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Abstract

Recent advances in high energy QCD experiments probing the deconfinement transition from
hadronic to coloured quark matter tend to confirm that perlocation of unbounded quarks could
provide a signature of this phase transition. In the strong coupling limit the partition function of
SU(2) pure gauge theory can be modeled by that of an infinite spin Ising system with short-range
ferromagnetic interactions. We derive the Wolff-random cluster representation for these spin models
and show that, at least in these cases, the thermal and geometrical phase transitions indeed coincide.
Moreover, our results are presented in a more general setting {estates Potts variable and/or
long range interactions allowing a generalisation to a variety of physical syster29Q0 Elsevier
Science B.V. All rights reserved.
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1. Background

Full QCD gauge theory is, at present, the main tool available to understand the structure
of matter. At sufficiently low densities, stable hadronic particles (neutrons, protons, etc.)
are the building blocks of our surrounding world. However, at high densities a finer
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structure is believed to emerge made of colored quarks and gluons (the so-called quark—
gluon plasma) which are the ultimate constituents of the nuclear medium. This transition
from stable, color neutral hadrons to a plasma of deconfined colored quarks and gluons is
driven by the suppression of the quark—antiquark pair bounding interaction, the so-called
J /¥ bound state, whose existence is now well established. (See [24] for a recent review.)
Quite early, it has been proposed [5,19] to probe such high energy nuclear transition
through measurement of the/¥ suppression. The recent experiment NA50 in CERN
tend to confirm that this is indeed the case [20].

On the other hand, theoretical understanding of this effect has lead physicists to the study
of the phase transition mechanism in the context of the full QCD gauge theory. In the limit
of infinite quark masses, QCD theory reduceSti{N) pure gauge theory for which there
is a readily accessible Lagrangian formulation. The order parameter for these models is the
Polyakovioop (L) also calledWilson line trace operatofl7,21,22].

It has recently been proposed that the deconfinement transitiBii) pure gauge
theory could be characterized as percolation of Polyakov loop clusters [13]. There, using
a lattice formulation effectively corresponding to the strong coupling limit, the clear
evidence that pur8U(2) gauge theory shares the same critical exponents as the 2D Ising
model was established.

For pureSU(2) gauge theory, it has been shown [16] that in some approximation,
behaves like the magnetization of ferromagnetic spin systems with Hamiltonian

—Hett = ett »_(L)i(L);. (1.1a)
(i.J)

wherefe = [2T1~ N+ , whereT is the temperature andis the time variable with lattice
extendN; . Explicitly: SU(2) pure gauge theory can (in some approximation) be viewed
as a system of nearest neighbor one-component spins on a discrete lattice with spin values
continuously distributed in some bounded suljsef, S] C R. Furthermore — provided
the transition is continuous — they should belong to the same universality class [22], i.e.,
share the same critical exponerits.

This Ising-like model was introduced and studied by Griffths quite some time ago [14]
and is known as thimfinite spin Ising modelThe form of the Hamiltonian is exactly that
of Eq. (1.1a):

—H=Y_5S;. (1.1b)
(i,J)

Griffits studied the particular case of a uniform a priori distributior{ ed, +1] for the
S;. In the ensuing time, many similar models have been studied in a variety of contexts (cf.
the book [11]) but always with specific assumptions concerning the nature of the a priori
distribution.

3 As will be shown in a subsequent paper, the order of the transition depends on the a priori distribution of the
(L); which in turn depends on the details of the pure gauge theory. However, it appears that the models studied
satisfy our sufficient condition for a continuous transition, see, e.qg., [9].
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Back to SU(2) pure gauge theory: at a given temperatllire: 7, there exist islands
dominated by positive or negatiyd.) value. These are interpreted as local regions of
deconfinement despite the fact that globally, the whole system still exhibits a confined
stable hadronic state. When the percolation of these islands occurs then the system reaches
the (globally) deconfined phase of quark—gluon plasma, which may be accompanied by a
phase transition.

It has been argued [5] that the deconfining transition in [BWE&) gauge theory should
be related to some geometrical cluster formation of a percolation model. Quite recently,
numerical simulations [13] have indicated that this is indeed correct. Namely, following
[4] one can start from a configuration gf)’s and build connected bond clusters of nearest
neighbors with like sign of the Polyakov loop by placing bonds with probability 1
exp{2Betf(L); (L) ;}. The cluster size distribution of these bond clusters and the magnetic
properties of the loop variables in this joint bond-spin percolation model can be studied as
the temperature and system sizes are varied. The simulations performed in [13Y{with
2 lattice time spacings) have clearly shown (a) that the magnetic transition is Ising-like with
the same critical exponents as those of the two-dimensional Ising model and (b) that the
critical behavior in the average cluster size distribution arises at the point corresponding to
the phase transition of the magnetic (and/or3t2) pure gauge) model with the identical
critical behavior.

For the usual Ising (and Potts) ferromagnets there is an alternative formulation known
as therandom clustermodel [12]. It is now well established [1,4,10,12,23] that the
characteristics of one system can be completely expressed in terms of the other. In
particular the critical behavior (if any) of the spin-system translates directly into critical
geometricalbehavior in the corresponding random cluster model. E.g.,Tfos T,
the susceptibility equals the average clusters size andr'fer 7., the spontaneous
magnetization equals the percolation probability. In [6,7] and [18], results of this type were
extended to various other spin-systems such as the Ashkin—Teller model. In [2] and [3]
similar results were obtained for Hamiltonians of the form in Eq. (1.1b) that are invariant
under (continuous (2) and O (3) symmetry. Here the graphical representation used was
theWolff-random clusterepresentation that is implicit in the algorithm in [25].

In this paper we will develop a random cluster formulation for continuous one-
component systems of the type described by Eq. (1.1b). This representation is closely
related to the Wolff-random cluster representation used it{® and O (3) models [2,3]

— except without the extra components. First this allows for a general (and rather easy)
proof of a phase transition in these systems. Second we show that the geometric phase
transition inthis representation is of the same type as the underlying spin-system. E.g.,
a correspondence between the connectivity function and the two-point correlation function,
magnetization and percolation, etc. (Here as intftt®mponent systems one does not get
equalities but uniform upper and lower bounds.) Needless to say, these clusters are exactly
the clusters simulated in [13].

As it turns out our derivations are valid — essentially without modification — for the
generalization of Eq. (1.1b) to (continuous spinktate Potts models. Fer = 3, this
system bears the same relationship to $¥3) model as does the Ising-like system to
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the SU(2). Unfortunately forg > 3, the relationship ends. The relevant modelsStN)

are theZy-clock models which are only of the Potts form f§r= 2 andN = 3. Clearly

these higher gauge models — not to mention a more realistic QCD theory with finite-mass
quarks — will require some additional ideas.

The remainder of this paper is organized as follows: in Section 2 we will establish
notation and derive the random cluster representations. Section 3 will be devoted to
establishing monotonicity properties of these representations which are the cornerstone
for all the results that follow. In Section 4 we present the principle results of this work as
well as some additional consequences of these representations.

