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Abstract

Recent advances in high energy QCD experiments probing the deconfinement transition from
hadronic to coloured quark matter tend to confirm that perlocation of unbounded quarks could
provide a signature of this phase transition. In the strong coupling limit the partition function of
SU(2) pure gauge theory can be modeled by that of an infinite spin Ising system with short-range
ferromagnetic interactions. We derive the Wolff-random cluster representation for these spin models
and show that, at least in these cases, the thermal and geometrical phase transitions indeed coincide.
Moreover, our results are presented in a more general setting (e.g.,q-states Potts variable and/or
long range interactions allowing a generalisation to a variety of physical systems.) 2000 Elsevier
Science B.V. All rights reserved.
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1. Background

Full QCD gauge theory is, at present, the main tool available to understand the structure
of matter. At sufficiently low densities, stable hadronic particles (neutrons, protons, etc.)
are the building blocks of our surrounding world. However, at high densities a finer
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structure is believed to emerge made of colored quarks and gluons (the so-called quark–
gluon plasma) which are the ultimate constituents of the nuclear medium. This transition
from stable, color neutral hadrons to a plasma of deconfined colored quarks and gluons is
driven by the suppression of the quark–antiquark pair bounding interaction, the so-called
J/Ψ bound state, whose existence is now well established. (See [24] for a recent review.)
Quite early, it has been proposed [5,19] to probe such high energy nuclear transition
through measurement of theJ/Ψ suppression. The recent experiment NA50 in CERN
tend to confirm that this is indeed the case [20].

On the other hand, theoretical understanding of this effect has lead physicists to the study
of the phase transition mechanism in the context of the full QCD gauge theory. In the limit
of infinite quark masses, QCD theory reduces toSU(N) pure gauge theory for which there
is a readily accessible Lagrangian formulation. The order parameter for these models is the
Polyakovloop 〈L〉 also calledWilson line trace operator[17,21,22].

It has recently been proposed that the deconfinement transition inSU(2) pure gauge
theory could be characterized as percolation of Polyakov loop clusters [13]. There, using
a lattice formulation effectively corresponding to the strong coupling limit, the clear
evidence that pureSU(2) gauge theory shares the same critical exponents as the 2D Ising
model was established.

For pureSU(2) gauge theory, it has been shown [16] that in some approximation,〈L〉
behaves like the magnetization of ferromagnetic spin systems with Hamiltonian

−Heff ∼= βeff

∑
〈i,j〉
〈L〉i 〈L〉j , (1.1a)

whereβeff ∼= [2T ]−Nτ , whereT is the temperature andτ is the time variable with lattice
extendNτ . Explicitly: SU(2) pure gauge theory can (in some approximation) be viewed
as a system of nearest neighbor one-component spins on a discrete lattice with spin values
continuously distributed in some bounded subset[−S,S] ⊂ R. Furthermore — provided
the transition is continuous — they should belong to the same universality class [22], i.e.,
share the same critical exponents.3

This Ising-like model was introduced and studied by Griffths quite some time ago [14]
and is known as theinfinite spin Ising model. The form of the Hamiltonian is exactly that
of Eq. (1.1a):

−H=
∑
〈i,j〉

SiSj . (1.1b)

Griffits studied the particular case of a uniform a priori distribution on[−1,+1] for the
Si . In the ensuing time, many similar models have been studied in a variety of contexts (cf.
the book [11]) but always with specific assumptions concerning the nature of the a priori
distribution.

3 As will be shown in a subsequent paper, the order of the transition depends on the a priori distribution of the
〈L〉i which in turn depends on the details of the pure gauge theory. However, it appears that the models studied
satisfy our sufficient condition for a continuous transition, see, e.g., [9].
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Back to SU(2) pure gauge theory: at a given temperatureT < Tc there exist islands
dominated by positive or negative〈L〉 value. These are interpreted as local regions of
deconfinement despite the fact that globally, the whole system still exhibits a confined
stable hadronic state. When the percolation of these islands occurs then the system reaches
the (globally) deconfined phase of quark–gluon plasma, which may be accompanied by a
phase transition.

It has been argued [5] that the deconfining transition in pureSU(2) gauge theory should
be related to some geometrical cluster formation of a percolation model. Quite recently,
numerical simulations [13] have indicated that this is indeed correct. Namely, following
[4] one can start from a configuration of〈L〉’s and build connected bond clusters of nearest
neighbors with like sign of the Polyakov loop by placing bonds with probability 1−
exp{2βeff〈L〉i 〈L〉j }. The cluster size distribution of these bond clusters and the magnetic
properties of the loop variables in this joint bond-spin percolation model can be studied as
the temperature and system sizes are varied. The simulations performed in [13] (withNτ =
2 lattice time spacings) have clearly shown (a) that the magnetic transition is Ising-like with
the same critical exponents as those of the two-dimensional Ising model and (b) that the
critical behavior in the average cluster size distribution arises at the point corresponding to
the phase transition of the magnetic (and/or theSU(2) pure gauge) model with the identical
critical behavior.

For the usual Ising (and Potts) ferromagnets there is an alternative formulation known
as therandom clustermodel [12]. It is now well established [1,4,10,12,23] that the
characteristics of one system can be completely expressed in terms of the other. In
particular the critical behavior (if any) of the spin-system translates directly into critical
geometricalbehavior in the corresponding random cluster model. E.g., forT > Tc,
the susceptibility equals the average clusters size and forT < Tc, the spontaneous
magnetization equals the percolation probability. In [6,7] and [18], results of this type were
extended to various other spin-systems such as the Ashkin–Teller model. In [2] and [3]
similar results were obtained for Hamiltonians of the form in Eq. (1.1b) that are invariant
under (continuous)O(2) andO(3) symmetry. Here the graphical representation used was
theWolff-random clusterrepresentation that is implicit in the algorithm in [25].

In this paper we will develop a random cluster formulation for continuous one-
component systems of the type described by Eq. (1.1b). This representation is closely
related to the Wolff-random cluster representation used in theO(2) andO(3)models [2,3]
— except without the extra components. First this allows for a general (and rather easy)
proof of a phase transition in these systems. Second we show that the geometric phase
transition inthis representation is of the same type as the underlying spin-system. E.g.,
a correspondence between the connectivity function and the two-point correlation function,
magnetization and percolation, etc. (Here as in then-component systems one does not get
equalities but uniform upper and lower bounds.) Needless to say, these clusters are exactly
the clusters simulated in [13].

As it turns out our derivations are valid — essentially without modification — for the
generalization of Eq. (1.1b) to (continuous spin)q-state Potts models. Forq = 3, this
system bears the same relationship to theSU(3) model as does the Ising-like system to
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theSU(2). Unfortunately forq > 3, the relationship ends. The relevant models forSU(N)
are theZN -clock models which are only of the Potts form forN = 2 andN = 3. Clearly
these higher gauge models — not to mention a more realistic QCD theory with finite-mass
quarks — will require some additional ideas.

The remainder of this paper is organized as follows: in Section 2 we will establish
notation and derive the random cluster representations. Section 3 will be devoted to
establishing monotonicity properties of these representations which are the cornerstone
for all the results that follow. In Section 4 we present the principle results of this work as
well as some additional consequences of these representations.

