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Abstract: We consider a variety of nearest-neighbor spin models defined on the
d-dimensional hypercubic lattice Z

d . Our essential assumption is that these models
satisfy the condition of reflection positivity. We prove that whenever the associated
mean-field theory predicts a discontinuous transition, the actual model also undergoes
a discontinuous transition (which occurs near the mean-field transition temperature),
provided the dimension is sufficiently large or the first-order transition in the mean-
field model is sufficiently strong. As an application of our general theory, we show that
for d sufficiently large, the 3-state Potts ferromagnet on Z

d undergoes a first-order phase
transition as the temperature varies. Similar results are established for all q-state Potts
models with q ≥ 3, the r-component cubic models with r ≥ 4 and the O(N)-nematic
liquid-crystal models with N ≥ 3.
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1. Introduction

1.1. Motivation and outline. Mean-field theory has traditionally played a seminal role
for qualitative understanding of phase transitions. In fact, most practical studies of com-
plex physical systems begin (and sometimes end) with the analysis of the corresponding
mean field theory. The central idea of mean-field theory – dating back to [15, 53] – is
rather compelling: The ostensibly complicated interactions acting on a particular ele-
ment of the system are replaced by the action of an effective (or mean) external field.
This field causes a response at the point of question and its value has to be self-consis-
tently adjusted so that the response matches the effective field. The practical outcome
of this procedure is a set of equations, known as the mean-field equations. In contrast to
the original, fully interacting system, the mean-field equations are susceptible to direct
analytical or numerical methods.

There is a general consensus that mean-field predictions are qualitatively or even
quantitatively accurate. However, for short-range systems, a mathematical foundation
of this belief has not been presented in a general context. A number of rigorous results
have related various lattice systems to their mean-field counterparts, either in the form of
bounds on transition temperatures and critical exponents, see [19,20,52] and references
therein, or in terms of limits of the free energy [48] and the magnetization [12, 41] as
the dimension tends to infinity. In all of these results, the nature of the phase transition
is not addressed or the proofs require special symmetries which, as it turns out, ensure
that the transition is continuous. But, without special symmetries (or fine tuning) phase
transitions are typically discontinuous, so generic short-range systems have heretofore
proved elusive. (By contrast, substantial progress along these lines has been made for
systems where the range of the interaction plays the role of a large parameter. See,
e.g., [10, 11, 14, 47].)

In this paper we demonstrate that for a certain class of nearest-neighbor spin systems,
namely those that are reflection positive, mean-field theory indeed provides a rigorous
guideline for the order of the transition. In particular, we show that the actual systems
undergo a first-order transition whenever the associated mean-field model predicts this
behavior, provided the spatial dimension is sufficiently high and/or the phase transition is
sufficiently strong. Furthermore, we give estimates on the difference between the values
of parameters of the actual model and its mean-field counterpart at their corresponding
transitions and show that these differences tend to zero as the spatial dimension tends to
infinity. In short, mean field theory is quantitatively accurate whenever the dimension
is sufficiently large.
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The main driving force of our proofs is the availability of the so called infrared
bound [18,22–24], which we use for estimating the correlations between nearest-neigh-
bor spins. It is worth mentioning that the infrared bound is the principal focus of interest
in a class of rigorous results on mean-field critical behavior of various combinatorial
models [13,30–32,37,39] and percolation [29,33–36,38,40] based on the technique of
the lace expansion. However, in contrast to these results (and to the hard work that they
require), our approach is more reminiscent of the earlier works on high-dimensional
systems [1–3], where the infrared bound is provided as an input. In particular, for our
systems this input is a consequence of reflection positivity. (As such, some of our results
can also be extended to systems with long-range forces; the relevant modifications will
appear in a separate publication [9].)

The principal substance of this paper is organized as follows: We devote the remainder
of Sect. 1 to a precise formulation of the general class of spin systems that we consider,
we then develop some general mean-field formalism and, finally, state our main theo-
rems. Sect. 2 contains a discussion of three eminent models – Potts, cubic and nematic –
with specific statements of theorems which underscore the first-order (and mean-field)
nature of the phase transitions for the large-d version of these models. In Sect. 3 we
develop and utilize the principal tools needed in this work and provide proofs of all
statements made in Sect. 1. In Sect. 4, we perform detailed analyses and collect vari-
ous known results on the mean-field theories for the specific models mentioned above.
When these systems are “sufficiently prepared,” we apply the Main Theorem to prove
all of the results stated in Sect. 2. Finally, in Sect. 5, we show that for any model in the
class considered, the mean-field theory can be realized by defining the problem on the
complete graph.

1.2. Models of interest. Throughout this paper, we will consider the following class of
spin systems on the d-dimensional hypercubic lattice Z

d : The spins, denoted by Sx , take
values in some fixed set�, which is a subset of a finite dimensional vector space E�. We
will use (· , ·) to denote the (positive-definite) inner product in E� and assume that� is
compact in the topology induced by this inner product. The spins are weighted according
to an a priori Borel probability measure µ whose support is�. An assignment of a spin
value Sx to each site x ∈ Z

d defines a spin configuration; we assume that the a priori
joint distribution of all spins on Z

d is i.i.d. Abusing the notation slightly, we will use µ
to denote the joint a priori measure on spin configurations and use 〈−〉0 to denote the
expectation with respect to µ.

The interaction between the spins is described by the (formal) Hamiltonian

βH = − J

2d

∑

〈x,y〉
(Sx,Sy)−

∑

x

(b,Sx). (1.1)

Here 〈x, y〉 denotes a nearest-neighbor pair of Z
d , the quantity b, playing the role of an

external field, is a vector from E� and β, the inverse temperature, has been incorporated
into the (normalized) coupling constant J ≥ 0 and the field parameter b.

The interaction Hamiltonian gives rise to the concept of a Gibbs measure which is
defined as follows: Given a finite set � ⊂ Z

d , a configuration S = (Sx)x∈� in � and a
boundary condition S′ = (S′

x)x∈Zd\� in Z
d \�, we let βH�(S|S′) be given by (1.1) with

the first sum on the right-hand side of (1.1) restricted to 〈x, y〉 such that {x, y}∩� �= ∅,
the second sum restricted to x ∈ �, and Sx for x �∈ � replaced by S′

x . Then we define
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the measure ν(S
′)

� on configurations S in � by the expression

ν
(S′)
� (dS) = e−βH�(S|S′)

Z�(S′)
µ(dS), (1.2)

where Z�(S′) is the appropriate normalization constant which is called the partition
function. The measure in (1.2) is the finite-volume Gibbs measure corresponding to the
interaction (1.1).