2. The representation

We will start by working in a rather general setting (the immediate relevance of which
may not be apparent). Consider a finite latficé.e., a finite graph) with siteS and edges
B. Sitesi andj that are connected by edges will be calleighbors— regardless of their
actual location — and generic edges will be denotediby). Beginning with the Ising-
like case, we will write the spin-variables that appear in Eq. (1.1b) as follows; et S; |
ando; = sgn(S;). Thus they; are, more or less, the usual Ising variables. The Hamiltonians
in Egs. (1.1) now read

H= Z Ji’jb,’bjO','O'j. (2-1)
(i,j)eB

We assume throughout thdt; > 0. The a priori distribution for thé; will be denoted

by db;. We will make no assumptions about the nature of this distribution — it may even
differ from site to site — except that it is confined to a uniformly bounded interval. Without
loss of generality, this is taken to @, 1]. We denote byiSb the product [, . db; and

by b a configuration of “spin-lengths” (so thhte [0, 1]5). The partition function oL at
inverse temperaturg is given by

ZLp) =Y /db exp{—BH). (2.2)
=+1

To obtain the random cluster expansion, we first wofte; = 255, ; — 1 whered, , is
the usual Kronecker delta. We observe that{@gp; jbib;ds, ;} = Ri jds;0; + 1 Where
R ;= (ezﬂ]ivjbibf —1).Then

exp{—pH) = P 2is it TR 186,.0, + 11. (2.3)
(i.j)
Expanding the product, we associate each term in the expansion with a bond configuration
o C L (or w € {0, 1}%). Indeed, for each bond, j) of the lattice, we must get either the
Ri j8c;.5; term or the unadorned 1. In the former case we say the kioriglis occupied
(wy, jy = 1) and in the latter the bond is vacaat ;) = 0).
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Thus far we have achieved the following expression for the partition function:

Z]L(ﬁ):/db[e*ﬁzi,jji,jbibj]zz l_[ Ri,jaoi,o_/v (2_4)

o (i,jlew

whereo € {+1, —1}° is a Isingspin configuration

Since for evenb, o andw, the integrand/summand is non-negative, the ratio of these
terms to Zr,(B) defines a probability measure on configuratidnso, w). This we will
call the Edwards—Sokal measure; this object is indispensable for cluster Monte Carlo
simulations and, for all intents and purposes was the object that was simulated in [13].
We will denote this measure b(yIE;Sﬂ(db,g, ). Summing over spin-configurations, we
get a joint measure on bond and “spin-length” configurations which we will call the Wolff-
measure:

ullp(db.w) =Y uE(db.o. o) (2.5)
o
and integrating out thb’s we arrive at the object of interest, the random cluster measure:
Hip (@) = / niip(db, ). (2.6)
b

The principle claim of this work is that the configurations of bonds determined by
the random cluster measures defined in Eq. (2.6) are exactly the objects that undergo
percolation when the underlying spin-system enters the low-temperature phase. Finally,
and of essential technical importance, is the other marginal of the Wolff measure, the
measure on thb’s

dpL.p(0) =) 1! 4(db. ). @7)

We observe that the conditional measures for the bond configurations given the
configurationb has the form of the familiar FK-random cluster measure (introduced
in [12]). These are defined as follows: & = (K; ; > 0| (i, j) € B) be a set of
(ferromagnetic) couplings and define thend activitiesR; ; = e?PKiji — 1. The FK-
random cluster measure on bond configurations given by

vtk p(@) o 27 TT Rij, (2.8)
(i,j)ew

hereC(w) is “the number of connected components”. (For the moment, we will leave
this definition as it stands, i.e., just the usual number of connected components of the
configuration — including isolated sites. This corresponds to free boundary conditions in
the spin-system — which we have been assuming all along — and hence the subscript.
However in the presence of other boundary conditions, which will be discussed in the next
section, the definition of “the number of components” has to be modified.) Indeed, the
right hand side of Eq. (2.8) is just the final term of Eq. (214) summed ovet andnot
integrated oveb:

ZC./-(w) 1_[ Ri,j:Z 1_[ Ri,jSUi,(Tj‘ (2.9)

(i,])ew o (i,j)ew
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This makes explicit the precise connection between these measures and the usual FK-
random cluster representations: the measures here are superpositions of FK-random cluster
representations. In particular, for fixed configuratiprdefineKy, = (J; ;jb;b;). Then the
conditional distribution for the bond configuration givkens just V{;KKb,ﬁ(_)' Of central
importance is the combination of Eqgs. (2.5)—(2.9) which allows the expression of this
superposition:

HEp(—) = / dpLip OV, 5(-). (2.10)
b
This will prove to be pivotal in the next section.

We close this section with the remark that for all the formalism thus far defined as
well as for all subsequent developments, there is little extra work in the extension to the
more general-state Potts systems. (And furthermore, as mentioned in the introduction,
for ¢ = 3, this is actually of some relevance in the context of pure gauge models.) Let us
thus consider Potts spins in the so-calieilahedral representatiomeaning that the spins,

o; take on they values in theg — 1)-dimensional hypertetrahedron. Then we have

(2.11)

if 5; =5,
0j-0j=

Lo (1
' {—1/(61—1), otherwise.

Thus we define§,- = b;o; with b; the same objects as before and we consider the
Hamiltonian

H=—(@-1 Z JijSi-Sj=—(qg -1 Z Ji.jbibjo; - 5, (2.12)
(i,j)eB (i,j)eB

where the factor ofg — 1) is for notational convenience. Writing — 1)s; -6 = ¢85, 5, —
1, we see that the various expressions in Egs. (2.4)—(2.10) are pretty much the same with
certain factors of 2 replaced lgy the bond activities should now re&yl ; = ¢?#7i.i%bj — 1,
the factors of 27(® in Eq. (2.8) and Eq. (2.9) should be replaced;5y® and finally, we
will now denote all of the various measures with an additional subscrigtéat example
the generalization of the random cluster measure defined in Eq. (2.6) will be denoted by
ME%,,{(—)- As is clear, the various random cluster measures, both the standard one from
Eq. (2.8) as well as the ones in Egs. (2.5) and (2.6) make sense for any positive walue of
despite the apparent lack of an underlying spin-system.