2. The representation

We will start by working in a rather general setting (the immediate relevance of which
may not be apparent). Consider a finite latticeL (i.e., a finite graph) with sitesS and edges
B. Sitesi andj that are connected by edges will be calledneighbors— regardless of their
actual location — and generic edges will be denoted by〈i, j 〉. Beginning with the Ising-
like case, we will write the spin-variables that appear in Eq. (1.1b) as follows: letbi = |Si |
andσi = sgn(Si). Thus theσi are, more or less, the usual Ising variables. The Hamiltonians
in Eqs. (1.1) now read

H=
∑
〈i,j〉∈B

Ji,j bibjσiσj . (2.1)

We assume throughout thatJi,j > 0. The a priori distribution for thebi will be denoted
by dbi . We will make no assumptions about the nature of this distribution — it may even
differ from site to site — except that it is confined to a uniformly bounded interval. Without
loss of generality, this is taken to be[0,1]. We denote bydSb the product

∏
i∈S dbi and

by b a configuration of “spin-lengths” (so thatb ∈ [0,1]S). The partition function onL at
inverse temperatureβ is given by

ZL(β)=
∑
σi=±1

∫
db exp{−βH}. (2.2)

To obtain the random cluster expansion, we first writeσiσj = 2δσi,σj − 1 whereδa,b is
the usual Kronecker delta. We observe that exp{2βJi,j bibj δσi,σj } = Ri,j δσi,σj + 1 where
Ri,j = (e2βJi,j bibj − 1). Then

exp{−βH} = e−β
∑
i,j Ji,j bibj

∏
〈i,j〉
[Ri,j δσi,σj + 1]. (2.3)

Expanding the product, we associate each term in the expansion with a bond configuration
ω ⊂ L (or ω ∈ {0,1}L). Indeed, for each bond〈i, j 〉 of the lattice, we must get either the
Ri,j δσi,σj term or the unadorned 1. In the former case we say the bond〈i, j 〉 is occupied
(ω〈i,j〉 = 1) and in the latter the bond is vacant (ω〈i,j〉 = 0).
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Thus far we have achieved the following expression for the partition function:

ZL(β)=
∫
db
[
e
−β∑i,j Ji,j bibj

]∑
ω

∑
σ

∏
〈i,j〉∈ω

Ri,j δσi,σj , (2.4)

whereσ ∈ {+1,−1}S is a Isingspin configuration.
Since for everyb, σ andω, the integrand/summand is non-negative, the ratio of these

terms toZL(β) defines a probability measure on configurations(b, σ ,ω). This we will
call the Edwards–Sokal measure; this object is indispensable for cluster Monte Carlo
simulations and, for all intents and purposes was the object that was simulated in [13].
We will denote this measure byµES

L;β(db, σ ,ω). Summing over spin-configurations, we
get a joint measure on bond and “spin-length” configurations which we will call the Wolff-
measure:

µW
L;β(db,ω)=

∑
σ

µES
L;β(db, σ ,ω) (2.5)

and integrating out theb’s we arrive at the object of interest, the random cluster measure:

µRC
L;β(ω)=

∫
b

µW
L;β(db,ω). (2.6)

The principle claim of this work is that the configurations of bonds determined by
the random cluster measures defined in Eq. (2.6) are exactly the objects that undergo
percolation when the underlying spin-system enters the low-temperature phase. Finally,
and of essential technical importance, is the other marginal of the Wolff measure, the
measure on theb’s

dρL;β(b)=
∑
ω

µW
L;β(db,ω). (2.7)

We observe that the conditional measures for the bond configurations given the
configurationb has the form of the familiar FK-random cluster measure (introduced
in [12]). These are defined as follows: letK = (Ki,j > 0 | 〈i, j 〉 ∈ B) be a set of
(ferromagnetic) couplings and define thebond activitiesRi,j = e2βKi,j − 1. The FK-
random cluster measure on bond configurationsω is given by

νFK
L;K ,β(ω)∝ 2Cf (ω)

∏
〈i,j〉∈ω

Ri,j , (2.8)

hereCf (ω) is “the number of connected components”. (For the moment, we will leave
this definition as it stands, i.e., just the usual number of connected components of the
configuration — including isolated sites. This corresponds to free boundary conditions in
the spin-system — which we have been assuming all along — and hence the subscript.
However in the presence of other boundary conditions, which will be discussed in the next
section, the definition of “the number of components” has to be modified.) Indeed, the
right hand side of Eq. (2.8) is just the final term of Eq. (2.4)not summed overω andnot
integrated overb:

2Cf (ω)
∏
〈i,j〉∈ω

Ri,j =
∑
σ

∏
〈i,j〉∈ω

Ri,j δσi,σj . (2.9)



234 Ph. Blanchard et al. / Nuclear Physics B 588 (2000) 229–252

This makes explicit the precise connection between these measures and the usual FK-
random cluster representations: the measures here are superpositions of FK-random cluster
representations. In particular, for fixed configurationb, defineKb = (Ji,j bibj ). Then the
conditional distribution for the bond configuration givenb is just νFK

L;Kb,β
(−). Of central

importance is the combination of Eqs. (2.5)–(2.9) which allows the expression of this
superposition:

µRC
L;β(−)=

∫
b

dρL;β(b)νFK
L;Kb,β

(−). (2.10)

This will prove to be pivotal in the next section.
We close this section with the remark that for all the formalism thus far defined as

well as for all subsequent developments, there is little extra work in the extension to the
more generalq-state Potts systems. (And furthermore, as mentioned in the introduction,
for q = 3, this is actually of some relevance in the context of pure gauge models.) Let us
thus consider Potts spins in the so-calledtetrahedral representationmeaning that the spins,
Eσi take on theq values in the(q − 1)-dimensional hypertetrahedron. Then we have

Eσi · Eσj =
{

1, if Eσi = Eσj ,
−1/(q − 1), otherwise.

(2.11)

Thus we defineESi = bi Eσi with bi the same objects as before and we consider the
Hamiltonian

H=−(q − 1)
∑
〈i,j〉∈B

Ji,j ESi · ESj =−(q − 1)
∑
〈i,j〉∈B

Ji,j bibj Eσi · Eσj , (2.12)

where the factor of(q−1) is for notational convenience. Writing(q−1)Eσi · Eσj = qδEσi,Eσj −
1, we see that the various expressions in Eqs. (2.4)–(2.10) are pretty much the same with
certain factors of 2 replaced byq : the bond activities should now readRi,j = eqβJi,j bibj −1,
the factors of 2Cf (ω) in Eq. (2.8) and Eq. (2.9) should be replaced byqCf (ω) and finally, we
will now denote all of the various measures with an additional subscriptedq ; for example
the generalization of the random cluster measure defined in Eq. (2.6) will be denoted by
µRC
L;β,q(−). As is clear, the various random cluster measures, both the standard one from

Eq. (2.8) as well as the ones in Eqs. (2.5) and (2.6) make sense for any positive value ofq

despite the apparent lack of an underlying spin-system.

3. Monotonicity properties

All of the monotonicity results that we use stem from the FKG properties of the various
measures. Here we will provide a minimal background, for a more complete treatment,
the reader is urged to consult [15]. Let(X1, . . . ,XN) denote a collection of real valued
random variables. A partial order on configurations is defined in a natural way: letX =
(X1, . . . ,XN) andY = (Y1, . . . , YN) denote two configurations. ThenX � Y if Xk > Yk
for all k. A real valued functionF(X1, . . . ,XN) is calledincreasingif it is increasing (i.e.,
non-decreasing) with respect to this partial order — in other words, an increasing function
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of all of its arguments. Decreasing functions are similarly defined. Letµ(−) denote a
measure on these configurations and letEµ(−) denote expectation with respect to this
measure. The measureµ is said to havepositive correlations or the weak FKG propertyif
for any two increasing functionsF andGwe haveEµ[FG]> Eµ[F ]Eµ[G]. If X andY are
two configurations, the configurationX∨Y is defined, at eachk, to be the maximum ofXk
andYk . SimilarlyX∧Y is defined by the minimum of the two values at eachk. A sufficient
condition for positive correlations is theFKG lattice condition[FKG] namely that for each
X andY we haveµ(X ∨ Y)µ(X ∧ Y) > µ(X)µ(Y). Measures that satisfy this condition
are calledstrongFKG. They are also characterized by the property that if the values of any
Xk1, . . . ,Xkn have been specified:Xk1 = V1, . . . ,Xkn = Vn then the conditional measure
µ(− |Xk1 = V1, . . . ,Xkn = Vn) is also strong FKG. Finally ifµ1 andµ2 are two measures
(on the same configuration space) we sayµ1>FKGµ2 if for every increasing functionF we
haveEµ1[F ]>Eµ2[F ]. In general it is sufficient to verify all of the above for functions that
take on only the values 0 or 1 — indicators of events: events for which the indicators are
increasing functions are calledincreasing eventsand similarly for decreasing events. The
statement of positive correlations for increasing events readsµ(A∩B)> µ(A)µ(B). It is
not hard to see that if a measure with positive correlations is conditioned on an increasing
event, the conditional measure will dominate the unconditioned measure.