In statistical mechanics, the measure (1.2) describes the thermodynamic equilibrium
of the spin system in �. To address the question of phase transitions, we have to
study the possible limits of these measures as � expands to fill in Z

d . In accord with
the standard definitions, see [26], we say that the spin model undergoes a first-order
phase transition at parameter values (J, b) if there are at least two distinct infinite-
volume limits of the measure in (1.2) arising from different boundary conditions. We
will call these limiting objects either infinite-volume Gibbs measures or, in accordance
with mathematical-physics nomenclature, Gibbs states. We refer the reader to [26, 52]
for more details on the general properties of Gibbs states and phase transitions.

We remark that, while the entire class of models has been written so as to appear
identical, the physics will be quite different depending on the particulars of � and µ,
and the inner product. Indeed, the language of magnetic systems has been adapted only
for linguistic and notational convenience. The above framework can easily accommo-
date any number of other physically motivated interacting models such as lattice gases,
ferroelectrics, etc.

1.3. Mean-field formalism. Here we will develop the general formalism needed for stat-
ing the principal mean-field bounds. The first object of interest is the logarithmic moment
generating function of the distribution µ,

G(h) = log
∫

�

µ(dS) e(S,h). (1.3)

Since � was assumed compact, G(h) is finite for all h ∈ E�. Moreover, h 
→ G(h) is
continuous and convex throughout E�.

Every mean-field theory relies on a finite number of thermodynamic functions of
internal responses. For the systems with interaction (1.1), the object of principal interest
is the magnetization. In general, magnetization is a quantity taking values in the closed,
convex hull of �, here denoted by Conv(�). If m ∈ Conv(�), then the mean-field
entropy function is defined via a Legendre transform of G(h),

S(m) = inf
h∈E�

{
G(h)− (m,h)

}
. (1.4)

(Strictly speaking, (1.4) makes sense even for m �∈ Conv(�) for which we simply get
S(m) = −∞.) In general, m 
→ S(m) is concave and we have S(m) ≤ 0 for all
m ∈ Conv(�). From the perspective of the large-deviation theory (see [16, 19]), the
mean-field entropy function is (the negative of) the rate function for the probability that
the average of many spins is near m.

To characterize the effect of the interaction, we have to introduce energy into the
game. For the quadratic Hamiltonian in (1.1), the (mean-field) energy function is given
simply by
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EJ,b(m) = −1

2
J |m|2 − (m, b), (1.5)

where |m|2 = (m,m). On the basis of physical considerations, a state of thermodynamic
equilibrium corresponds to a balance between the energy and the entropy. The appropri-
ate thermodynamic function characterizing this balance is the free energy. We therefore
define the mean-field free-energy function by setting ΦJ,b(m) = EJ,b(m)− S(m), i.e.,

ΦJ,b(m) = −1

2
J |m|2 − (m, b)− S(m). (1.6)

The mean-field (Gibbs) free energy FMF(J, b) is defined by minimizing ΦJ,b(m) over
all m ∈ Conv(�). Assuming a unique minimizer, this and (1.4–1.5) give us a definition
of the mean-field magnetization, entropy and energy. A more interesting situation occurs
when there is more than one minimizer of ΦJ,b. The latter cases are identified as the
points of phase coexistence while the former situation is identified as the uniqueness
region.

For the sake of completeness, it is interesting to observe that every minimizer of
ΦJ,b(m) (in fact, every stationary point) in the relative interior of Conv(�) is a solution
of the equation

m = ∇G(Jm + b), (1.7)

where ∇ denotes the (canonical) gradient in E�. This is the mean-field equation for
the magnetization, which describes the self-consistency constraint that we alluded to
in Sect. 1.1. The relation between (1.7) and the stationarity of ΦJ,b is seen as follows:
∇ΦJ,b(m) = 0 implies that Jm + b + ∇S(m) = 0. But h = −∇S(m) is equivalent to
m = ∇G(h), and stationarity therefore implies (1.7).

We conclude with a claim that an immediate connection of the above formalism to
some statistical mechanics problem is possible. Indeed, if the Hamiltonian (1.1) is re-
defined for the complete graph on N vertices, then the quantityΦJ,b(m) emerges as the
rate function in a large-deviation principle for magnetization and hence FMF(J, b) is
the free energy in this model. A precise statement and a proof will appear in the last
section (Theorem 5.1 in Sect. 5); special cases of this result have been known since time
immemorable, see e.g. [19].

1.4. Main results. Now we are in a position to state our general results. The basic idea is
simply to watch what happens when the value of the magnetization in an actual system
(governed by (1.1)) is inserted into the associated mean-field free-energy function. We
begin with a general bound which relies only on convexity:

Theorem 1.1. Consider the spin system on Z
d with the Hamiltonian (1.1) and let νJ,b be

an infinite-volume Gibbs measure corresponding to the parameters J ≥ 0 and b ∈ E� in
(1.1). Suppose that νJ,b is invariant under the group of translations and rotations of Z

d .
Let 〈−〉J,b denote the expectation with respect to νJ,b and let m� be the magnetization
of the state νJ,b defined by

m� = 〈S0〉J,b, (1.8)

where 0 denotes the origin in Z
d . Then

ΦJ,b(m�) ≤ inf
m∈Conv(�)

ΦJ,b(m)+ J

2

[〈
(S0,Sx)

〉
J,b − |m�|2

]
, (1.9)

where x denotes a nearest neighbor of the origin.
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Thus, whenever the fluctuations of nearest-neighbor spins have small correlations, the
physical magnetization almost minimizes the mean-field free energy. The bound (1.9)
immediately leads to the following observation, which, to the best of our knowledge,
does not appear in the literature:

Corollary 1.2. Let νJ,b and 〈−〉J,b be as in Theorem 1.1 and let m� be as in (1.8). Then

〈
(Sx,Sy)

〉
J,b ≥ |m�|2 (1.10)

for any pair of nearest-neighbors x, y ∈ Z
d . In particular, for any model with interac-

tion (1.1), the nearest-neighbor spins are positively correlated in any Gibbs state which
is invariant under the translations and rotations of Z

d .