3. Monotonicity properties

All of the monotonicity results that we use stem from the FKG properties of the various
measures. Here we will provide a minimal background, for a more complete treatment,
the reader is urged to consult [15]. LeX1, ..., Xn) denote a collection of real valued
random variables. A partial order on configurations is defined in a natural waX:det
(X1,...,Xn) and¥Y = (Y1, ..., Yy) denote two configurations. Thefi> Y if X; > Y;
forall k. A real valued functior’ (X1, ..., Xy) is calledincreasingif it is increasing (i.e.,
non-decreasing) with respect to this partial order — in other words, an increasing function
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of all of its arguments. Decreasing functions are similarly defined./l(et) denote a
measure on these configurations andHgi{(—) denote expectation with respect to this
measure. The measugeis said to havepositive correlations or the weak FKG propeity

for any two increasing functions andG we havel ,[FG] > E,[F]E,[G]. If X andY are

two configurations, the configuratiohv Y is defined, at each, to be the maximum ok,
andYy. Similarly X A Y is defined by the minimum of the two values at e&ach sufficient
condition for positive correlations is tHeKG lattice conditiofFKG] namely that for each

X andY we haveu(X v Y)u(X AY) = u(X)u(Y). Measures that satisfy this condition
are calledstrongFKG. They are also characterized by the property that if the values of any
Xk, .., X, have been specified;, = V1, ..., Xi, = V, then the conditional measure
u(—| Xg, = V1, ..., Xy, = Vy) is also strong FKG. Finally ift1 andu, are two measures

(on the same configuration space) we gayrx 12 if for every increasing functiodr we
haveE,,[F] > E,,[F]. Ingeneralitis sufficient to verify all of the above for functions that
take on only the values 0 or 1 — indicators of events: events for which the indicators are
increasing functions are callédcreasing eventand similarly for decreasing events. The
statement of positive correlations for increasing events re&ds) B) > u(A)u(B). Itis

not hard to see that if a measure with positive correlations is conditioned on an increasing
event, the conditional measure will dominate the unconditioned measure.

The FKG properties of the FK-random cluster measures have been exhaustively studied
(see [15] for a review of most of what is known). Of immediate relevance is (1) the fact
that forq > 1, the FK-random cluster measures (as defined by the weights in Eq. (2.8)
with no modifications due to boundary conditions) are strong FKG and ()@jgf,ﬁ,q and
vE‘R,ﬁ,q are random cluster measures on the same lattice, and with the same value of
but with respective coupling parameters that satisfy > Ei,.j on every bondi, j) then
JFK Seva P

L:K,B.q ZFKG L;K,B,q
Our first monotonicity result pertains to the measures for the spin-lengths:

Proposition 3.1. LetLL denote a finite lattice with bondsand sitesS. ForK = (K; ; > 0|
(i, j) € B) aset of ferromagnetic couplings, &k . s , denote the random cluster partition
function

DK p.q = Zqu(w) l_[ R; ;

w {i.j)ew

with R; ; = e9PXij — 1. Letb = (b; € [0, 1] | i € S) denote a collection of site variables
anddb = [[;.gdb; an arbitrary product measure ofb, 115. For a fixed set of couplings
(Ji,; > 0] (i, j) € B), defineKy, = (J; ;b;ib; | (i, j) € B). Consider the measurgy.g ,
with density function

pL:p.g(db) oc e PLin Juibibigy o db.
Then forg > 1, this measure is strong FKG.

Remark. We reiterate that the above expression fof g ,(db) defines a legitimate
measure — which is in turn the marginal of a Iegitima%ﬁ q(db, w) — even for non-
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integer values of;. For ¢ = 2, the stated result can be derived, with a bit of work, as

a peculiar special case of the analogous result forrtitemponents of the spins iny-

type models that was proved in [2]. However the method here represents a considerable
simplification of the earlier proof and is applicable in a more general context.

We start with a simple lemma:

Lemma 3.2. For a set of ferromagnetic couplingg defineVy, (K; 8, ¢) in accord with the
right hand side of the above display

VL(K: B.q) = e PRin Kii oy g

ThenVy,(K; B, g) is an increasing function of all the couplings.

Proof. Clearly we need only verify this one bond at a time (which is in fact all that we will
have use for anyway). Thus suppose that two sets of coufifigsdK’ are equal except
for the bond(a, b) wherek/, > K, ,,. LetL = L\(a, b) be the lattice that is the same as
L save for the fact that the bond, b) is not present and ldé¢ denote the set of mutual
couplings that are on the lattide Let 7, » denote the event that the siids connected to

b by a path of occupied bonds. Then we will show that the rd4ie s ,/ k.., IS given

by

/

Pipa g 4 Kao +R;b[1 1} BN e Tab) (3.1)
PK:p.q q ’ q

with R, , =explgBK, ,} — 1. Indeed for amw € L, we can tally by hand the two states of

the bond(a, ) and compare the relative contribution of this configuratiowto. s , and

Px.p,4- In case the bonda, b) is vacant, the weight is the same in the primed system as

was the weight of» in the unprimed system. However for an occupiedb) the relative

weight will depend on whether or not the sitesand b are already connected . If

they are connected (namely i&» € 7, ;), then the number of connected components is

unchanged by the occurrence of an occugied) and the relative weight iR;’b. On the

other hand, itz andb arenotconnected i, the event of the occupied boid, ») reduces

the number of connected components by one and the relative contribufton jg . This

is summarized in the following:

Prip.g =[1+ Ry, [ > a1 R’/}

weTyp (i,j)ew
e Bl 5 wo 11 ) @2
&7y p (i,j)eEw

where for(i, j) in L the “bond fugacities'R; ; are determined by the common value of
the couplings. Dividing both sides of Eq. (3.2) ¥k 4, the first term in the large square
brackets become{ﬁ( b (Z74.»), the second one becomes];L K (7..») and Eq. (3.1)
follows. o

B.q
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A similar expression results for the ratx . g ,/ Pk g, and inserting the “prefactors”
(namely the terms of the form eikp Zm) BK; ;}) into the ratio of ratios, we can now
compareVy,(K’; 8, q) and V,(K”; B, q). Of course all terms in these prefactors cancel
except the one pertaining t@, b). Noting thatvEKK M(Ta,;,) is independent of the
coupling on{a, b) — primed or double primed — it is sufficient to show that the objects

Dl(Ka,b) = EiﬁK‘”’ (eqﬁ[(a,b _ 1)

and
1
Do (Kqp) = e PKab (1+ —[eqﬂKa»h — 1])
q

are (forg > 1) increasing functions o€, 5. For the first term this is obvious and the second
term can be checked by differentiation. In the latter case, the presence of the facior of
the exponentis crucial; cf. the remark that followsa

Remark. In the usual Potts systems (with= 1) the spin—spin coupling may just as well

be written Ji,j80i,0; OF Ji jlc1+ c2 - 80;,.0;] €1C. —UpP tO @ rescaling of the temperature,

the constants simply do not matter. But when the spins themselves have variable length,
i.e., J; j gets replaced withy; ;b;b; the “c;” becomes important. As we have seen, the
particular value ot1/c, played a role in the above lemma which in turn is a pillar for what

is established below. Now it may be argued that the tetrahedral representation is somehow
“natural” and for the caseg= 2 andg = 3, where we are starting from the premiseZof

and, respectivelyZz symmetry, this argument may have some merit. But beypad3,
especially for the non-integer cases, we could not resort to this tack. Here we simply point
out that if the coupling is written as suggested above wifla; > ¢ then Lemma 3.2 holds

and otherwise it does not. l.e., the tetrahedral Hamiltonian is extreme limit. In particular if
c1/c2 = q is not satisfied, some of the forthcoming conclusions will fail.