The FKG properties of the FK-random cluster measures have been exhaustively studied
(see [15] for a review of most of what is known). Of immediate relevance is (1) the fact
that for q > 1, the FK-random cluster measures (as defined by the weights in Eq. (2.8)
with no modifications due to boundary conditions) are strong FKG and (2) ifνFK

L;K ,β,q and

νFK
L;K̃ ,β,q are random cluster measures on the same lattice, and with the same value ofq

but with respective coupling parameters that satisfyKi,j > K̃i,j on every bond〈i, j 〉 then
νFK
L;K ,β,q>FKG ν

FK
L;K̃ ,β,q .

Our first monotonicity result pertains to the measures for the spin-lengths:

Proposition 3.1. LetL denote a finite lattice with bondsB and sitesS. For K = (Ki,j > 0 |
〈i, j 〉 ∈ B) a set of ferromagnetic couplings, letΦK ;β,q denote the random cluster partition
function

ΦK ;β,q =
∑
ω

qCf (ω)
∏
〈i,j〉∈ω

Ri,j

with Ri,j = eqβKi,j − 1. Let b = (bi ∈ [0,1] | i ∈ S) denote a collection of site variables
anddb=∏i∈S dbi an arbitrary product measure on[0,1]S. For a fixed set of couplings
(Ji,j > 0 | 〈i, j 〉 ∈ B), defineKb = (Ji,j bibj | 〈i, j 〉 ∈ B). Consider the measureρL;β,q
with density function

ρL;β,q(db)∝ e−β
∑
〈i,j〉 Ji,j bibj ΦKb;β,qdb.

Then forq > 1, this measure is strong FKG.

Remark. We reiterate that the above expression forρL;β,q(db) defines a legitimate
measure — which is in turn the marginal of a legitimateµW

L;β,q(db,ω) — even for non-
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integer values ofq . For q = 2, the stated result can be derived, with a bit of work, as
a peculiar special case of the analogous result for thex-components of the spins inxy-
type models that was proved in [2]. However the method here represents a considerable
simplification of the earlier proof and is applicable in a more general context.

We start with a simple lemma:

Lemma 3.2. For a set of ferromagnetic couplingsK defineVL(K ;β,q) in accord with the
right hand side of the above display

VL(K ;β,q)= e−β
∑
〈i,j〉 Ki,j ΦK ;β,q.

ThenVL(K ;β,q) is an increasing function of all the couplings.

Proof. Clearly we need only verify this one bond at a time (which is in fact all that we will
have use for anyway). Thus suppose that two sets of couplingsK ′′ andK ′ are equal except
for the bond〈a, b〉 whereK ′′a,b > K ′a,b. Let L̃= L\〈a, b〉 be the lattice that is the same as
L save for the fact that the bond〈a, b〉 is not present and letK denote the set of mutual
couplings that are on the latticẽL. Let Ta,b denote the event that the sitea is connected to
b by a path of occupied bonds. Then we will show that the ratioΦK ′;β,q/ΦK ;β,q is given
by

ΦK ′;β,q
ΦK ;β,q

= 1+ R
′
a,b

q
+R′a,b

[
1− 1

q

]
νFK
L̃;K ,β,q(Ta,b) (3.1)

with R′a,b = exp{qβK ′a,b} − 1. Indeed for anω ∈ L̃, we can tally by hand the two states of
the bond〈a, b〉 and compare the relative contribution of this configuration toΦK ′;β,q and
ΦK ;β,q : in case the bond〈a, b〉 is vacant, the weight is the same in the primed system as
was the weight ofω in the unprimed system. However for an occupied〈a, b〉 the relative
weight will depend on whether or not the sitesa and b are already connected inω. If
they are connected (namely ifω ∈ Ta,b), then the number of connected components is
unchanged by the occurrence of an occupied〈a, b〉 and the relative weight isR′a,b. On the
other hand, ifa andb arenotconnected inω, the event of the occupied bond〈a, b〉 reduces
the number of connected components by one and the relative contribution isR′a,b/q . This
is summarized in the following:

ΦK ′;β,q =
[
1+R′a,b

][ ∑
ω∈Ta,b

qCf (ω)
∏
〈i,j〉∈ω

Ri,j

]

+
[
1+ R

′
a,b

q

][ ∑
ω 6∈Ta,b

qCf (ω)
∏
〈i,j〉∈ω

Ri,j

]
, (3.2)

where for〈i, j 〉 in L̃ the “bond fugacities”Ri,j are determined by the common value of
the couplings. Dividing both sides of Eq. (3.2) byΦK ;β,q , the first term in the large square
brackets becomesνFK

L̃;K ,β,q(Ta,b), the second one becomes 1− νFK
L̃;K ,β,q(Ta,b) and Eq. (3.1)

follows.
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A similar expression results for the ratioΦK ′′ ;β,q/ΦK ;β,q and inserting the “prefactors”
(namely the terms of the form exp{−∑〈i,j〉 βKi,j }) into the ratio of ratios, we can now
compareVL(K ′;β,q) andVL(K ′′;β,q). Of course all terms in these prefactors cancel
except the one pertaining to〈a, b〉. Noting that νFK

L̃;K ,β,q(Ta,b) is independent of the

coupling on〈a, b〉— primed or double primed — it is sufficient to show that the objects

D1(Ka,b)= e−βKa,b
(
eqβKa,b − 1

)
and

D2(Ka,b)= e−βKa,b
(

1+ 1

q

[
eqβKa,b − 1

])
are (forq > 1) increasing functions ofKa,b. For the first term this is obvious and the second
term can be checked by differentiation. In the latter case, the presence of the factor ofq in
the exponent is crucial; cf. the remark that follows.2
Remark. In the usual Potts systems (withbi ≡ 1) the spin–spin coupling may just as well
be writtenJi,j δσi,σj or Ji,j [c1 + c2 · δσi,σj ] etc. — up to a rescaling of the temperature,
the constants simply do not matter. But when the spins themselves have variable length,
i.e., Ji,j gets replaced withJi,j bibj the “c1” becomes important. As we have seen, the
particular value ofc1/c2 played a role in the above lemma which in turn is a pillar for what
is established below. Now it may be argued that the tetrahedral representation is somehow
“natural” and for the casesq = 2 andq = 3, where we are starting from the premise ofZ2

and, respectively,Z3 symmetry, this argument may have some merit. But beyondq = 3,
especially for the non-integer cases, we could not resort to this tack. Here we simply point
out that if the coupling is written as suggested above withc1/c2> q then Lemma 3.2 holds
and otherwise it does not. I.e., the tetrahedral Hamiltonian is extreme limit. In particular if
c1/c2> q is not satisfied, some of the forthcoming conclusions will fail.