Our next goal is to characterize a class of Gibbs states for which the correlation term
on the right-hand side of (1.9) is demonstrably small. However, our proofs will make
some minimal demands on the Gibbs states themselves and it is therefore conceivable
that we may not be able to access all the extremal magnetizations. To define those val-
ues of magnetization for which our proofs hold, let F(J, b) denote the infinite-volume
free energy per site of the system on Z

d , defined by taking the thermodynamic limit of
− 1

|�| logZ�, see e.g. [50]. (Note that the existence of this limit follows automatically
by the compactness of�.) The function F(J, b) is concave and, therefore, has all direc-
tional derivatives. Let K�(J, b) be the set of all pairs [e�,m�] such that

F(J +�J, b +�b)− F(J, b) ≤ e��J + (m�,�b) (1.11)

holds for all numbers �J and all vectors �b ∈ E�. By a well-known result (see the
discussion of the properties of subdifferential on page 215 of [51]), K�(J, b) is a convex
set; we let M�(J, b) denote the set of all values m� such that [e�,m�] is an extreme point
of the set K�(J, b) for some value e�.

Our Main Theorem is then as follows:

Main Theorem. Let d ≥ 3 and consider the spin system on Z
d with the Hamiltonian

(1.1). Let n denote the dimension of E�. For J ≥ 0 and b ∈ E�, let m� ∈ M�(J, b).
Then

ΦJ,b(m�) ≤ inf
m∈Conv(�)

ΦJ,b(m)+ Jn
κ

2
Id, (1.12)

where κ = maxS∈�(S,S) and

Id =
∫

[−π,π ]d

ddk

(2π)d
[1 − D̂(k)]2

D̂(k)
(1.13)

with D̂(k) = 1 − 1
d

∑d
j=1 cos(ky).

The bound (1.12) provides us with a powerful method for proving first-order phase
transitions on the basis of a comparison with the associated mean-field theory. The key to
our whole program is that the “error term”, Jnκ2 Id , vanishes in the d → ∞ limit; in fact,

Id = 1

2d

(
1 + o(1)

)
as d → ∞, (1.14)
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Fig. 1. The mean-field free energy as a function of a scalar magnetization m(J ) for the typical model
undergoing a first-order phase transition. In an interval of values of J , there are two local minima which
switch their order at J = JMF. If the “barrier” height �(J ) always exceeds the error term from (1.12),
there is a forbidden interval of scalar magnetizations and m(J ) has to jump as J varies. The actual plot
corresponds to the 3-state Potts model for J taking the values (a) 2.73, (b) 2.76, (c) 2.77 and (d) 2.8. See
Sect. 2.1 for more details

see [12]. For d sufficiently large, the bound (1.12) thus forces the magnetization of the
actual system to be near a value of m that nearly minimizesΦJ,b(m). Now, recall a typ-
ical situation of the mean-field theory with a first-order phase transition: There is a JMF
such that, for J near JMF, the mean-field free-energy function has two nearly degenerate
minima separated by a barrier of height �(J ), see Fig. 1. If the barrier �(J ) always
exceeds the error term in (1.12), i.e., if �(J ) > Jnκ2 Id , some intermediate values of
magnetization are forbidden and, as J increases through JMF, the physical magnetization
undergoes a jump at some Jt near JMF. See also Fig. 2.

The Main Theorem is a direct consequence of Theorem 1.1 and the following lemma:

Key Estimate. Let J ≥ 0 and b ∈ E� and let m� ∈ M�(J, b). Let n, κ and Id be as
in the Main Theorem. Then there is an infinite-volume Gibbs state νJ,b for interaction
(1.1) such that

m� = 〈S0〉J,b, (1.15)

and
〈
(Sx,Sy)

〉
J,b − |m�|2 ≤ nκId, (1.16)

for any nearest-neighbor pair x, y ∈ Z
d . Here 〈−〉J,b denotes the expectation with

respect to νJ,b.
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The Key Estimate follows readily under certain conditions; for instance, when the
parameter values J and b are such that there is a unique Gibbs state. Under these circum-
stances, the bound (1.16) is a special case of the infrared bound which can be derived
using reflection positivity (see [18,22–24]) and paying close attention to the “zero mode.”
Unfortunately, at the points of non-uniqueness, the bound in (1.16) is also needed. The
restriction to extreme magnetizations is thus dictated by the need to approximate the
magnetizations (and the states which exhibit them) by states where the standard “RP,
IRB” technology can be employed.

The Key Estimate and Theorem 1.1 constitute a proof of the Main Theorem. Thus,
a first-order phase transition (for d � 1) can be established in any system of the form
(1.1) by detailed analysis of the full mean-field theory. Although this sounds easy in
principle, in practice there are cases where this can be quite a challenge. But, ultimately,
the Main Theorem reduces the proof of a phase transition to a problem in advanced
calculus where (if desperate) one can employ computers to assist in the analysis.

1.5. Direct argument for mean-field equation. We have stated our main results in the
context of the mean-field free energy. However, many practical calculations focus im-
mediately on the mean-field equation for magnetization (1.7). As it turns out, a di-
rect study of the mean-field equation provides us with an alternative (albeit existential)
approach to the results of this paper. The core of this approach is the variance bound
for the magnetization stated as follows:

Lemma 1.3. Let d ≥ 3 and consider the spin system on Z
d with the Hamiltonian (1.1).

Let n and Id be as in the Main Theorem. For J ≥ 0 and b ∈ E�, let m� ∈ M�(J, b).
Then there is an infinite-volume Gibbs state νJ,b for the interaction (1.1) such that
m� = 〈S0〉J,b and

〈∣∣∣
1

2d

∑

x : |x|=1

Sx − m�

∣∣∣
2〉

J,b
≤ nJ−1Id, (1.17)

where 〈−〉J,b denotes the expectation with respect to νJ,b.

