weight in 4 (see

(2.14)), with the dependence on the boundary condition _~ being only
implicit. Namely, fix a configuration _ and carry out the summation over
|7 on the l.h.s. Then (A.2) asserts that this is replacable by putting the
indicator $[|� ], independently of _ to have been chosen. The equality then
follows by summing over the rest of the variables. K

A2. Proof of Lemmas II.6 and II.7

We first prove Lemma II.6 for any G-measure. The claim for
SC-measures will be then an easy corollary of the FKG domination in
Lemma II.7. At several points in the forthcoming derivation, we will have
occasion to use the Strassen theorem [S]��or more precisely the corollary
to Strassen's theorem. This result may be stated as follows:

Theorem A.1. Let X1 ,..., XN denote a collection of real-valued ran-
dom variables (for simplicity each assumed to take on only a finite number
of values) and let +1 and +2 denote measures on the configurations of these
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variables. Suppose that a priori +1�FKG +2 . If the marginal distributions of
Xi are equal for all i, then +1=+2 .

Proof. See, e.g., [L] p. 75.

Given a spin configuration _, let ! denote its red�blue marginal, i.e.,
!x=R if _x # R and !x=B if _x # B. We start with a somewhat weaker
version of Lemma II.6.

Lemma A.2. Let +~ (;, h), V
r, s, 4 ( } ) denote the !-marginal of the Edwards�

Sokal measure with a G boundary condition. Then for Lebesgue-a.e. h,
there is a unique infinite-volume measure for this marginal.

Proof. We first claim that +~ (;, h), V
s, r; 4 ( } ) is FKG w.r.t. the order ROB.

Indeed, first let us observe that cylinder functions of these site variables
may be evaluated via conditional expectations given a bond configuration |.
In particular, each site that is the endpoint of a blue bond is blue, similarly
for the reds, and vacant sites are independently red or blue with probability
re&;h�(se ;h+re&;h) and se ;h�(se ;h+re&;h), respectively. Thus, if A is an
increasing event determined by the site variables we may write

+~ (;, h), V
s, r; 4 (A)=:

|

& (;, h)
s, r; 4(|) A(|) (A.4)

Here A(|)=EES(IA | |), with IA being the indicator function, and & (;, h)
s, r; 4 is

the random-cluster measure in 4 (with the boundary-condition dependence
being only implicit).

It is not hard to see that A(|) is an increasing function. Furthermore,
if A and B are both increasing events, it is easy to see that

EES(IAIB | |)�EES(IA | |) EES(IB | |)#A(|) B(|) (A.5)

Indeed the only randomness in the above conditional expectations come
from the ``vacant'' sites which are independently assigned their colors; thus
we use the FKG property for Bernoulli measures. Hence we have

+~ (;, h), V
s, r; 4 (A & B)�:

|

& (;, h)
s, r; 4(|) A(|) B(|)�+~ (;, h), V

s, r; 4 (A) +~ (;, h), V
s, r; 4 (B) (A.6)

where the last step follows from the FKG property of & (;, h)
s, r; 4( } ) and the

identity in (A.6). It is also evident that, among the G-type boundary conditions,
the measure +~ (;, h), V

s, r; 4 ( } ) enjoys the same FKG hierarchy as the corresponding
&(;, h)

s, r; 4( } ), e.g., the blue-wired is highest, red-wired is lowest, etc.
We now claim that for a.e. h, there is a single limiting +~ measure in the

G-class. Indeed, the free energy has a.e. a continuous derivative w.r.t. h and
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at the points of continuity, the fraction of blue sites (which is coupled to
h in the Hamiltonian) exists and is independent of the state. Moreover, in
both the red-wired and blue-wired states (which are both translation
invariant) this fraction is exactly the probability of a blue at any fixed site.
Hence, by the corollary to Strassen's theorem, these are the same state.
Since all G-states lie in between these extremes, there is just one such
state. K

Corollary. Let +~ (;, h), -
s, r; 4 ( } ) denote the marginal of the random cluster

measure that counts only whether each bond is red, blue or vacant. Then
for Lebesgue-a.e. h, the limiting red- and blue-wired measures coincide.