Proof of Proposition 3.1. We will verify the FKG lattice condition. In order to do this, it
is sufficient (and necessary) to compare configurations that differ in at most two sites. (By
iterative induction, this builds up to the general FKG lattice condition.) Letb ∈ [0,1]S be
a configuration and for distinct sitesu,v ∈ S let ∆u and∆v be positive numbers chosen
small enough so thatcu ≡ bu + ∆u and cv ≡ bv + ∆v do not exceed one. We have of
course assumed thatbu andbv are less than one (otherwise there is nothing to prove) and
furthermore, to avoid provisos, we will assume that none of thebi are zero. (Since we
are on a finite lattice, the extreme cases can anyway be recovered by continuity.) Thus
b ∨ cu is the configuration that is identical tob except at the siteu where it is equal to
cu and similarly forb∨ cv andb∨ cu ∨ cv . Finally for the configurationb we remind the
reader that the corresponding couplings are denoted byKb with the dependence on theJi,j
notationally suppressed:Kb = (Ji,j bibj | 〈i, j 〉 ∈ B) and similarly forKb∨cu , etc.

The proof amounts to a demonstration thatVL(Kb∨cv∨cu;β,q)VL(Kb;β,q)
> VL(Kb∨cu;β,q)VL(Kb∨cv ;β,q). It turns out that most of the work comes about when
Ju,v is non-zero — here is where we will need Lemma 3.2 — but as a warmup to guide the
overall strategy we will start with the case whereJu,v = 0.
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LetNu = {i ∈ S | Ji,u > 0} denote the “neighborhood” ofu and similarly forNv . Thus
in the configurationsb ∨ cu andb ∨ cv ∨ cu we use couplingsJi,ubicu for i ∈Nu when
we compute the correspondingVL’s and similarly for j ∈ Nv we useJi,vbj cv in the
configurationsb ∨ cv andb ∨ cv ∨ cu. Now consider the prefactors that relate the various
VL’s to theΦ ’s. Since we are assuming thatJu,v = 0 all the same terms appear on both
sides of the desired inequality (albeit from different sources) and can be canceled from both
sides. Thence the inequality we need to establish reduces to[ΦKb∨cv∨cu;β,q][ΦKb;β,q] >
[ΦKb∨cv;β,q][ΦKb∨cu;β,q]. Now in the configurations with the enhanced couplings, let us
write the larger bond activities as the ratio to the smaller times the smaller. E.g., forj ∈Nv ,
define

λj,v = e
qβJj,vbj cv − 1

Rj,v
(3.3)

with Rj,v ≡ eqβJj,vbj bv − 1. But then, for example, the termΦKb∨cv ;β,q looks like (the
numerator of) the expectation of a function with respect to the measure defined by the
unraisedcouplings:

ΦKb∨cv ;β,q =ΦKb;β,qE
FK
Kb,β,q

[Tv(ω)]. (3.4)

HereEFK
Kb,β,q

(−) is notation for expectation of a function with respect to the measure

νFK
L;Kb,β,q

andTv(ω) is defined by

Tv(ω)=
∏
j∈Nv
[λj,v]ω〈j,v〉 , (3.5)

where we recall thatω〈j,v〉 is one if the bond〈j, v〉 is occupied and zero if it is vacant. We
get a formula similar to Eq. (3.5) for the objectΦKb∨cu ;β,q in terms of the expectation of
the functionTu. It is seen that bothTu andTv are increasing functions. Enjoying one final
time the luxury ofJu,v = 0 we see that

ΦKb∨cu∨cv ;β,q =ΦKb;β,qEFK
Kb,β,q

[Tu(ω)Tv(ω)] (3.6)

and the desired inequality follows, in this case, from the FKG property of the random
cluster measures.

For Ju,v not zero, the overall coupling that we use in the configurationb ∨ cv ∨ cu
betweenu andv is given byJu,vcucv = Ju,vbubv + Ju,vbu∆v + Ju,vbv∆u + Ju,v∆u∆v .
It is noted that the “cross term” (namelyJu,v∆u∆v has two competing effects on
VL(Kb∨cu∨cv;β,q): it enhances the value of the bond activity, should the bond〈u,v〉 be
occupied, but the quantity exp{−βJu,v∆u∆v} appears in the prefactor (regardless of the
state of this bond). According to Lemma 3.2 the overall effects is beneficial; hence we will
rid ourselves of this cross term for once and all. Notice that as a consequence, all of the
prefactors are again out of the play. We define for the configuration(bi), and the numbers
∆u and∆v the configurationsD, G andF with Di,j = Gi,j = Fi,j = Ji,j bibj for 〈i, j 〉
different from〈u,v〉 and

Du,v = Ju,v(bubv + bu∆v + bv∆u), (3.7a)

Fu,v = Ju,v(bubv + bu∆v), (3.7b)
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Gu,v = Ju,v(bubv + bv∆u). (3.7c)

We define ourT -functions without consideration of the bond〈u,v〉:
Tu =

∏
i∈Nu\v

[λi,u]ω〈i,u〉 , (3.8a)

Tv =
∏

i∈Nv\u
[λi,v]ω〈i,v〉 . (3.8b)

Thus, for example,ΦKb∨cu ;β,q = ΦG;β,q〈Tu〉FK
G;β,q . Further, the desired inequality now

reads[ΦD;β,qΦKb;β,q]EFK
D;β,q[TuTv]> [ΦF;β,qΦG;β,q]EFK

F;β,q[Tv]EFK
G;β,q[Tu].

By the various FKG properties we have (forq > 1)

EFK
D;β,q[TuTv]>EFK

D;β,q[Tu]EFK
D;β,q[Tv]> EFK

F;β,q[Tu]EFK
G;β,q[Tv] (3.9)

the second step following from the fact that the measure with the larger coupling
dominates. It remains to show thatΦD;β,qΦKb;β,q >ΦF;β,qΦG;β,q . As before, let us define
the ratios

d = exp{qβDu,v} − 1

exp{qβJu,vbubv} − 1

and similarly forf andg. Then the desired final step is just to show thatEFK
Kb;β,q[dω〈u,v〉 ]>

EFK
Kb;β,q[f ω〈u,v〉 ]EFK

Kb;β,q[gω〈u,v〉 ].
Let α = νFK

L;Kb,β,q
(ω〈u,v〉 = 1). Then we have

EFK
Kbβ,q

[
dω〈u,v〉

]= αd + 1− α (3.10)

and similar expressions forEFK
Kbβ,q
[f ω〈u,v〉 ] andEFK

Kbβ,q
[gω〈u,v〉 ]. Thus

EFK
Kbβ,q

[
f ω〈u,v〉

]
EFK

Kbβ,q

[
gω〈u,v〉

]= [αf + 1− α][αg + 1− α]
= α2(f − 1)(g− 1)+ α(f + g)− 2α+ 1 (3.11)

and we are done if we can show thatd + 1> α(f − 1)(g − 1)+ (f + g). But the right-
hand term increases as a function of (the parameter)α. Now the best case conditional
scenario for the bond〈u,v〉 to be occupied is when the opposite ends of the bond are
already connected (c.f. the discussion prior to Eq. (3.2)) and this gives us

α 6 1− eqβJu,vbubv ≡ α̃. (3.12)

A careful check of all terms shows that in fact

1+ d = α̃(f − 1)(g− 1)+ (f + g) (3.13)

and the proof is complete.2
As a direct consequence of Proposition 3.1 we obtain the following:

Theorem 3.3. Consider the Wolff measuresµW
L;β,q(db,ω) on a finite latticeL as defined

in Eq. (2.5)but with arbitraryq > 1; explicitly

µW
L;β,q(db,ω)∝ νFK

L;Kb,β,q
(ω)[ΦKb;β,q]

∏
〈i,j〉∈L

e−βJi,j bibj db.
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Then these measures have positive correlations(are weak FKG). In particular the random
cluster marginalsµRC

L;β,q have positive correlations.