Here is how the bound (1.17) can be used to prove that mean-field equations are ac-
curate in sufficiently large dimensions: Conditioning on the spin values at the neighbors
of the origin and recalling the definition ofG(h), the expectation 〈S0〉J,b can be written
as

〈S0〉J,b =
〈
∇G
(
J

2d

∑

x : |x|=1

Sx + b
)〉

J,b
. (1.18)

Since the right-hand side of (1.17) tends to zero as d → ∞, the (spatial) average of
the spins neighboring the origin – namely 1

2d

∑
x : |x|=1 Sx – is, with high probability,

very close to m�. Using this in (1.18), we thus find that m� approximately satisfies the
mean-field equation (1.7). Thus, to demonstrate phase coexistence (for d � 1) it is
sufficient to show that, along some curve in the parameter space, the solutions to the
mean-field equations cannot be assembled into a continuous function. In many cases,
this can be done dramatically by perturbative arguments.

While this alternative approach has practical appeal for certain systems, the principal
drawback is that it provides no clue as to the location of the transition temperature.
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J

m

Fig. 2. The solutions of the mean-field equation for the scalar order parameterm as a function of J for the
10-state Potts model. The solid lines indicate the local minima, the dashed lines show the other solutions
to the mean-field equation. The portions of these curves in the regions where m is sufficiently close to
zero or one can be (rigorously) controlled using perturbative calculations. These alone prove that the
mean-field theory “does not admit continuous solutions” and, therefore, establish first order transitions
for d � 1. The shaded regions show the set of allowed magnetizations for the system on Z

d when
Id ≤ 0.002. In addition to manifestly proving a discontinuous transition, these provide tight numerical
bounds on the transition temperature and reasonable bounds on the size of the jump

Indeed, as mentioned in the paragraph following the Main Theorem, secondary minima
and other irrelevant solutions to the mean-field equations typically develop well below
J = JMF. Without the guidance of the free energy, there is no way of knowing which
solutions are physically relevant.

2. Results for Specific Models

In this section we adapt the previous general statements to three models: the q-state Potts
model, the r-component cubic model and the O(N)-nematic liquid crystal model. For
appropriate ranges of the parameters q, r and N and dimension sufficiently large, we
show that these models undergo a first-order phase transition as J varies. The relevant
results appear as Theorems 2.1, 2.3 and 2.6.

2.1. Potts model. The Potts model, introduced in [49], is usually described as having a
discrete spin space with q states, σx ∈ {1, 2, . . . , q}, with the (formal) Hamiltonian

βH = −J
∑

〈x,y〉
δσx,σy . (2.1)

Here δσxσy is the usual Kronecker delta and J = J
2d . To bring the interaction into the

form of (1.1), we use the so called tetrahedral representation, see [54]. In particular, we
let � = {v̂1, . . . , v̂q}, where v̂α denote the vertices of a (q − 1)-dimensional hypertet-
rahedron, i.e., v̂α ∈ R

q−1 with

v̂α · v̂β =
{

1, if α = β,

− 1
q−1 , otherwise.

(2.2)
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The inner product is proportional to the usual dot product in R
q−1. Explicitly, if Sx ∈ �

corresponds to σx ∈ {1, . . . , q}, then we have

(Sx,Sy) = q − 1

q
Sx · Sy = δσx,σy − 1

q
. (2.3)

(The reason for this rescaling the dot product is to maintain coherence with existing
treatments of the mean-field version of this model.) The a priori measure µ gives a
uniform weight to all q states in �.

Let us summarize some of the existing rigorous results about the q-state Potts model.
The q = 2 model is the Ising model, which in mean-field theory as well as real life has
a continuous transition. It is believed that the Potts model has a discontinuous transition
for all d ≥ 3 and q ≥ 3 (see, e.g., [54]). In any d ≥ 2, it was first proved in [45] that
for q sufficiently large, the energy density has a region of forbidden values over which it
must jump discontinuously as J increases. On the basis of FKG monotonicity properties,
see [4], this easily implies that the magnetization is also discontinuous. Such results have
been refined and improved; for instance in [44,46], Pirogov-Sinai type expansions have
been used to show that there is a single point of discontinuity outside of which all quan-
tities are analytic. However, for d ≥ 3, the values of q for which these techniques work
are “astronomical,” and, moreover, deteriorate exponentially with increasing dimension.

Let m�(J ) and e�(J ) denote the actual magnetization and energy density, respec-
tively. These quantities can be defined using one-sided derivatives of the physical free
energy:

m�(J ) = ∂

∂b
F (J, bv̂1)

∣∣∣
b=0+ and e�(J ) = ∂

∂J ′F(J
′, 0)

∣∣∣
J ′=J+ , (2.4)

or, equivalently, by optimizing the expectations 〈(v̂1,S0)〉, resp., 1
2 〈(S0,Sx)〉, where “0”

is the origin and x is its nearest neighbor, over all Gibbs states that are invariant under
the symmetries of Z

d . Recalling the Fortuin-Kasteleyn representation [4,21,27,28], let
P∞(J ) be the probability that, in the associated random cluster model with parameters
p = 1 − e−J/(2d) and q, the origin lies in an infinite cluster. Then m�(J ) and P∞(J )
are related by the equation

m�(J ) = q − 1

q
P∞(J ). (2.5)

As a consequence, the magnetization m�(J ) is a non-decreasing and right-continuous
function of J . The energy density e�(J ) is non-decreasing in J simply by concavity of
the free energy. The availability of the graphical representation allows us to make general
statements about the phase-structure of these systems. In particular, in any d ≥ 2 and
for all q under consideration, there is a Jc = Jc(q, d) ∈ (0,∞) such thatm�(J ) > 0 for
J > Jc while m�(J ) = 0 for J < Jc, see [4, 28]. Whenever m�(Jc) > 0 (which, by the
aforementioned results [44–46], is known for q � 1), there are at least q + 1 distinct
extremal, translation-invariant Gibbs states at J = Jc.