Proof. Let x and y denote a neighboring pair of sites. Since by
Lemma A.2 the limiting !-marginals +~ (;, h), V

r, s, blue-w( } ) and +~ (;, h), V
r, s, red-w( } ) agree, it

follows that the probability that both x and y are blue is the same in both
systems. Let us denote this probability by gb

x, y and further let bB and bR

denote the probabilities that the bond (x, y) is blue in the blue-wired and
red-wired measures, and similarly vB and vR for the probabilities that the
bonds is vacant. Finally, let *b

v, B denote the conditional probability, in the
limiting blue-wired measure, that both endpoints of the bond (x, y) are
blue given that this bond is vacant. Let *b

v, R be the similar quantity for the
red-wired boundary condition.

Since the underlying random clutter measures are strong FKG, it is
observed that

*b
v, B�*b

v, R (A.7)

It is also observed that *b
v, R<1. Clearly

bB+vB*b
v, B= gb

x, ybR+vR *b
v, R (A.8)

i.e.,

0=(bB&bR)(1&*b
v, R)+vB(*b

v, B&*b
v, R)+([bB+vB]&[bR+vR]) *b

v, R

(A.9)

But a priori each term on the right hand side is non-negative so it follows
that all three are zero. In particular, bB=bR (implying that the blue-bond
densities are equal) and thus also vB=vR . Using the corollary to Strassen's
theorem, the desired conclusion is obtained. K

Proof of Lemma II.6��G-Measures. Let x and y denote a neighbor-
ing pair of sites and let :B

x, y denote the conditional probability in the blue-
wired measure that the sites x and y are connected in the complement of
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the bond (x, y) given that both x and y are blue. Let :R
x, y denote the

corresponding probability in the red-wired measure. Now given that x and
y are both blue, the only possibilities for the bond (x, y) are to be vacant,
light blue or dark blue.

When these sites are externally connected by dark-blue bonds, the
ratio of these probabilities is 1 : e ;}&1 : e ;}(e ;J&1). For notational
clarity, let us temporarily denote these quantities by 1 : C : D. On the other
hand, if the two sites are disconnected, the ratios read 1 : C : s&1D. Now in
the red- and blue-wired states, we have determined that the probability of
a blue bond is the same and the probability of a neighboring pair of blue
sites is the same. The ratio of these probabilities is thus equal which gives
us

:B
x, y

C+D
1+C+D

+(1&:B
x, y)

C+s&1D
1+C+s&1D

=:R
x, y

C+D
1+C+D

+(1&:R
x, y)

C+s&1D
1+C+s&1D

(A.10)

The above is only possible if :B
x, y=:R

x, y and from this it follows that the
dark-blue bond density is the same in both measures. Thence, all bond
densities are the same and, again using the corollary to the Strassen
theorem, the measures coincide. K

As a simple Corollary, we obtain a domination bound for the extreme
G-measures:

Corollary. For any h(1)>h(2),

& (;, h (1))
red-w ( } )�FKG & (;, h (2))

blue-w ( } )

Proof. Let g be a monotone increasing cylinder function. Let

h� =inf[h: & (;, h)
blue-w(g)>& (;, h (1))

red-w (g)] (A.11)

and suppose h� <h(1). Since both h [ & (;, h)
blue-w and h [ & (;, h)

red-w are increasing,
this makes inevitable that & (;, h)

blue-w(g)>& (;, h)
red-w(g) for all h # (h� , h(1)). However,

this is in contradiction with &(;, h)
blue-w=& (;, h)

red-w for Lebesgue almost all h, hence
h� �h(1) (in fact, the equality holds). Since g was arbitrary, the proof is
over. K

Proof of Lemma II.7. Let ;, h be fixed and let us suppress them
from the notation. For G-measures the claim is a trivial corollary of Propo-
sition II.1 and Corollary above, thus we shall concentrate on SC-masures.
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We shall show that &4, blue-w(g)�&(g) for any increasing cylinder function
g and any SC-measure &.