Proof of Proposition 3.1. We will verify the FKG lattice condition. In order to do this, it
is sufficient (and necessary) to compare configurations that differ in at most two sites. (By
iterative induction, this builds up to the general FKG lattice condition.)d_etO, 1)° be
a configuration and for distinct sitesv € S let A, and A, be positive numbers chosen
small enough so that, = b, + A, andc, = b, + A, do not exceed one. We have of
course assumed that andb, are less than one (otherwise there is nothing to prove) and
furthermore, to avoid provisos, we will assume that none oftthare zero. (Since we
are on a finite lattice, the extreme cases can anyway be recovered by continuity.) Thus
b v ¢, is the configuration that is identical to except at the sita where it is equal to
¢, and similarly forb v ¢, andb v ¢, Vv ¢,. Finally for the configuratiom we remind the
reader that the corresponding couplings are denotéthbyith the dependence on thig;
notationally suppressetly = (J;, jb;b; | (i, j) € B) and similarly forKp,,.,, etc.

The proof amounts to a demonstration that (Kpve,ve,: B, ¢)VL(Kb: B, ¢q)
> VL(Kbve,: B, ) VL(Kbve,; B, g). It turns out that most of the work comes about when
Juv is non-zero — here is where we will need Lemma 3.2 — but as a warmup to guide the
overall strategy we will start with the case whefg, = 0.
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Let N, ={i €S| Ji., > O} denote the “neighborhood” of and similarly for\/,. Thus
in the configuration® v ¢, andb v ¢, Vv ¢, we use couplingd; ,b;c, for i € N, when
we compute the correspondirig,’s and similarly for j € NV, we useJ; bjc, in the
configurationd v ¢, andb v ¢, V ¢,. Now consider the prefactors that relate the various
WL's to the @’s. Since we are assuming thét, = O all the same terms appear on both
sides of the desired inequality (albeit from different sources) and can be canceled from both
sides. Thence the inequality we need to establish redud&&tg,c,vc,:,¢ [ Pky: .91 =
[PKpvey: B.0)[PKpve,: p.9]- NOW in the configurations with the enhanced couplings, let us
write the larger bond activities as the ratio to the smaller times the smaller. E.g < faf,,
define

edBljvbjcv _ 1

Ajp= 3.3
o= (3.3)

with R; ., = e4F/ivbibv — 1. But then, for example, the terdk, .4, looks like (the
numerator of) the expectation of a function with respect to the measure defined by the
unraisedcouplings:

®KbV(rv;ﬂaq = ¢Kb§ﬂ,qEE|§,ﬁ,q[TU(w)]- (34)

Here IEE'Z 8 q(—) is notation for expectation of a function with respect to the measure
FK

VKo fog andT,(w) is defined by
Ty@) = [] rjwl?vm, (3.5)
jeNy
where we recall thab; . is one if the bondj, v) is occupied and zero if it is vacant. We
get a formula similar to Eq. (3.5) for the objegk,,,.s.4 in terms of the expectation of
the functionT,,. It is seen that botff;, andT, are increasing functions. Enjoying one final
time the luxury of/, , = 0 we see that

Pk ey veniBog = ®Kb;ﬂ,qEE§,ﬂ,q [Ty (@) Ty(w)] (3.6)

and the desired inequality follows, in this case, from the FKG property of the random
cluster measures.

For J,., not zero, the overall coupling that we use in the configurabonce, Vv ¢,
betweeru andv is given by J, ycucy = Juvbuby + Juvbu Ay + Juvby Ay + JuwAuAy.
It is noted that the “cross term” (namely, ,A,4, has two competing effects on
VL(Kbve,ver:8,¢4)- it €nhances the value of the bond activity, should the bpnd) be
occupied, but the quantity epBJ, ., A, Ay} appears in the prefactor (regardless of the
state of this bond). According to Lemma 3.2 the overall effects is beneficial; hence we will
rid ourselves of this cross term for once and all. Notice that as a consequence, all of the
prefactors are again out of the play. We define for the configur&ionand the numbers
A, and A, the configuration®, G andF with D; ; = G, ; = F; j = J; jb;b; for (i, j)
different from{u, v) and

Du,u = Ju,v(bubv + buAv + bUAM)v (3.78.)
Fu,vz-]u,v(bubv +buAv)a (37b)
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Guy= Ju,v(bubv +byAy). (3.70)
We define oulT -functions without consideration of the bond v):
T, = 1_[ [)\i,u]w(i’u) > (38&)
ieNy\v
Ty= ] (w]?e. (3.8b)
ieNy\u

Thus, for example®k,,.. .p.q = @G;,g,qﬁl‘u)g'.(ﬁ 4+ Further, the desired inequality now
reads @p; g Pky: .4 1Epg [ TuTo] = [P0 PG, IEE [ToIEG,  [Tul.
By the various FKG properties we have (ipe 1)

Epp o [TuTol = Epy [TulERy [Tl > EE  [TulEG g, [To] (3.9)

the second step following from the fact that the measure with the larger coupling
dominates. It remains to show thlp. g , Pk, 5.4 = PF.p.¢Pa:p.q- As before, let us define
the ratios

_ explgBDu,v} — 1

— explgBJuvbuby) — 1
and similarly forf andg. Then the desired final step is just to show ﬂEE’E;ﬂ’q[d‘“w»v)] >
Eii;ﬁ,q[f%’w]Eiﬁ;ﬁ,q[‘gw(u’v)]‘
Leta = VHE!(Kb,ﬂ,q(wW!U) =1). Then we have

Bl [0 ] =ad +1—« (3.10)

imi ; K oY FK v
and S|m|larexpreSS|0nsderﬁbﬂ’q[f ( >]andEKbﬂ’q[g @], Thus

]EE';IM [f“’<“’“>]]EE'§ﬁ,q [0 ] =laf +1—allag+1—a]
=?(f-D(Eg-D+a(f+g —20+1 (3.11)
and we are done if we can show that 1> o(f — 1)(g — 1) + (f + g). But the right-
hand term increases as a function of (the parameteNow the best case conditional

scenario for the bondu, v) to be occupied is when the opposite ends of the bond are
already connected (c.f. the discussion prior to Eq. (3.2)) and this gives us

a < 1— WPluvbube = 5 (3.12)
A careful check of all terms shows that in fact
l+d=a(f—-DEg-D+(f+9 (3.13)

and the proof is complete.O

As a direct consequence of Proposition 3.1 we obtain the following:

Theorem 3.3. Consider the Wolff measure%ffﬂ’q(db, ) on a finite latticelL as defined
in Eqg. (2.5)but with arbitraryq > 1; explicitly

uﬂﬂ’q(db,a))O(UE;KKb,ﬁ,q(w)[(DKb;/g’q] ]—[ e Pliibibjgp.
(i,j)elL
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Then these measures have positive correlatiarsweak FKG. In particular the random
cluster marginalsuff% g have positive correlations.