The mean-field free energy for the model without external field is best written in
terms of components of m: If (x1, . . . , xq) is a probability vector, we express m as

m = x1v̂1 + · · · + xq v̂q . (2.6)
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The interpretation of this relation is immediate: xk corresponds to the proportion of
spins in the kth spin-state. In terms of the variables in (2.6), the mean-field free-energy
function is (to within a constant) given by

ΦJ (m) =
q∑

k=1

(− J
2 x

2
k + xk log xk

)
. (2.7)

In (2.7) we have for once and all set the external field b to zero and suppressed it from
the notation.

It is well-known (see [41,54] and also Lemma 4.4 of the present paper) that, for each
q ≥ 3, there is a JMF ∈ (2, q) such that ΦJ has a unique global minimizer m = 0 for
J < JMF, while for J > JMF, there are q global minimizers which are obtained by per-
mutations of single (x1, . . . , xq) with x1 > x2 = · · · = xq . To keep the correspondence
with m�(J ), we define the scalar mean-field magnetization mMF(J ) as the maximal
Euclidean norm of all global minimizers of the mean-field free energy ΦJ (m). (In this
parametrization, the asymmetric global maxima will be given by x1 = 1

q
+ mMF(J )

and x2 = · · · = xq = 1
q

− 1
q−1mMF(J ).) ThenmMF(J ) is the maximal positive solution

to the equation

q

q − 1
m = e

J
q
q−1m − 1

e
J

q
q−1m + q − 1

. (2.8)

In particular, J 
→ mMF(J ) is non-decreasing. We note that the explicit values of the cou-
pling constant JMF and the magnetization mc = mMF(JMF) at the mean-field transition
are known:

JMF = 2
q − 1

q − 2
log(q − 1) and mc = q − 2

q
, (2.9)

see e.g. [54]. Thus, the mean-field transition is first-order for all q > 2.

Our main result about the Potts model is then as follows:

Theorem 2.1 (Potts model). Consider the q-state Potts model on Z
d and let m�(J ) be

its scalar magnetization. For each q ≥ 3, there exists a Jt = Jt(q, d) and two numbers
ε1 = ε1(d, J ) > 0 and ε2 = ε2(d) > 0 satisfying ε1(d, J ) → 0, uniformly on finite
intervals of J , and ε2(d) → 0 as d → ∞, such that the following holds:

m�(J ) ≤ ε1 for J < Jt (2.10)

and

|m�(J )−mMF(J )| ≤ ε1 for J > Jt. (2.11)

Moreover,

|Jt − JMF| ≤ ε2. (2.12)

In particular, both the magnetization m�(J ) and the energy density e�(J ) undergo a
jump at J = Jt whenever d is sufficiently large.
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The jump in the energy density at Jt immediately implies the existence of at least
q + 1 distinct extremal Gibbs measures at J = Jt. However, the nature of our proofs
does not permit us to conclude thatm�(J ) = 0 for J < Jt nor can we rule out thatm�(J )
undergoes further jumps for J > Jt. (Nonetheless, the jumps for J > Jt would have to
be smaller than 2ε1(d, J ).) Unfortunately, we can say nothing about the continuous-q
variant of the Potts model – the random cluster model – for non-integer q. In this work,
the proofs lean too heavily on the spin representation. Furthermore, for non-integer q,
the use of our principal tool, reflection positivity, is forbidden; see [8].

We also concede that, despite physical intuition to the contrary, our best bounds
on ε2(d) and ε1(d, J ) deteriorate with increasing q. This is an artifact of the occurrence
of the single-spin space dimension on the right-hand side of (1.12). (This sort of thing
seems to plague all existing estimates based on reflection positivity.) In particular, we
cannot yet produce a sufficiently large dimension d for which the phase transition in all
(q ≥ 3)-state Potts models would be provably first order.

2.2. Cubic model. Our second example of interest is the r-component cubic model.
Here the spins Sx are the unit vectors in the coordinate directions of R

r , i.e., if êk are
the standard unit vectors in R

r , then

� = {±êk : k = 1, . . . , r}. (2.13)

The Hamiltonian is given by (1.1), with the inner product given by the usual dot product
in R

r and the a priori measure given by the uniform measure on �. As in the last sub-
section, we set b = 0 and suppress any b-dependence from the notation. We note that
the r = 1 case is the Ising model while the case r = 2 is equivalent to two uncoupled
Ising models.

The cubic model was introduced (and studied) in [42,43] as a model of the magnetism
in rare-earth compounds with a cubic crystal symmetry. There it was noted that the as-
sociated mean-field theory has a discontinuous transition for r ≥ 4, while the transition
is continuous for r = 1, 2 and 3. The mean field theory is best expressed in terms of
the collection of parameters ȳ = (y1, . . . , yr ) and µ̄ = (µ1, . . . , µr), where yk stands
for the fraction of spins that take the values ±êk and µkyk is the magnetization in the
direction êk . In this language, the magnetization vector can be written as

m = y1µ1ê1 + · · · + yrµr êr . (2.14)

To describe the mean-field free-energy function, we define

K
(r)
J (ȳ, µ̄) =

r∑

k=1

(
yk log yk + yk Θ2Jyk(µk)

)
, (2.15)

where ΘJ (µ) denotes the standard Ising mean-field free energy with bias µ; i.e., the
quantity in (2.7) with q = 2, x1 = 1

2 (1 + µ) and x2 = 1
2 (1 − µ). Then ΦJ (m) is found

by minimizing K(r)
J (ȳ, µ̄) over all allowed pairs (ȳ, µ̄) such that (2.14) holds.

As in the case of the Potts model, the global minimizer of ΦJ (m) will be a permuta-
tion of a highly-symmetric state. However, this time the result is not so well known, so
we state it as a separate proposition:
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Proposition 2.2. Consider the r-component cubic model. For each J ≥ 0, the only local
minima ofΦJ are m = 0 or m = ±mMF êk , k = 1, . . . , r , wheremMF = mMF(J ) is the
maximal positive solution to the equation

m = sinh Jm

r − 1 + cosh Jm
. (2.16)

Furthermore, there is a JMF ∈ (0,∞) such that the only global minimizers of ΦJ (m)
are m = 0 for J < JMF and m = ±mMF(J )êk , k = 1, . . . , r , (with mMF(J ) > 0) for
J > JMF.

For a system on Z
d , the scalar magnetization is most conveniently defined as the

norm of 〈S0〉J , optimized over all translation-invariant Gibbs states for the coupling
constant J . The energy density e�(J ) is defined using the same formula as for the Potts
model, see (2.4).