Remark. Interestingly enough, the full Wolff measures arenot strong FKG. Indeed as
mentioned in the first paragraph of this section, a property of strong FKG measures is that
conditioned on the specification of some of the variables, the resulting measure is itself
FKG. However if we consider the event thatall bonds are vacant, the result is a measure on
the site variables with density function given by

∏
〈i,j〉 exp{−βbibj }. Obviously this does

not have positive correlations. At present, it is not clear whether or not the random cluster
marginal is strong FKG.

Proof of Theorem 3.3. Let F andG denote two increasing functions of configurations
(b,ω). To clarify what is to come let us denote these byFb(ω) andGb(ω). We write, as in
Eq. (2.10)

EW
L;β,q[Fb(ω)Gb(ω)] =

∫
b

ρL;β,q(db)EFK
L;Kb,β,q

[Fb(ω)Gb(ω)], (3.14)

where the variousE’s denote expectation with respect to the measures indicated by
their superscripts and subscripts. Since, for fixedb, the functionsFb(ω) andGb(ω) are
increasing functions of(ω), we have

EFK
L;Kb,β,q

[Fb(ω)Gb(ω)]>EFK
L;Kb,β,q

[Fb(ω)]EFK
L;Kb,β,q

[Gb(ω)] (3.15)

by the usual FKG property of random cluster measures.
We claim that the objectsEFK

L;Kb,β,q
[Fb(ω)] andEFK

L;Kb,β,q
[Gb(ω)] are both increasing

functions ofb. Indeed, raising the configurationb has two effects: first it actually increases
the value of the function — for fixedω, these are increasing inb. Second it increases the
values of the couplingsKb associated with the random cluster measure. As discussed in
the second paragraph of this section, FK-random cluster measures with larger couplings
FKG dominate those with smaller couplings. Thus, by the FKG property of the measures
ρL;β,q(db) established in Proposition 3.1 we have∫

b

ρL;β,q(db)EFK
L;Kb,β,q

[Fb(ω)]EFK
L;Kb,β,q

[Gb(ω)]

>
∫
b

ρL;β,q(db)EFK
L;Kb,β,q

[Fb(ω)]
∫
b

ρL;β,q(db)EFK
L;Kb,β,q

[Gb(ω)]. (3.16)

Putting together Eqs. (3.14)–(3.16) we arrive atEW
L;β,q [FG] > EW

L;β,q[F ]EW
L;β,q[G] as

desired. 2

4. Some consequences of monotonicity

In this section we will once again focus on integer values ofq (of course with a special
eye towards the casesq = 2 andq = 3) and derive various relationships between random
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cluster events and correlations in the spin-systems from which they originated. Results
of the sort that we prove are typical for systems with “good” graphical representations.
(A reasonably up to date list of other systems that have been treated can be found in [7]
Table 1.) For the time being, the setup on a finite lattice without boundary conditions
will be sufficient. However later in this section we will need to discuss other boundary
conditions and infinite volume limits. Throughout this section, to avoid excessive provisos,
we will assume (in finite or infinite volume) that the a priori decoupled average spin length
is uniformly bounded below strictly away from zero:

inf
i

∫
bi dbi = c > 0. (4.1)

Our first result concerns the two point correlation function.

Proposition 4.1. Consider a continuous-spinq state Potts system on a finite latticeL
with a HamiltonianH as given in Eq.(1.1b)or Eq. (2.12). Let 〈−〉L;H,β denote thermal
expectation with respect to the corresponding Gibbs measure and letµRC

L;β,q denote the
associated random cluster measure. Forj and k in S, let Tj,k denote the event that the
sitesj andk are in the same connected cluster. Then

µRC
L;β,q(Tj,k)>

〈ESj · ESk 〉L;H,β > c2µRC
L;β,q(Tj,k),

wherec is defined in Eq.(4.1).

Proof. We use the full Edwards–Sokal measure decomposed into bond configurations:〈ESj · ESk 〉L;H,β = 〈[bjbk]Eσj · Eσk 〉L;H,β
=
∑
ω

µRC
L;β,q(ω)E

ES
L;β,q

[
(bjbk)Eσj · Eσk

∣∣ω], (4.2)

whereEES
L;β,q [−] denotes expectation with respect to the measureµRC

L;β,q defined following
Eq. (2.4). Now in caseω ∈ Tj,k the only spin configurations that contribute are those in
which Eσj = Eσk so the dot product is one. On the other hand ifj andk are in separate bond
clusters, then for any fixed value ofEσk , all values ofEσj contribute with equal probability.
Using the fact that the (vector) sum of the corners of a hypertetrahedron is zero, we see
that in this case there is no contribution. Thus we have the identity〈ESj · ESk 〉L;H,β = EW

L;β,q
[
(bjbk)ITj,k

]
, (4.3)

whereEW
L;β,q[−] denotes expectation with respect to the Wolff measure andITj,k is the

indicator for the eventTj,k .
For the upper bound, we simply use the fact thatbjbk 6 1.
For the lower bound, we use the FKG property for the Wolff measure (twice) and bound

EW
L;β,q[bj ] (andEW

L;β,q[bk]) then below by the value in the system in which all the other

b’s are zero which gives us ac2. 2
Corollary. Let

Xi =
∑
k∈S

〈ESi · ESk 〉L;H,β
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denote the(linear response) susceptibility at the sitei and letCi(ω) denote the number of
sites connected toi in the configurationω. Then

c2ERC
L;β,q [Ci]6Xi 6ERC

L;β,q [Ci],
wherec is the constant described in Eq.(4.1).

Proof. This follows from the identityERC
L;β,q[Ci] =

∑
k µ

RC
L;β,q(Ti,k) and the above

proposition. 2
Remark. Modulo certain fine points related to infinite volume limits etc. the preceding
proposition and corollary shows that if there is critical behavior in the spin-system then
critical behavior will also be observed in the graphical system and vice versa. Furthermore,
if there are exponents associated with the decay of correlations, the susceptibility and/or
the correlation length these will be equal to the exponents associated with their geometric
counterparts. A similar relationship holds for percolation and magnetization however this
— as well as a complete discussion of infinite volume limits — will require a look at
boundary conditions.

4.1. Boundary conditions

We will start our discussion of boundary conditions in a general framework but then
quickly confine attention to lattices that are subsets of an a priori infinite lattice. The
boundary conditions that we will consider for the graphical models will be just those that
arise from boundary conditions that can be imposed in the spin-system. (Although more
generality can be conceived of in the random cluster models, these are of no interest in the
present work.)

Here we will define boundaries in terms of sites. LetL denote some graph and let∂L⊂ S
a subcollection of sites which, for reasons particular to the problem at hand, is called the
boundary. For the usual cases (which will be the principal focus of our attention) bothL
and∂L will be finite sets. However for long-range interactions, we may have to consider
∂L infinite with L\∂L finite. E.g., if the (site) lattice isZd , L\∂L would be a finite piece
of Zd while ∂L the rest ofZd . The typical situation in spin-systems is to specify the value
of the spins on the boundary: for eachi ∈ ∂L there is some fixed valueESi . The values
of these spins determine the boundary condition; for notation we will useES∂L = (ESi | i ∈
∂L) to denote this collection of values. In the context of statistical mechanics, at least for
the short-range cases, the Hamiltonian structure immediately tells us what to do: for each
configuration of spins onS\∂L, the Hamiltonian provides the energy given the boundary
configuration which in turn gives us the probability distribution for configurations of these
“interior” spins. The long-range cases are only slightly more complicated. Indeed, for
ferromagnetic interactions, sensible thermodynamics and statistical mechanics (as well as
sensible random cluster models) only occur if the interactions are uniformly summable. In
this case even an infinite boundary can be approximated by a finite set. Thus, in what is to
follow we can for all intents and purposes assume that bothL and∂L are finite. We thus
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arrive at the so-calledconditional distributionswhich will be denoted by〈−〉ES∂LL;H,β . One
can also consider superpositions of such specifications, our notation for these objects is
similar: if # is one such superposition, the superposition of the corresponding distributions
is denoted by〈−〉#L;H,β .