Remark. Interestingly enough, the full Wolff measures aret strong FKG. Indeed as
mentioned in the first paragraph of this section, a property of strong FKG measures is that
conditioned on the specification of some of the variables, the resulting measure is itself
FKG. However if we consider the event tlt bonds are vacant, the result is a measure on
the site variables with density function given ﬁ/(iw exp{—pBb;b;}. Obviously this does

not have positive correlations. At present, it is not clear whether or not the random cluster
marginal is strong FKG.

Proof of Theorem 3.3. Let F and G denote two increasing functions of configurations
(b, ). To clarify what is to come let us denote thesefpyw) andGp(w). We write, as in
Eq. (2.10)

EYY s ,[Fo(@)Gp ()] = / pL:p.qg @DELS, 5 [Fo(@)Gh()], (3.14)
b

where the varioust’s denote expectation with respect to the measures indicated by
their superscripts and subscripts. Since, for fikedhe functionsFy(w) and Gp(w) are
increasing functions afw), we have

Ef 'y p.g [ Fo(@)Gb(@)] 2 BfS, 5 [Fo(@)IEL, 5 [Gb(@)] (3.15)
by the usual FKG property of random cluster measures.
We claim that the objectEEbe,ﬁ,q[Fb(a))] andEEbe,ﬁ,q[Gb(w)] are both increasing

functions ofb. Indeed, raising the configuratitrhas two effects: first it actually increases

the value of the function — for fixed, these are increasing lm Second it increases the
values of the couplingKy associated with the random cluster measure. As discussed in
the second paragraph of this section, FK-random cluster measures with larger couplings
FKG dominate those with smaller couplings. Thus, by the FKG property of the measures
PL; 8,q (db) established in Proposition 3.1 we have

/ PLipg @DEL, 5 o [Fo(@)IELf, 5 4[Go(@)]
b

> [ prap RS, g Fo@) [ propy @DETS, 5 [Go@)). (316
b b
Putting together Egs. (3.14)—(3.16) we arriveIE%Y’ﬂ’q[FG] >EV, [FIEV, [G] as

: L:g.gt" T FLiB.g
desired. O
4. Some consequences of monotonicity

In this section we will once again focus on integer valueg @bf course with a special
eye towards the casgs= 2 andqg = 3) and derive various relationships between random
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cluster events and correlations in the spin-systems from which they originated. Results
of the sort that we prove are typical for systems with “good” graphical representations.
(A reasonably up to date list of other systems that have been treated can be found in [7]
Table 1.) For the time being, the setup on a finite lattice without boundary conditions
will be sufficient. However later in this section we will need to discuss other boundary
conditions and infinite volume limits. Throughout this section, to avoid excessive provisos,
we will assume (in finite or infinite volume) that the a priori decoupled average spin length
is uniformly bounded below strictly away from zero:

inf/b[ db; =c>0. (4.1)

Our first result concerns the two point correlation function.

Proposition 4.1. Consider a continuous-spip state Potts system on a finite lattite
with a Hamiltonian/ as given in Eq(1.1b)or Eq. (2.12) Let (—)1..1 g denote thermal
expectation with respect to the corresponding Gibbs measure am‘ﬁ%t denote the
associated random cluster measure. Foandk in S, let 7; ; denote the event that the
sitesj andk are in the same connected cluster. Then

UG o (T30 2 (S - Skl 5 = 8 o (Ti0),
wherec is defined in Eq(4.1).

Proof. We use the full Edwards—Sokal measure decomposed into bond configurations:
(Si - Sl ﬁ = ([6b115; - k)34 4
= Z Hi g @B o (01005 - 5e|o], (4.2)

Where]EES/3 q[ ] denotes expectation with respect to the meaa% defined following

Eq. (2.4). Now in case € 7} the only spin configurations that contrlbute are those in
whicha; = oy so the dot product is one. On the other hangldndk are in separate bond
clusters, then for any fixed value 6f, all values ofs; contribute with equal probability.
Using the fact that the (vector) sum of the corners of a hypertetrahedron is zero, we see
that in this case there is no contribution. Thus we have the identity

(87 - Sl p = Bl g o [(sB0TT;, ], 4.3)

WhereEWﬁ q[ ] denotes expectation with respect to the Wolff measureﬂanpw the
indicator for the event .

For the upper bound, we simply use the fact thaf, <1

For the lower bound, we use the FKG property for the Wolff measure (twice) and bound
E{Vﬁ J1b)] (andE}ﬁ‘fﬁ,q[bk]) then below by the value in the system in which all the other

b’s are zero which gives us&. O

Corollary. Let

& = Z<§i : §k>L;H,ﬂ
keS
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denote thdlinear responspsusceptibility at the site and letC; (w) denote the number of
sites connected toin the configurationw. Then

CZIEESM[C,'] <A< EESM[C"]’

wherec is the constant described in E@.1).

Proof. This follows from the identityEESg,q[C,»] =Y RS (Tix) and the above

proposition. O

C
B,

Remark. Modulo certain fine points related to infinite volume limits etc. the preceding
proposition and corollary shows that if there is critical behavior in the spin-system then
critical behavior will also be observed in the graphical system and vice versa. Furthermore,
if there are exponents associated with the decay of correlations, the susceptibility and/or
the correlation length these will be equal to the exponents associated with their geometric
counterparts. A similar relationship holds for percolation and magnetization however this
— as well as a complete discussion of infinite volume limits — will require a look at
boundary conditions.

4.1. Boundary conditions

We will start our discussion of boundary conditions in a general framework but then
quickly confine attention to lattices that are subsets of an a priori infinite lattice. The
boundary conditions that we will consider for the graphical models will be just those that
arise from boundary conditions that can be imposed in the spin-system. (Although more
generality can be conceived of in the random cluster models, these are of no interest in the
present work.)

Here we will define boundaries in terms of sites. Latenote some graph and Bt ¢ S
a subcollection of sites which, for reasons particular to the problem at hand, is called the
boundary. For the usual cases (which will be the principal focus of our attention)both
anddLL will be finite sets. However for long-range interactions, we may have to consider
oL infinite with L\aL finite. E.g., if the (site) lattice i€, I.\dLL would be a finite piece
of Z? while 9L the rest ofZ?. The typical situation in spin-systems is to specify the value
of the spins on the boundary: for eacle 9L there is some fixed valus;. The values
of these spins determine the boundary condition; for notation we Wilﬁuﬁe: (§,~ lie
dlL) to denote this collection of values. In the context of statistical mechanics, at least for
the short-range cases, the Hamiltonian structure immediately tells us what to do: for each
configuration of spins o8\ 01L, the Hamiltonian provides the energy given the boundary
configuration which in turn gives us the probability distribution for configurations of these
“interior” spins. The long-range cases are only slightly more complicated. Indeed, for
ferromagnetic interactions, sensible thermodynamics and statistical mechanics (as well as
sensible random cluster models) only occur if the interactions are uniformly summable. In
this case even an infinite boundary can be approximated by a finite set. Thus, in what is to
follow we can for all intents and purposes assume that hodimd 9L are finite. We thus
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arrive at the so-calledonditional distributionswvhich will be denoted b}(—)[if%{’ﬁ. One

can also consider superpositions of such specifications, our notation for these objects is
similar: if # is one such superposition, the superposition of the corresponding distributions
is denoted by—ﬁ;ﬂ_ﬂ.