Our main result about the cubic model is then as follows:

Theorem 2.3 (Cubic model). Consider the r-state cubic model on Z
d and let m�(J )

be its scalar magnetization. Then for every r ≥ 4, there exists a Jt = Jt(q, d) and two
numbers ε1 = ε1(d, J ) > 0 and ε2 = ε2(d) > 0 satisfying ε1(d, J ) → 0, uniformly on
finite intervals of J , and ε2(d) → 0 as d → ∞, such that the following holds:

m�(J ) ≤ ε1 for J < Jt (2.17)

and

|m�(J )−mMF(J )| ≤ ε1 for J > Jt. (2.18)

Moreover,

|Jt − JMF| ≤ ε2. (2.19)

In particular, both the magnetization m�(J ) and the energy density e�(J ) undergo a
jump at J = Jt whenever d is sufficiently large.

As in the case of the Potts model, our technique does not allow us to conclude that Jt
is the only value of J where the magnetization undergoes a jump. In this case, we do
not even know that the magnetization is a monotone function of J ; the conclusions
(2.17–2.18) can be made because we know that the energy density is close to 1

2m�(J )
2

and is (as always) a non-decreasing function of J . Finally, we also cannot prove that,
in the state with large magnetization in the direction ê1, there will be no additional
symmetry breaking in the other directions. Further analysis, based perhaps on graphical
representations, is needed.

2.3. Nematic liquid-crystal model. The nematic models are designed to study the be-
havior of liquid crystals, see the monograph [25] for more background on the subject. In
the simplest cases, a liquid crystal may be regarded as a suspension of rod-like molecules
which, for all intents and purposes, are symmetric around their midpoint. For the models
of direct physical relevance, each rod (or a small collection of rods) is described by an
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three-dimensional spin and one considers only interactions that are (globally) O(3)-
invariant and invariant under the (local) reversal of any spin. The simplest latticized
version of such a system is described by the Hamiltonian

βH(s) = − J

2d

∑

〈x,y〉
(sx · sy)2, (2.20)

with sx a unit vector in R
3 and x ∈ Z

d with d = 2 or d = 3. We will study the above
Hamiltonian, but we will consider general dimensions d (provided d ≥ 3) and spins that
are unit vectors in any R

N (provided N ≥ 3).
The Hamiltonian (2.20) can be rewritten into the form (1.1) as follows [25]: Let E�

be the space of all traceless N × N matrices with real coefficients and let � be the set
of those matrices Q = (Qα,β) ∈ E� for which there is a unit vector in v = (vα) ∈ R

N

such that

Qαβ = vαvβ − 1

N
δαβ, α, β = 1, . . . , N. (2.21)

Writing Qx for the matrix arising from the spin sx via (2.21), the interaction term becomes

(sx · sy)2 = Tr(QxQy)+ 1

N
. (2.22)

Now E� is a finite-dimensional vector space and (Q,Q′) = Tr(QQ′) is an inner prod-
uct on E�, so (2.20) indeed takes the desired form (1.1), up to a constant that has no
relevance for physics.

The a priori measure on � is a pull-back of the uniform distribution on the unit
sphere in R

N . More precisely, if v is uniformly distributed on the unit sphere in R
N ,

then Q ∈ � is a random variable arising from v via (2.21). As a consequence, the a
priori distribution is invariant under the action of the Lee group O(N,R) given by

Qx 
→ g−1Qxg, g ∈ O(N,R). (2.23)

The parameter signaling the phase transition, the so called order parameter, is “tensor”
valued. In particular, it corresponds to the expectation of Q0. The order parameter can
always be diagonalized. The diagonal form is not unique; however, we can find an or-
thogonal transformation that puts the eigenvalues in a decreasing order. Thus the order
parameter is effectively an N -vector λ = (λ1, . . . , λN) such that λ1 ≥ λ2 ≥ · · · ≥ λN .
We note that, since each Qx is traceless, we have

∑
k λk = 0.

The previous discussion suggests the following definition of the scalar order param-
eter: For J ≥ 0, we let λ�(J ) be the value of the largest non-negative eigenvalue of
the matrix 〈Q0〉J , optimized over all translation-invariant Gibbs states for the coupling
constant J . As far as rigorous results about the quantity λ�(J ) are concerned, we know
from [6] that (in d ≥ 3) λ�(J ) > 0 once J is sufficiently large. On the other hand,
standard high-temperature techniques (see e.g. [5, 7, 17]) show that if J is sufficiently
small then there is a unique Gibbs state. In particular, since this state is then invariant
under the action (2.23) of the fullO(N,R) group, this necessitates that λ�(J ) ≡ 0 for J
small enough. The goal of this section is to show that λ�(J ) actually undergoes a jump
as J varies.

The mean-field theory of the nematic model is formidable. Indeed, for any partic-
ular N it does not seem possible to obtain a workable expression for ΦJ (λ), even if
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we allow that the components of λ have only two distinct values (which is usually as-
sumed without apology in the physics literature). Notwithstanding, this simple form of
the vector minimizer and at least some of the anticipated properties can be established:

Proposition 2.4. Consider theO(N)-nematic model for N ≥ 3. Then every local mini-
mum of ΦJ (λ) is an orthogonal transformation of the matrix

λ = diag
(
λ,− λ

N − 1
, . . . ,− λ

N − 1

)
(2.24)

where λ is a non-negative solution to the equation

λ =

∫ 1

0
dx (1 − x2)

N−3
2 e

JNλ
N−1 x

2(
x2 − 1

N

)

∫ 1

0
dx (1 − x2)

N−3
2 e

JNλ
N−1 x

2
. (2.25)

In particular, there is an increasing and right-continuous function J 
→ λMF(J ) such
that the unique minimizer of ΦJ (λ) is λ = 0 for J < JMF, while for any J > JMF, the
function ΦJ (λ) is minimized by the orthogonal transformations of

λ = diag
(
λMF(J ),−λMF(J )

N − 1
, . . . ,−λMF(J )

N − 1

)
. (2.26)

At the continuity points ofλMF : (JMF,∞) → [0, 1], these are the only global minimizers
of ΦJ .