Let thus g be a cylinder function with support on a finite set A of bonds.
Consider its ``spread'' over 4, i.e., g4=�x : {x(A)/B4

g b {x, with {x denoting
the ``shift by x.'' Let now ( } ) :

4, _~ denote the |-marginal of the Edwards�
Sokal measure with the weight (2.12) (considering the volume 4 with the
boundary condition _~ instead of the torus T) modified by the factor
e:g4(|). The respective normalizing constant Z:

4, _~ of this measure is then
also :-dependent and is logarithmically convex in :. Observing that F(:)=
lim4 A Zd (1�|4| ) log Z:

4, _~ does not depend on the boundary condition and
that it is a convex function in :, we can employ the standard convexity
argument to infer that

�g4

|4|�
0

4, _~ 1

&=4�
dF

d:+ } :1

�
dF

d:& } :2

�� g4

|4|�
:

4, _~ 2

+=4 (A.12)

for any :>:2>:1>0 and any two spin boundary conditions _~ 1 , _~ 2 . Here
=4=O( |�4|�|4| ) uniformly in the boundary condition.

For the interpretation of the l.h.s. it is important that any S measure
& is the |-marginal of some Edwards�Sokal measure whose _ marginal is
a (conventional) Gibbs measure. By using the fact that every local cylinder
function g of bonds can be interchanged, under expectation w.r.t. the Edwards�
Sokal measure, into a spin function f (as follows from the proof of
Lemma II.5), we can view the l.h.s. of (A.12) as a spin Gibbs specification.
By averaging over a translation-invariant spin Gibbs measure we arrive at
( f4�|4|) =( f )=&(g), where we denoted by f4 the ``spread'' of f.

It remains to work out the r.h.s. of (A.12) into the desired form. Let
us consider an auxiliary measure ( } ) :

4, V, blue-w , derived from &4, blue-w

by modifying the a priori weights (see (2.1)) in the following manner:
dark-red, light-red, light-blue, dark-blue will pick up additional factors
e&2: var(g), e&: var(g), e: var(g), e2: var(g), respectively, where the variance
var(g) of the function g is defined as

var(g)=sup
b

sup
|, |~ : |b$=|~ b$

\b${b

| g(|)& g(|~ ) | (A.13)

By observing the proof of Proposition II.1, it is easily checked that
( } ) :

4, V, blue-w satisfies the FKG lattice condition and, for :�0, a similar
argument we used in (2.9) proves that it actually dominates the wired
measure ( } ) :

4, blue-w .
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Now we can use the fact that any constant blue boundary condition
generates the blue-wired measure, so by choosing _2 in (A.12) to be such
prior to averaging over the state ( } ) , we arrive at the inequality

&(g)&2=4�(g) :
4, blue-w�(g) :

4, V, blue-w (A.14)

for all :>0 and all finite 4. By passing to the limits : a 0 and 4ZZd we
get the desired bound. Since g was arbitrary the upper bound in the display
in Lemma II.7 is proved. The lower bound is completely analogous.

The FKG-domination for the SC-measures is then the result of the
following estimate

&(;, h (1))( } )�FKG & (;, h (1))
red-w ( } )�FKG & (;, h (2))

blue-w ( } )�FKG &(;, h (2))( } ) (A.15)

for any h(1)>h(2), and any SC-measures &(;, h (1)) and &(;, h (2)). The middle
inequality follows by Corollary above. K

A3. Proof of Lemma III.1��General Case

In dimensions d>2, no diagonal torus is available. Hence we have to
proceed by brute force in deriving the chessboard estimate. In particular,
since the events we shall be studying (i.e., the various ways that a given
cube is bad) do not, after dissemination, result in the probability of a
definite configuration, no direct use of the formulas (3.1i)�(3.v) can be
made for the numerator estimate (c.f. the proof of Lemma III.1 in the case
of d=2).