For the systems under consideration, a (single) specification means a fixed vaJue of
ando; at eachi € 9IL. To describe the effects of such boundary conditions on the random
cluster models, let us start with the simplest (and arguably the most important) case,
namely that each of the boundarys points in the same direction. Here the random cluster
expansion proceeds pretty much as before — notwithstanding the fact that the boundary
b;’s are fixed — except for the fact that the clusters that are connected to the boundary are
now notfree to flip. Thus we can write down the same formulae as before, e.g., Egs. (2.8)—
(2.9), but now C(w)” should be interpreted as the number of components thahaire
connected to the boundary. At the expense of an overall (and unimportant) fagtat isf
preferable to count as one more component all the sites that are connected to a boundary
site — we thus consider these to be part of a single component. Of course this relabeling
does not change any of the random cluster measures but it has the following advantage:
these are the same measures that one would have gotten if all the boundary spins were
regarded as (or collapsed into) one single spin that now points in all of ttieections
with equal probability. This giant boundary spin should be thought of as having a fixed
length with couplings to the interior spins adjusted in accord with the particulars of the
(b; | i € 9L). Of course the statistical mechanics still has to be interpreted according to the
old boundary conditions but this is not particularly difficult to do. In particular, if thefsite
is connected to the boundary this does not meandhats a conditional average of zero.

On the contrary, it means that this spin is locked into the direction of the boundary spin.

The counting of the components by this rule, corresponding to this fixed, same direction
boundary condition, will be denoted l&yy (w) (the w stands for wired). The crucial point
of the preceding discussion — and for that matter all of the generality we have allowed
for in the underlying graphs — is that the wired measures so obtained are now realized as
free measures on the peculiar graph where all the boundary sites of the original graph are
identified. Hence, the various wired measures enjoy all the monotonicity properties that
were established in Section 3.

Other boundary conditions can be treated along pretty much the same lineSy Let
denote an arbitrary boundary specification. This divides the boundary siteg digint
subsets where the correspondifgpoint in theg different directions. As is not hard to
see, the Wolff and random cluster measures end up as measures where these boundary
components are each treated as a single spin. However now the cluster configurations
are restricted (i.e., conditioned) to those configurations in which there are no bond
connections between these separate components. We remark that the Wolff measures
and the corresponding random cluster andharginals corresponding to these general
specifications usually do not have the FKG property.

The following, although elementary, is the cornerstone for the finite volume analysis of
percolation and magnetization.
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Proposition 4.2. Let L denote a finite lattice with bounday. and let’# denote a
Hamiltonian of the type described in EQ.12) Letuﬁﬁlgs"m( ) denote the Wolff measure

associated with the boundary spemﬂcatlm Let o [W]( ) denote thgfully) wired
measure that has; = 1 for all i € 9LL..

S L] W;[W]
]L /3 ; ( ) IL B.q (_)
Wi [w]

Thus, in particularu (=) is maximal Wolff measure for the Hamiltoniah

L:B.q
Proof. FortheS’aL in question leblLy, ..., L, denote the separate boundary components
where the boundary spins point in the different directions andilet A(dLy, ..., 0Ly)
denote the event that there is no connection between any of these componebtg, Let
denote the collection of the lengths of the sp‘ml and, finally, Ietu]L ﬂW -ba] (—) denote
the wired Wolff measures with boundary lengths givenlgy. Then, as was discussed
above,
;S W; [w,b;
VS oy = b ), (4.4)
SinceA is a decreasing event, it follows that
HRY W; ,b;
s ) S g o), (4.5)
It remains to show thatL B ( ) >FKG Mﬁvﬁ["; ‘oLl (—); i.e., thatitis “better” to have spins
of length one. This is established by an easy limiting argument: Replace the measure
M%g";’bm(—) by a similar measure in which the distribution of the boundaly is
concentrated near their specified values but allowed to go all the way to one. The fully
wired measure is then realized as the said approximate measure conditioned on a positive

event. EwdentlymL B ] dominates these approximations and hence the limiting measure

W[Wbd]L( )

HL:g.q .

4.2. Percolation and magnetization

To simplify the forthcoming discussion, we will focus on the cases whers a
d-dimensional homogeneous graph of finite degree, i.e., all sites are equivalent and there
are a finite number of bonds per site. Furthermore we assume that this invariance is
respected by the (infinite volume) Hamiltonian. However with almost no modification,
these results extend to the case ef-dimensional Bravais lattice and, with only a small
bit of extra work, to the cases of homogeneous independent disorder and/or long-range
interactions.

Spontaneous magnetization is, of course, a thermodynamic quantity. Thus in principle
one must add a magnetic field, compute the free energy in the infinite volume limit and
check the limiting value of the derivative. There is an alternative: namely in a finite
(regular) volume, compute the magnetization per spin optimized over all possible boundary
conditions. If this is done in a growing sequence of volumes that eventually exhaust the
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lattice — and done so in such a way that the surface to volume ratio tends to zero — then
according to the classic arguments, a limiting value of magnetization per spin emerges and
this is equal to the thermodynamic magnetization.

As it turns out, we will require considerably less than these “thermodynamic sequences”
of volumes. For our purposes any sequende; | k = 1,2,...) with Ly C 41 that
eventually exhaust the lattice will suffice. We will use the notafiory” £ to indicate
passage to the infinite volume limit along any such sequence. As will be demonstrated
shortly, here we are in the position to proclaim what is physically obvious for a
ferromagnet: the optimal boundary condition for magnetization is exactly the one where
the boundary spins are fully extended and pointing in the direction where we wish to see
magnetization. In particular, this boundary condition optimizes the local magnetization at
each site irlL.

Percolation, in correlated systems, should also be defined with some attention to
boundary conditions. The definition for percolation that has proved to be the most useful is
as follows: define, in finite volume, the quanti®y (i), the probability that the site(in 1)
is connected to the bounda#ny..,, computed in the boundary conditions that optimize this
probability. Percolation is then said to occur if, for fixedPr, (i) does not decay to zero as
L L.

For our system, the first connection between these two notions is the following:

Proposition 4.3. Let I. ¢ £ denote a finite lattice with boundayl. and let H be a

Hamiltonian of the type described. Liet I and define

. o A0S

my (i) = max(S; - éa)yy .
SalL ”

wherees is a unit vector pointing in the direction of the first spin-state. Further, let

N RC[#] 4 .
PL(i) = maxpr, % , (Tio1),

where7; 51, is the event thatis connected to the boundary. Then both of these maxima are
achieved in the fully wired state, i.65;, = ¢1, i € dLL. Furthermore,

PL@) > my(i) = cPL>),

wherec is the constant defined in E@.1).