Based on the pictorial solution of the problem by physicists, see e.g. [25], we would
expect that J 
→ λMF(J ) is continuous on its domain and, in fact, corresponds to the
maximal positive solution to (2.25). (This boils down to showing a certain convexity-
concavity property of the function on the right-hand side of (2.25).) While we could not
establish this fact for allN ≥ 3, we were successful at least forN sufficiently large. The
results of the large-N analysis are summarized as follows:

Proposition 2.5. Consider the O(N)-nematic model for N ≥ 3 and let λ(N)MF (J ) be the
maximal positive solution to (2.25). Then there exists anN0 ≥ 3 and, for eachN ≥ N0,
a number JMF = JMF(N) ∈ (0,∞) such that for each N ≥ N0, the unique minimizer
ofΦJ (λ) is λ = 0 for J < JMF, while for any J > JMF, the functionΦJ (λ) is minimized
only by the orthogonal transformations of (2.26), with λMF(J ) > 0.

The function J 
→ λ
(N)
MF (J ) is continuous and strictly increasing on its domain and

has the following large-N asymptotic: For all J ≥ 2,

lim
N→∞

λ
(N)
MF (JN) = 1

2

(
1 +

√
1 − 4J−2

)
. (2.27)

Moreover, there exists a J (∞)
MF (with J (∞)

MF ≈ 2.455) such that

lim
N→∞

JMF(N)

N
= J

(∞)
MF . (2.28)
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Now we are ready to state our main theorem concerning O(N)-nematics. As can be
gleaned from a careful reading, our conclusions are not quite as strong as in the previous
cases (due to the intractability of the associated mean-field theory). Nevertheless, a bona
fide first-order transition is established for these systems.

Theorem 2.6 (Nematic model). Consider the O(N)-nematic model with the Hamil-
tonian (2.20) and J ≥ 0. For each N ≥ 3, there exists a non-negative function J 
→
λ�MF(J ), a constant Jt = Jt(N, d) and two numbers ε1 = ε1(d, J ) > 0 and ε2 =
ε2(d) > 0 satisfying ε1(d, J ) → 0, uniformly on finite intervals of J , and ε2(d) → 0
as d → ∞, such that the following holds:

For all J ≥ 0, the matrix λ = diag(λ�MF(J ),−
λ�MF(J )

N−1 , . . . ,−
λ�MF(J )

N−1 ) is a local
minimum of ΦJ . Moreover, we have the bounds

λ�(J ) ≤ ε1 for J < Jt (2.29)

and

|λ�(J )− λ�MF(J )| ≤ ε1 for J > Jt. (2.30)

Furthermore,

|Jt − JMF| ≤ ε2. (2.31)

In particular, λ�(J ) ≥ κ > 0 for all J > Jt and all N ≥ 3 and both the order parame-
ter and the energy density e�(J ) undergo a jump at J = Jt, provided the dimension is
sufficiently large.

The upshot of the previous theorem is that the high-temperature region with λ = 0
and the low-temperature region with λ �= 0 (whose existence was proved in [6]) are
separated by a first-order transition. However, as with the other models, our techniques
are not sufficient to prove that λ is exactly zero for all J < Jt, nor, for J > Jt, that all
states are devoid of some other additional breakdown of symmetry. Notwithstanding,
general theorems about Gibbs measures guarantee that, a jump of J 
→ λ�(J ) at J = Jt
implies the coexistence of a “high-temperature” state with various symmetry-broken
“low-temperature” states.

3. Proofs of Mean-Field Bounds

3.1. Convexity estimates. In order to prove Theorem 1.1, we need to recall a few stan-
dard notions from convexity theory and prove a simple lemma. Let A ⊂ R

n be a convex
set. Then we define the affine hull of A by the formula

aff A = {λx + (1 − λ)y : x, y ∈ A , λ ∈ R
}
. (3.1)

(Alternatively, aff A is a smallest affine subset of R
n containing A .) This concept al-

lows us to define the relative interior, ri A , of A as the set of all x ∈ A for which there
exists an ε > 0 such that

y ∈ aff A & |y − x| ≤ ε ⇒ y ∈ A . (3.2)

It is noted that this definition of relative interior differs from the standard topological
definition. For us it is important that the standard (topological) closure of ri A is simply
the standard closure of A . We refer to [51] for more details.
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Lemma 3.1. For each m ∈ ri {m′ ∈ E� : S(m′) > −∞}, there exists a vector h ∈ E�

such that ∇G(h) = m.

Results of this sort are quite well known; e.g., with some effort this can be gleaned
from Lemma 2.2.12 in [16] combined with the fact that the so called exposed points
of S(m) can be realized as ∇G(h) for some h. For completeness, we provide a full
derivation which exploits the particulars of the setup at hand.

Proof. Let C abbreviate {m′ ∈ E� : S(m′) > −∞} and let m ∈ ri C . Let us define the
set V = {m′ − m : m′ ∈ aff C }. It is easy to see that V is in fact the affine hull of the
shifted set C − m and, since 0 ∈ V, it is a closed linear subspace of E�. First we claim
that the infimum in (1.4) can be restricted to h ∈ V. Indeed, if h, a ∈ E�, then the
convexity of h 
→ G(h) gives

G(h + a)− (h + a,m) ≥ G(h)− (h,m)+ (a,∇G(h)− m
)

(3.3)

for any m. This implies that ∇G(h) has a finite entropy, i.e., ∇G(h) ∈ C for any h ∈ E�.
Now let m be as above and a ∈ V

⊥. Then an inspection of the definition of V shows
that the last term in (3.3) identically vanishes. Consequently, for the infimum (1.4), we
will always be better off with h ∈ V.