The way we estimate the r.h.s. of the formula in Lemma II.3 in the
case of d>2 is by redistributing the weights of the graphical representa-
tion: we define new a priori weights

w~ (so)=w(so) e ;h�d w~ (ro)=w(ro) e&;h�d

w~ (sd)=w(sd)(se ;h)1�d w~ (rd)=w(rd)(re&;h)1�d

w~ (v)=w(v)(se ;h+re&;h)1�d

The weights w~ have one significant advantage over w. Namely, the weight
W (see (2.3)) corresponding to constant configurations (which appear,
standardly, in the denominator estimate) is given exactly by taking the
product of the respective w~ 's. For non-constant configurations we obtain
the following estimate.
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Lemma A.3. Given a configuration |, let C� R(|) and C� S(|) denote
the number of connected r- and s-ordered components containing at least
one bond. Further, let PR (|) and PS (|) denote the number of mis-
matched r- and s-pairs in |. Then

W (;, h)
s, r; 4(|)�rC� R(|)sC� S (|) _ `

b # B(TL)

w~ (|)& r&PR(|)�2ds&PS(|)�2d

Proof. Since the a priori factors of W (i.e., the square bracket in
(2.3)) are trivially reproduced, we just have to show that neither the site-
terms nor the terms counting the connected components have decreased.

To see the former observe that the vertex terms e\;h and se ;h+re&;h

can be split equally over the neighbouring bonds, giving rise to powers 1�d
in (3.1), where for the vacant bond adjacent to a non-vacant one we used
se ;h, re&;h�se ;h+re&;h. The same holds for numbers s, r inherent to
isolated vertices of the s- (r-)disorder (note that the additional negative
powers r&PR(|)�2d and s&PR(|)�2d partly compensate for the mismatched
pairs where neither s nor r are needed). Finally, the non-trivial connected
components are dominated by rC� R (|) and sC� S (|), respectively. K

Proof of Lemma III.1. As follows from the chessboard estimates
(Lemma II.3), it suffices to prove that a each particular bad pattern a
(i.e., a ``graphical'' configuration on a cube c) has small probability. We use
Za for the partition function constrained on the disseminated pattern a, i.e.,
Za=�| W (;, h)

s, r; T(|)[/a(TL)](|).
It will be important to know, for counting the connecting components

under the indicator /a(TL), how many connected components are there
within the pattern a itself. Let us use C� R(a) and C� S(a) to denote the
number of nontrivial (i.e., containing at least one bond) r and s-ordered
components of the configuration a on the cube c. It is an elementary obser-
vation that each such component gives rise to at most (L�2)d&1 connected
components in the disseminated configuration. Indeed, a single bond is
disseminated just into (L�2)d&1 parallel lines through the torus. Similarly,
each mismatched pair yields in total L2(L�2)d&2=4(L�2)d clones in the
dissemination; there are L2 clones in the plane containing the initial pair
and the plane itself is replicated into (L�2)d&2 parallel planes.

Note that every bond is shared by a total of d2d&1 elementary cubes.
Then, under the condition that s�r, Lemma A.3 implies

Za�r[C� R (a)+C� S (a)](L�2)d&1 _`
b # c

w~ (ab)&
Ld�2d&1

s&2�d[PS(a)+PR(a)](L�2)d
(A.17)
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with PR (a) and PS (a) denoting the number of mismatched pairs in a.
Since, trivially, the full partition sum Z��: # I w~ (:)dLd

, by Lemma II.3 we
get

(/a(c)) L�\Za

Z +
1�|TL|

�r1�L _`
b # c

w~ (ab)
max: # I w~ (:)&

1�2d&1

s&1�d2d&1[PS(a)+PR(a)]

(A.18)

where we used that C� R+C� S�2d&1, with the r.h.s. corresponding to a
``dimer'' covering of the elementary cube. Now, the pattern a is bad and
thus it contains either a vacant bond or a mismatched pair. Since

w~ (v)
max: w~ (:)

�
21�d

e ;}&1
(A.19)

(compare (3.3)) the total probability that a bad pattern occurs is simply
computed by enumerating all possible arrangements of the pattern a. In
this way we get the bound bounded as

:
a

bad pattern

(/a(c)) L�r1�L \d2d

2 \ 21�d

e ;}&1+
&1�2d&1

+2dd(d&1) s&1�d2d&1+
(A.20)

once L is large enough. To count the possible configurations, we used that
there are d(d&1) 2d&1 places to put a mismatched pair on the cube, and
that each has two possible colors. By setting the quantity on the r.h.s. equal
to $ the proof is finished. K
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