For the systems under consideration, a (single) specification means a fixed value ofbi

and Eσi at eachi ∈ ∂L. To describe the effects of such boundary conditions on the random
cluster models, let us start with the simplest (and arguably the most important) case,
namely that each of the boundaryEσi ’s points in the same direction. Here the random cluster
expansion proceeds pretty much as before — notwithstanding the fact that the boundary
bi ’s are fixed — except for the fact that the clusters that are connected to the boundary are
nownot free to flip. Thus we can write down the same formulae as before, e.g., Eqs. (2.8)–
(2.9), but now “C(ω)” should be interpreted as the number of components that arenot
connected to the boundary. At the expense of an overall (and unimportant) factor ofq , it is
preferable to count as one more component all the sites that are connected to a boundary
site — we thus consider these to be part of a single component. Of course this relabeling
does not change any of the random cluster measures but it has the following advantage:
these are the same measures that one would have gotten if all the boundary spins were
regarded as (or collapsed into) one single spin that now points in all of theq directions
with equal probability. This giant boundary spin should be thought of as having a fixed
length with couplings to the interior spins adjusted in accord with the particulars of the
(bi | i ∈ ∂L). Of course the statistical mechanics still has to be interpreted according to the
old boundary conditions but this is not particularly difficult to do. In particular, if the sitek

is connected to the boundary this does not mean thatEσk has a conditional average of zero.
On the contrary, it means that this spin is locked into the direction of the boundary spin.

The counting of the components by this rule, corresponding to this fixed, same direction
boundary condition, will be denoted byCw(ω) (the w stands for wired). The crucial point
of the preceding discussion — and for that matter all of the generality we have allowed
for in the underlying graphs — is that the wired measures so obtained are now realized as
free measures on the peculiar graph where all the boundary sites of the original graph are
identified. Hence, the various wired measures enjoy all the monotonicity properties that
were established in Section 3.

Other boundary conditions can be treated along pretty much the same lines. LetES∂L
denote an arbitrary boundary specification. This divides the boundary sites intoq disjoint
subsets where the correspondingEσi point in theq different directions. As is not hard to
see, the Wolff and random cluster measures end up as measures where these boundary
components are each treated as a single spin. However now the cluster configurations
are restricted (i.e., conditioned) to those configurations in which there are no bond
connections between these separate components. We remark that the Wolff measures
and the corresponding random cluster andρ-marginals corresponding to these general
specifications usually do not have the FKG property.

The following, although elementary, is the cornerstone for the finite volume analysis of
percolation and magnetization.
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Proposition 4.2. Let L denote a finite lattice with boundary∂L and letH denote a

Hamiltonian of the type described in Eq.(2.12). LetµW;[ ES∂L]
L;β,q (−) denote the Wolff measure

associated with the boundary specificationES∂L. Let µW;[w]
L;β,q (−) denote the(fully) wired

measure that hasbi ≡ 1 for all i ∈ ∂L.

µ
W;[ ES∂L]
L;β,q (−) 6

FKG
µ

W;[w]
L;β,q (−).

Thus, in particular,µW;[w]
L;β,q (−) is maximal Wolff measure for the HamiltonianH.

Proof. For theES∂L in question let∂L1, . . . , ∂Lq denote the separate boundary components
where the boundary spins point in the different directions and let∆ = ∆(∂L1, . . . , ∂Lq)
denote the event that there is no connection between any of these components. Letb∂L
denote the collection of the lengths of the spinES∂L and, finally, letµW;[w,b∂L]

L;β,q (−) denote
the wired Wolff measures with boundary lengths given byb∂L. Then, as was discussed
above,

µ
W;[ ES∂L]
L;β,q (−)= µW;[w,b∂L]

L;β,q (− |∆). (4.4)

Since∆ is a decreasing event, it follows that

µ
W;[ ES∂L]
L;β,q (−) 6

FKG
µ

W;[w,b∂L]
L;β,q (−). (4.5)

It remains to show thatµW;[w]
L;β,q (−)>FKGµ

W;[w,b∂L]
L;β,q (−); i.e., that it is “better” to have spins

of length one. This is established by an easy limiting argument: Replace the measure
µ

W;[w,b∂L]
L;β,q (−) by a similar measure in which the distribution of the boundaryb’s is

concentrated near their specified values but allowed to go all the way to one. The fully
wired measure is then realized as the said approximate measure conditioned on a positive
event. EvidentlyµW;[w]

L;β,q dominates these approximations and hence the limiting measure

µ
W;[w,b∂L]
L;β,q (−). 2

4.2. Percolation and magnetization

To simplify the forthcoming discussion, we will focus on the cases whereL is a
d-dimensional homogeneous graph of finite degree, i.e., all sites are equivalent and there
are a finite number of bonds per site. Furthermore we assume that this invariance is
respected by the (infinite volume) Hamiltonian. However with almost no modification,
these results extend to the case of ad-dimensional Bravais lattice and, with only a small
bit of extra work, to the cases of homogeneous independent disorder and/or long-range
interactions.

Spontaneous magnetization is, of course, a thermodynamic quantity. Thus in principle
one must add a magnetic field, compute the free energy in the infinite volume limit and
check the limiting value of the derivative. There is an alternative: namely in a finite
(regular) volume, compute the magnetization per spin optimized over all possible boundary
conditions. If this is done in a growing sequence of volumes that eventually exhaust the
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lattice — and done so in such a way that the surface to volume ratio tends to zero — then
according to the classic arguments, a limiting value of magnetization per spin emerges and
this is equal to the thermodynamic magnetization.

As it turns out, we will require considerably less than these “thermodynamic sequences”
of volumes. For our purposes any sequence(Lk | k = 1,2, . . .) with Lk ⊂ Lk+1 that
eventually exhaust the lattice will suffice. We will use the notationL ↗ L to indicate
passage to the infinite volume limit along any such sequence. As will be demonstrated
shortly, here we are in the position to proclaim what is physically obvious for a
ferromagnet: the optimal boundary condition for magnetization is exactly the one where
the boundary spins are fully extended and pointing in the direction where we wish to see
magnetization. In particular, this boundary condition optimizes the local magnetization at
each site inL.

Percolation, in correlated systems, should also be defined with some attention to
boundary conditions. The definition for percolation that has proved to be the most useful is
as follows: define, in finite volume, the quantityPL(i), the probability that the sitei (in L)
is connected to the boundary,∂L, computed in the boundary conditions that optimize this
probability. Percolation is then said to occur if, for fixedi, PL(i) does not decay to zero as
L↗ L.