Proof. The fact that the probability of; 51, is maximized in the fully wired boundary
conditions follows immediately from the fact that this is an increasing event and these are
the FKG-maximal boundary conditions. Let us turn our attentioélto(i-)]iﬁé’q. First,

in the context of the Edwards—Sokal measure, it is clearihmself vanishes unlessis
connected t@LL. But shouldZ; 51, occur, we will get a positive contribution — namely

— only if i is connected t@1L1 (the portion of the boundary where the spin points in the

¢1 direction). Otherwise, the contribution is actually negative. In any case, we have

S A0S W; S;
(Si - ea)y”y , <EL 5 Ibillg 0, (4.6)
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whereE ﬂsqal [—] denotes expectation with respect to the mea %S;L (—) andlz;

is the |nd|cator for the everE sLL- The right hand side is the expectation of an increasing
function and hence, for angy, is less than the corresponding expectation in the fully
wired measure. But here we have equality:

(Si-ea)ty =B pbilg ), 4.7)

Where(—)ﬁl_ﬂ p is notation for the thermal state obtained with all boundary spins sat to
The upper and lower bound®y, (i) > my (i) > c¢PL(i), follow from considerations
similar to those in Proposition 4.1 and the corollary that follows.

As an immediate consequence:

Theorem 4.4. Consider a spin-system/random cluster model of the type described and let
i € L denote any site. Then

Poo :H!I;nEPL(i)

exists, is independent bind independent of holv L. Letm denote the limiting single
site magnetization

m= lim my,(i),
L/L

which also exists independenticdind how the infinite volume limit is taken. Theris the
spontaneous magnetization and these quantities are relatéd oy m > ¢ P, wherec is

the constant described in E¢4.1). Explicitly, there is spontaneous magnetization if and
only if there is percolation and the critical behavior lack thereo} is the same for these
two quantities.

Proof. Most of these claims are a direct consequence of the following observatidn: let
andlL; denote two finite lattices witl.; C ILo. Now consider the restriction of the wired
Wolff measure inL, to the latticel.; — which we denote by@ﬁ’l;;[gvfgﬂ(—). Then this is
dominated by the wired measurelin:

W; [wlLo]

I‘L]Llﬁq (— )\ I’L]Llﬁq( ). (4.8)

Indeed, the restricted measure can be constructed as a superposition of measures with
boundary condition provided by the configurationlog\IL; each of which is dominated

W.
by iy (=),

Leti € Ly and conside®y, (i), the probability of a connection to the boundary in the
next lattice along the sequence. Observe that a connection betarelL;_ 1 necessarily
implies a connection betweéranddlL,. Thus

Wi WL
Prp () <y (T < w5 (T a,) = Pu (). (4.9)
Similarly we havemr, (i) < my,(i). Since the sequences are monotone, it follows
that limits m and P, exist. Further it is not hard to see that the limit is independent



Ph. Blanchard et al. / Nuclear Physics B 588 (2000) 229—-252 247

of how L ~ £ (by comparison with a standard sequence) and of the particular site
i (by consideration of a shifted sequence). Since for arand L. we have Py (i) >

my (i) > c¢PL(i), the inequality persists in the limit. Finally we note that since fully wired
boundary conditions optimize the magnetizatioreathsite, then these are exactly the
right boundary conditions in which to compute the (finite volume) magnetization per site.
Obviously, in any finite volume, the magnetization per site exceeddowever, consider

a large boxL containing the origin wheray,(0) is very nearly equal te:. LetIL(i) denote

the translate ol to the sitei. If Ly is very large, then for most sites i, — save those
close to the boundary — we halgi) C Ly and henceny, (i) < mg.(0). From this it
follows that indeed m is the spontaneous magnetizatian.

5. The existence of a low-temperature phase

In this final section, we will establish the existence of a magnetized phase (and in general
for non-integerg, a percolating phase) using domination bounds. We will provide two
separate arguments: the first is quite simple but does not cover every conceivable case. The
second requires a bit more effort but provides a complete argument and presumably a better
bound for the transition temperature.

We start with the elementary result:

Proposition 5.1. Let M{‘{M(—) and M}ﬁ‘{ﬂr(—) denote two(free boundary Wolff-
measures on the same lattice with the same couplings the sameJ; ;) but withg >
r > 1. Then

W W
ML;ﬂ,q(_) F%GM]L;ﬂ’r(_).

Proof. Itis sufficient to show that

Wi @) = 1@, Dl s  (@,D)

with I an increasing function. To this end, let us rewrite the weights:

W g (@, B) [1_[ e Pabiti T ERLA/ (q)}q“””, (5.1)
(i) (i,j)ew

where we make explicit thg dependence oR; ;(¢) = e?PJiibibi _ 1 and wherd(w) is

the number ofoopsof the configuration (here defined to be the minimum number of bonds

which must be removed in order to reduce the configuration to tree structures). In the above,

we have used the identitfw) = ¢(w) — B(w) + constant whera is the total number of

occupied bonds. The ratio of the weights contains the tgrm)‘® — which is increasing

becausé is increasing and also the product over all occupied bond®of(¢)/qR;, ; (r).

We claim that this ratio is greater than one (which makes the overall product increasing in

w) and increasing ih. Indeed, rewriting the ratio as
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1
r Rij(q) _ 285, Rij (@)
q Rij(r) r/%—];b/Ri,j(r)

(5.2)

both claims follow from the fact thé[e* — 1] is an increasing function of. O

We now observe that theg = 1 models are particularly simple. Indeed, these are a
generalization of the mixed bond site percolation models: sites are independently assigned
valuesb; in accord with thea priori distribution and, given the configuratidn the bonds
are independently occupied with probabilipy ; = 1 — e=#/:.i%% or left vacant with
probability 1— p; ;. (Notice that the ultimate distribution of the site variables is the original
a priori distribution.) Ordinary bond site percolation is the special case Wwhean only
take on the values zero and one.

Since the bond density is controlled by the paramgtet is clear that unless there is
too much mass dt; = 0, there will be percolation iB is sufficiently large. This is subject
of our first result:

Theorem 5.2. Let £ denote some infinite graph assumed, for simplicity to be of finite
degree and homogeneofadl sites equivalent and all bonds equivalganhd consider a-
state system — also assumed to be homogeneous — defifiedthny > 1. Itis supposed
that £ is capable of supporting percolation. Letdenote the site percolation threshold for
L. Then if pp (b; > 0) > s. (Where p;, denotes the a priori distribution for the problém
there is percolation/magnetization fgrsufficiently large.

Proof. For ¢ > 0 small enough, we can find > 0 such thato,(b; > A) > s. + €.

We then deem any site with; > A to be “occupied” and otherwise sites are declared
vacant. Between neighboring pairs of occupied sites, bonds have a probability of at least
1— e=B4% Thus our system dominates a bond-site model with parameters + € and
p=1- ¢~$4% As is well known (and not hard to prove) whenewsest s., there is a

pc(s) < 1 such that there is percolation fpr> p.(s). (Recently this has even been shown

to be a Holder continuous function [8].) Evidently there is percolation in our systesn, if

is large enough to ensure thatle—h4 > pe(se+€). O

The above result is obviously unsatisfactoryif(b; = 0) < s.. Indeed, ifg > 1, the
ground state has every bond occupied and ewemgt its maximum value (presumed to
be one). This suggests that there should be a percolation/magnetization phase transition for
any (non-trivial) a priori distribution of the’s. And it also suggests that the previous bound
may be far from optimal. We remedy the first difficulty and hopefully, to some extent, the
second with the following:

Theorem 5.3. Under the hypotheses of Theorér2, for the models described with> 1
there is spontaneous magnetization/percolation fopasufficiently large.
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Proof. We start with an elementary result on stochastic dominanceXletXy, ..., Xy
denote a collection of zero—one valued variables with probability meagkpe Let W (—)
be independent measure th 1}V with probabilities defined by

W(ijl)zr)’r(ﬂnv(xj:llxnj), (-3)
Ij

whereX|; is a specification of eack exceptX;. In other words, the densities are given
by the worst case scenario conditional probabilities. Tien >gxg W (—). Although this
result is well known and the usual derivation is quite simple, the following — which we
believe is original — is even simpler and will be included for completeness.

By the FKG property of independent measure, it is sufficient to show that

v(X) = I (X)W (X) (5.4)

with 7 (X) an increasing function, i.e., that the ratiowd W (presumed to be well defined)
is increasing. This means we must show that for ¥py

U(X”jﬂXjZJ.) - W(X“jﬂXjZ:].) _ W(X;=1)

U(X”jﬂXjZO) - W(X“jﬂXjZO) 1-W(X; =1

(the last step following from independence). Multiplying and dividing the leftmost term by
v(X);) — and observing that/[1 — y] is monotone — the above amounts to showing that
v(X; =1]Xy;) = W(X; =1) which is true by hypothesis.

For the case at hand, we will consider the bond margjx%(fi’*’; (w), defined in Eq. (2.6)
wherelL is any subset of the lattice (the domination will be inherited in the infinite volume
limit). We have taken free boundary conditionsbronly to be definitive, any boundary
conditions (including wired) for which the Wolff-measures are FKG will suffice. Since the
above is the marginal of an FKG measure, it also has positive correlations. It is therefore
clear that for a given bon¢k, ¢), the “worst case scenario” is when all other bond$.of
are vacant. Let us define the measure orbth@ppropriate to these circumstances:

VL(db) oc [ [ e P75 T on(dbi). (5.5)
(i, J) i

(We omit theJ; ; in the exponent because we have assumed, for brevity that the graph is
homogeneous.) The estimate for the bond probability is given by

B R Ry (e —1
1+ 1By (Reo) (9 — 1) +Ey (70

p (5.6)

(The factors of tg in the middle term appear because under these worst case circum-
stances, the presence of the bond always decreases the number of connected components
by one.) It is therefore sufficient to demonstrate thattheaverage o&4#i%i gets large

when B gets large. In case the distribution 6 does not go down to zero, we are in
essence done. (And, needless to say, could have used the result of the preceding theorem.)
Let us therefore assume that the suppous gobes all the way down to zero.
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We start by absorbing the factor ef #2¢% into the function we wish to average.
Defining V] to be the measure that is similar to that of Eq. (5.5) but with b@nd)
omitted in the product, it is clear that

Ry (e DBbebry
L

qBbebr) —
Ey, (e ) = Ey/ (e—Pbibr)
L

> EVHZ (e(qfl)ﬁbzbk)' (5.7)

Let A € (0,1). We will estimate the right-hand side of Eqg. (5.7) by integrating only
over the region where both, and b, exceedA. Keeping in mind an expression for
the density similar to that in Eq. (5.5) let us consider separately the numerator and
denominator when we evaluaﬁévi(e(q‘wa”k). In the numerator: the function can
be estimated by@~D84% Next let AV (¢) denote those sites df that are connected

to ¢ — save for the sitek, and similarly for N’(k). Then the numerator contains a
factor of [T;cpre) € P2 TTjenray € #7*%7 in the integrand which we may replace by
[Tienry ¢ PP Tl jenr € #%7 - Finally, there is the remainder of the (interacting) density
which we write aJ |, ;» e #**; where the double prime means the omission of any term
involving £ or k. In the denominator, we have similar terms involvid?«?i | ¢=Abcbi and
evene Pbtbk — all of which we can bound by one — to be integrated against the double
primed product. Thus if we defing to be the measure with density

Vi (db)oc [T e ?i [ ] ptdbi). (5.8)

(i)

We have that

EVL(e"ﬁ”"’k)>[p<b>A)]2e(‘f“ﬁMEVg[ [T e 11 e‘”’f}. (5.9)
ieN'(0) JeN (k)

However the measur®/” is of the form (product measurejdecreasing function ab)
and the quantity to be averaged is a decreasing function. Invoking the FKG property for
product measures we thus have

2(6-1)
EV£|: IT ¢ ] e_ﬂbf'i|>|: / p(db)e_ﬂb] , (5.10)

ieN'(0) JEN (k)

where¢ is the coordination number @f.

For particular examples @f priori distributions, we can make efficient estimates of this
final term. (At this point theébestcase is when there is mass at zero. Or, as an example,
if the density is continuous and positive at zero we get ! for each integral we have
to do.) In general we can pick < 1 conveniently small and estimate the final term by
[p(b < €)e P12¢—D Supposing then that(2; — 1) < A2 it is seen that ag — oo the
quantityEy, e?b¢br) goes to infinity and hencg — 1. As soon as this exceeds the bond
percolation threshold fof., magnetization and/or percolation in the interacting model is
guaranteed.
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6. Summary and conclusions

For the infinite spin Ising model we have shown that magnetization is equivalent to
percolation of Wolff-clusters and that furthermore the thermal and geometric critical
behaviors are identical. The derivations in this work represent a considerable simplification
of the original derivations in [2] and [3] for the&(2) and O(3) models. Furthermore
they are applicable in a variety of contexts; in particular the continuousgsptate Potts
model which, forg = 3, share the same similarities to 18&/(3) gauge model as the Ising
case does t&U(2). Despite the fact that the models under consideration are far from a
realistic gauge theory, the conclusions of this work tend to confirm that deconfinement in
QCD theory could be related to some sort of geometric percolation phenomenon as was
suggested in [13,19]. Although filling the gap towards higher gauge models clearly requires
new insights, it would be interesting to extend the conclusions of this work to geferal
and O (n) models which are also related to QCD systems.
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