For our system, the first connection between these two notions is the following:

Proposition 4.3. Let L ⊂ L denote a finite lattice with boundary∂L and letH be a
Hamiltonian of the type described. Leti ∈ L and define

mL(i)=max
ES∂L

〈ESi · ê1
〉ES∂L
L;β,q,

whereê1 is a unit vector pointing in the direction of the first spin-state. Further, let

PL(i)=max
#
µ

RC;[#]
L;β,q (Ti,∂L),

whereTi,∂L is the event thati is connected to the boundary. Then both of these maxima are
achieved in the fully wired state, i.e.,ESi ≡ ê1, i ∈ ∂L. Furthermore,

PL(i)>mL(i)> cPL(i),

wherec is the constant defined in Eq.(4.1).

Proof. The fact that the probability ofTi,∂L is maximized in the fully wired boundary
conditions follows immediately from the fact that this is an increasing event and these are

the FKG-maximal boundary conditions. Let us turn our attention toê1 · 〈ESi 〉ES∂LL;β,q . First,

in the context of the Edwards–Sokal measure, it is clear thatESi itself vanishes unlessi is
connected to∂L. But shouldTi,∂L occur, we will get a positive contribution — namelybi
— only if i is connected to∂L1 (the portion of the boundary where the spin points in the
ê1 direction). Otherwise, the contribution is actually negative. In any case, we have〈ESi · ê1

〉ES∂L
L;β,q 6 E

W;[ ES∂L]
L;β,q [biITi,∂L ], (4.6)
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whereEW;[ ES∂L]
L;β,q [−] denotes expectation with respect to the measureµ

W;[ ES∂L]
L;β,q (−) andITi,∂L

is the indicator for the eventTi,∂L. The right hand side is the expectation of an increasing
function and hence, for anyES∂L, is less than the corresponding expectation in the fully
wired measure. But here we have equality:〈ESi · ê1

〉ê1
L;β,q = EW;[w]

L;β,q [biITi,∂L ], (4.7)

where〈−〉ê1L;β,q is notation for the thermal state obtained with all boundary spins set toê1.
The upper and lower bounds,PL(i) > mL(i) > cPL(i), follow from considerations

similar to those in Proposition 4.1 and the corollary that follows.2
As an immediate consequence:

Theorem 4.4. Consider a spin-system/random cluster model of the type described and let
i ∈L denote any site. Then

P∞ = lim
L↗L

PL(i)

exists, is independent ofi and independent of howL↗ L. Letm denote the limiting single
site magnetization:

m= lim
L↗L

mL(i),

which also exists independent ofi and how the infinite volume limit is taken. Thenm is the
spontaneous magnetization and these quantities are related byP∞ >m> cP∞ wherec is
the constant described in Eq.(4.1). Explicitly, there is spontaneous magnetization if and
only if there is percolation and the critical behavior(or lack thereof) is the same for these
two quantities.

Proof. Most of these claims are a direct consequence of the following observation: letL1

andL2 denote two finite lattices withL1 ⊂ L2. Now consider the restriction of the wired
Wolff measure inL2 to the latticeL1 — which we denote byµW;[wL2]

L1;β,q (−). Then this is
dominated by the wired measure inL1:

µ
W;[wL2]
L1;β,q (−) 6

FKG
µ

W;[w]
L1;β,q(−). (4.8)

Indeed, the restricted measure can be constructed as a superposition of measures with
boundary condition provided by the configuration onL2\L1 each of which is dominated
byµW;[w]

L1;β,q(−).
Let i ∈ Lk and considerPLk+1(i), the probability of a connection to the boundary in the

next lattice along the sequence. Observe that a connection betweeni and∂Lk+1 necessarily
implies a connection betweeni and∂Lk. Thus

PLk+1(i)6µ
W;[wLk+1]
Lk ;β,q (Ti,∂Lk )6 µ

W;[w]
Lk;β,q(Ti,∂Lk )= PLk (i). (4.9)

Similarly we havemLk+1(i) 6 mLk (i). Since the sequences are monotone, it follows
that limits m andP∞ exist. Further it is not hard to see that the limit is independent
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of how L↗ L (by comparison with a standard sequence) and of the particular site
i (by consideration of a shifted sequence). Since for anyi and L we havePL(i) >
mL(i)> cPL(i), the inequality persists in the limit. Finally we note that since fully wired
boundary conditions optimize the magnetization ateachsite, then these are exactly the
right boundary conditions in which to compute the (finite volume) magnetization per site.
Obviously, in any finite volume, the magnetization per site exceedsm. However, consider
a large boxL containing the origin wheremL(0) is very nearly equal tom. LetL(i) denote
the translate ofL to the sitei. If Lk is very large, then for most sites inLk — save those
close to the boundary — we haveL(i) ⊂ Lk and hencemLk (i) 6 mL(0). From this it
follows that indeed m is the spontaneous magnetization.2

5. The existence of a low-temperature phase

In this final section, we will establish the existence of a magnetized phase (and in general
for non-integerq , a percolating phase) using domination bounds. We will provide two
separate arguments: the first is quite simple but does not cover every conceivable case. The
second requires a bit more effort but provides a complete argument and presumably a better
bound for the transition temperature.

We start with the elementary result:

Proposition 5.1. Let µW
L;β,q(−) and µW

L;β,r(−) denote two (free boundary) Wolff-
measures on the same lattice with the same couplings(i.e., the sameJi,j ) but with q >
r > 1. Then

µW
L;β,q(−) >

FKG
µW
L;β,r(−).

Proof. It is sufficient to show that

µW
L;β,q(ω, b)= I (ω,b)µW

L;β,r(ω, b)

with I an increasing function. To this end, let us rewrite the weights:

µW
L;β,q(ω, b)∝

[∏
〈i,j〉

e−βJi,j bibj
∏
〈i,j〉∈ω

1

q
Ri,j (q)

]
q`(ω), (5.1)

where we make explicit theq dependence ofRi,j (q)≡ eqβJi,j bibj − 1 and wherè (ω) is
the number ofloopsof the configuration (here defined to be the minimum number of bonds
which must be removed in order to reduce the configuration to tree structures). In the above,
we have used the identityc(ω)= `(ω)− B(ω)+ constant whereB is the total number of
occupied bonds. The ratio of the weights contains the term(q/r)`(ω) — which is increasing
becausè is increasing and also the product over all occupied bonds ofrRi,j (q)/qRi,j (r).
We claim that this ratio is greater than one (which makes the overall product increasing in
ω) and increasing inb. Indeed, rewriting the ratio as
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r

q

Ri,j (q)

Ri,j (r)
=

1
qβbibj

Ri,j (q)

1
rβbibj

Ri,j (r)
(5.2)

both claims follow from the fact that1
x
[ex − 1] is an increasing function ofx. 2

We now observe that theq = 1 models are particularly simple. Indeed, these are a
generalization of the mixed bond site percolation models: sites are independently assigned
valuesbi in accord with thea priori distribution and, given the configurationb, the bonds
are independently occupied with probabilitypi,j = 1 − e−βJi,j bibj or left vacant with
probability 1−pi,j . (Notice that the ultimate distribution of the site variables is the original
a priori distribution.) Ordinary bond site percolation is the special case whenbi can only
take on the values zero and one.

Since the bond density is controlled by the parameterβ , it is clear that unless there is
too much mass atbi = 0, there will be percolation ifβ is sufficiently large. This is subject
of our first result:

Theorem 5.2. Let L denote some infinite graph assumed, for simplicity to be of finite
degree and homogeneous(all sites equivalent and all bonds equivalent) and consider aq-
state system — also assumed to be homogeneous — defined onL with q > 1. It is supposed
thatL is capable of supporting percolation. Letsc denote the site percolation threshold for
L. Then ifρb(bi > 0) > sc (whereρb denotes the a priori distribution for the problem)
there is percolation/magnetization forβ sufficiently large.

Proof. For ε > 0 small enough, we can find∆ > 0 such thatρb(bi > ∆) > sc + ε.
We then deem any site withbi > ∆ to be “occupied” and otherwise sites are declared
vacant. Between neighboring pairs of occupied sites, bonds have a probability of at least
1− e−β∆2

. Thus our system dominates a bond-site model with parameterss = sc + ε and
p = 1− e−β∆2

. As is well known (and not hard to prove) whenevers > sc , there is a
pc(s) < 1 such that there is percolation forp > pc(s). (Recently this has even been shown
to be a Hölder continuous function [8].) Evidently there is percolation in our system, ifβ

is large enough to ensure that 1− e−β∆2
>pc(sc + ε). 2

The above result is obviously unsatisfactory ifρb(bi = 0) < sc . Indeed, ifq > 1, the
ground state has every bond occupied and everybi at its maximum value (presumed to
be one). This suggests that there should be a percolation/magnetization phase transition for
any (non-trivial) a priori distribution of theb’s. And it also suggests that the previous bound
may be far from optimal. We remedy the first difficulty and hopefully, to some extent, the
second with the following:

Theorem 5.3. Under the hypotheses of Theorem5.2, for the models described withq > 1
there is spontaneous magnetization/percolation for allβ sufficiently large.
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Proof. We start with an elementary result on stochastic dominance: LetX =X1, . . . ,XN

denote a collection of zero–one valued variables with probability measurev(X). LetW(−)
be independent measure on{0,1}N with probabilities defined by

W(Xj = 1)=min
X‖j

v(xj = 1|X‖j ), (5.3)

whereX‖j is a specification of eachX exceptXj . In other words, the densities are given
by the worst case scenario conditional probabilities. Thenv(−)>FKGW(−). Although this
result is well known and the usual derivation is quite simple, the following — which we
believe is original — is even simpler and will be included for completeness.

By the FKG property of independent measure, it is sufficient to show that

v(X)= I (X)W(X) (5.4)

with I (X) an increasing function, i.e., that the ratio ofv toW (presumed to be well defined)
is increasing. This means we must show that for anyX‖j

v(X‖j ∩Xj = 1)

v(X‖j ∩Xj = 0)
>
W(X‖j ∩Xj = 1)

W(X‖j ∩Xj = 0)
= W(Xj = 1)

1−W(Xj = 1)

(the last step following from independence). Multiplying and dividing the leftmost term by
v(X‖j )— and observing thaty/[1− y] is monotone — the above amounts to showing that
v(Xj = 1 | X‖j )>W(Xj = 1) which is true by hypothesis.

For the case at hand, we will consider the bond marginal,µ
RC,f
L;q,β(ω), defined in Eq. (2.6)

whereL is any subset of the lattice (the domination will be inherited in the infinite volume
limit). We have taken free boundary conditions onL only to be definitive, any boundary
conditions (including wired) for which the Wolff-measures are FKG will suffice. Since the
above is the marginal of an FKG measure, it also has positive correlations. It is therefore
clear that for a given bond〈k, `〉, the “worst case scenario” is when all other bonds ofL
are vacant. Let us define the measure on theb’s appropriate to these circumstances:

VL(db)∝
∏
〈i,j〉

e−βbibj
∏
i

ρb(dbi). (5.5)

(We omit theJi,j in the exponent because we have assumed, for brevity that the graph is
homogeneous.) The estimate for the bond probability is given by

p =
1
q
EVL(Rk,`)

1+ 1
q
EVL(Rk,`)

= EVL(eqβbibj )− 1

(q − 1)+EVL(eqβbibj )
. (5.6)

(The factors of 1/q in the middle term appear because under these worst case circum-
stances, the presence of the bond always decreases the number of connected components
by one.) It is therefore sufficient to demonstrate that theVL average ofeqβbibj gets large
whenβ gets large. In case the distribution ofb’s does not go down to zero, we are in
essence done. (And, needless to say, could have used the result of the preceding theorem.)
Let us therefore assume that the support ofρ goes all the way down to zero.
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We start by absorbing the factor ofe−βb`bk into the function we wish to average.
Defining V ′L to be the measure that is similar to that of Eq. (5.5) but with bond〈k, `〉
omitted in the product, it is clear that

EVL
(
eqβb`bk

)= EV ′L(e(q−1)βb`bk )

EV ′L(e
−βb`bk )

> EV ′L
(
e(q−1)βb`bk

)
. (5.7)

Let ∆ ∈ (0,1). We will estimate the right-hand side of Eq. (5.7) by integrating only
over the region where bothb` and bk exceed∆. Keeping in mind an expression for
the density similar to that in Eq. (5.5) let us consider separately the numerator and
denominator when we evaluateEV ′L(e

(q−1)βb`bk ). In the numerator: the function can

be estimated bye(q−1)β∆2
. Next letN ′(`) denote those sites ofL that are connected

to ` — save for the sitek, and similarly forN ′(k). Then the numerator contains a
factor of

∏
i∈N ′(`) e−βb`bi

∏
j∈N ′(k) e−βbkbj in the integrand which we may replace by∏

i∈N ′(`) e−βbi
∏
j∈N ′(k) e−βbj . Finally, there is the remainder of the (interacting) density

which we write as
∏
〈i,j〉′′ e−βbibj where the double prime means the omission of any term

involving ` or k. In the denominator, we have similar terms involvinge−βb`bi , e−βbkbj and
evene−βb`bk — all of which we can bound by one — to be integrated against the double
primed product. Thus if we defineV ′′L to be the measure with density

V ′′L (db)∝
∏
〈i,j〉′′

e−βbibj
∏
i

ρ(dbi). (5.8)

We have that

EVL
(
eqβb`bk

)
> [ρ(b>∆)]2e(q−1)β∆2

EV ′′L

[ ∏
i∈N ′(`)

e−βbi
∏

j∈N ′(k)
e−βbj

]
. (5.9)

However the measureV ′′L is of the form (product measure)×(decreasing function ofb)
and the quantity to be averaged is a decreasing function. Invoking the FKG property for
product measures we thus have

EV ′′L

[ ∏
i∈N ′(`)

e−βbi
∏

j∈N ′(k)
e−βbj

]
>
[∫

ρ(db)e−βb
]2(ζ−1)

, (5.10)

whereζ is the coordination number ofL.
For particular examples ofa priori distributions, we can make efficient estimates of this

final term. (At this point thebestcase is when there is mass at zero. Or, as an example,
if the density is continuous and positive at zero we get∼ β−1 for each integral we have
to do.) In general we can pickε � 1 conveniently small and estimate the final term by
[ρ(b 6 ε)e−βε]2(ζ−1). Supposing then thatε(2ζ − 1) < ∆2 it is seen that asβ→∞ the
quantityEVLeqβb`bk ) goes to infinity and hencep→ 1. As soon as this exceeds the bond
percolation threshold forL, magnetization and/or percolation in the interacting model is
guaranteed.
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6. Summary and conclusions

For the infinite spin Ising model we have shown that magnetization is equivalent to
percolation of Wolff-clusters and that furthermore the thermal and geometric critical
behaviors are identical. The derivations in this work represent a considerable simplification
of the original derivations in [2] and [3] for theO(2) andO(3) models. Furthermore
they are applicable in a variety of contexts; in particular the continuous spinq-state Potts
model which, forq = 3, share the same similarities to theSU(3) gauge model as the Ising
case does toSU(2). Despite the fact that the models under consideration are far from a
realistic gauge theory, the conclusions of this work tend to confirm that deconfinement in
QCD theory could be related to some sort of geometric percolation phenomenon as was
suggested in [13,19]. Although filling the gap towards higher gauge models clearly requires
new insights, it would be interesting to extend the conclusions of this work to generalZn
andO(n) models which are also related to QCD systems.
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