Let hk ∈ V be a minimizing sequence for S(m); i.e., G(hk) − (hk,m) → S(m) as
k → ∞. We claim that hk contains a subsequence tending to a finite limit. Indeed, if
on the contrary hk = |hk| → ∞ we let τ k be defined by hk = hkτ k and suppose that
τ k → τ (at least along a subsequence), where |τ | = 1. Now since m ∈ ri C and τ ∈ V,
we have m + ετ ∈ aff C for all ε and, by (3.2), m + ετ ∈ C for some ε > 0 sufficiently
small. But we also have

G(hk)− (hk,m + ετ ) = G(hk)− (hk,m)− εhk(τ k, τ ), (3.4)

which tends to the negative infinity because (τ k, τ ) → 1 and hk → ∞. But then
S(m + ετ ) = −∞, which contradicts that m + ετ ∈ C . Thus hk contains a converging
subsequence, hkj → h. Using that h is an actual minimizer ofG(h)− (h,m), it follows
that ∇G(h) = m. ��

Now we are ready to prove our principal convexity bound:

Proof of Theorem 1.1. Recall that FMF(J, b) denotes the infimum of ΦJ,b(m) over all
m ∈ Conv(�). As a first step, we will prove that there is a constant C < ∞ such that
for any finite� ⊂ Z

d and any boundary condition S′
∂�, the partition function obeys the

bound

Z�(S′
∂�) ≥ e−|�|FMF(J,b)−C|∂�|, (3.5)

where |�| denotes the number of sites in� and |∂�| denotes the number of bonds of Z
d

with one end in � and the other in Z
d \�. (This is an explicit form of the well known

fact that the free energy is always lower than the associated mean-field free energy,
see [19, 52].)

To prove (3.5), let M� denote the total magnetization in �,

M� =
∑

x∈�
Sx, (3.6)
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and let 〈−〉(�)0,h be the a priori state in � tilted with a uniform magnetic field h, i.e., for
any measurable function f of the configurations in �,

〈f 〉(�)0,h = e−|�|G(h)〈f e(h,M�)〉0. (3.7)

Fix an h ∈ E� and let mh = ∇G(h). By inspection, ∇G(h) = 〈Sx〉(�)0,h for all x ∈ �.
Then

Z�(S′
∂�) = e|�|G(h)〈e−(h,M�)−βH�(S�|S′

∂�)
〉(�)
0,h , (3.8)

which using Jensen’s inequality gives

Z�(S′
∂�) ≥ exp

{
|�|(G(h)− (h,mh)

)− 〈βH(S�|S′
∂�)
〉
0,h

}
. (3.9)

To estimate the expectation of βH(S�|S′
∂�), we first discard (through a bound) the

boundary terms and then evaluate the contribution of the interior bonds. Since the num-
ber of interior bonds in � is more than d|�| − |∂�|, this gets us

−〈βH(S�|S′
∂�)
〉
0,h ≥ −J

2
|mh|2 − C|∂�|. (3.10)

NowG(h)−(h,mh) ≥ S(mh), so we haveZ�(S′
∂�) ≥ e−|�|ΦJ,b(mh)−C|∂�|. But Lemma

3.1 guarantees that each m with S(m) > −∞ can be approximated by a sequence of mh
with h ∈ E�, so the bound (3.5) follows by optimizing over h ∈ E�.

Next, let νJ,b be an infinite volume Gibbs state and let 〈−〉J,b denote expectation
with respect to νJ,b. Then we claim that

e|�|G(h) = 〈e(h,M�)+βH�(S�|S∂�)Z�(S∂�)
〉
J,b. (3.11)

(Here S�, resp. S∂� denote the part of the same configuration S inside, resp., outside�.
Note that the relation looks trivial for h = 0.) Indeed, the conditional distribution in νJ,b
given that the configuration outside � equals S′ is ν(S

′)
� , as defined in (1.2). But then

(1.2) tells us that
∫
e(h,M�)+βH�(S�|S′)Z�(S′) ν(S

′)
� (dS�) =

∫
e(h,M�)µ(dS�) = e|�|G(h). (3.12)

The expectation over the boundary condition S′ then becomes irrelevant and (3.11) is
proved.

Now suppose that νJ,b is the Z
d -translation and rotation invariant Gibbs measure in

question and recall that m� = 〈S0〉J,b, where 〈−〉J,b denotes the expectation with respect
to νJ,b. To prove our desired estimate, we use (3.5) on the right-hand side of (3.11) and
apply Jensen’s inequality to get

e|�|G(h) ≥ exp
{〈
(h,M�)+ βH�

〉
J,b

}
e−|�|FMF(J,b)−C|∂�|. (3.13)

Using the invariance of the state νJ,b with respect to the translations and rotations of Z
d ,

we have
〈
(h,M�)

〉
J,b = |�|(h,m�) (3.14)
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while

〈βH�〉J,b ≥ −|�|J
2

〈
(S0,Sx)

〉
J,b − |�|(b,m�)− C′|∂�|, (3.15)

where C′ is a constant that bounds the worst-case boundary term and where x stands for
any neighbor of the origin. By plugging these bounds back into (3.13) and passing to
the thermodynamic limit, we conclude that

−G(h)+ (h − b,m�)− J

2

〈
(S0,Sx)

〉
J,b ≤ FMF(J, b). (3.16)

Now optimizing the left-hand side over h ∈ E� allows us to replace −G(h)+ (h,m�)

by −S(m�). Then the bound (1.9) follows by adding and subtracting the term J
2 |m�|2

on the left-hand side. ��

3.2. Infrared bound. Our proof of the Key Estimate (and hence the Main Theorem)
requires the use of the infrared bounds, which in turn are derived from reflection posi-
tivity. The connection between infrared bounds and reflection positivity dates back (at
least) to [18, 22–24]. However, the present formulation (essentially already contained
in [12, 24, 41]) emphasizes more explicitly the role of the “k = 0” Fourier mode of the
two-point correlation function by subtracting the square of the background average.

Reflection positivity is greatly facilitated by first considering finite systems with pe-
riodic boundary conditions. If it happens that there is a unique Gibbs state for parameter
values J and b then the proof of the Key Estimate is straightforward – there is no dif-
ficulty with putting the system on a torus and taking the limit. In particular, the Key
Estimate amounts (more or less) to Corollary 2.5 in [24]. But when there are several
infinite-volume Gibbs states, we can anticipate trouble with the naive limits of the finite-
volume torus states. Fortunately, Gibbsian uniqueness is not essential to our arguments.
Below we list two properties of Gibbs states which allow a straightforward proof of the
desired infrared bound. Then we show that in general we can obtain the infrared bound
for states of interest by an approximation argument.

Property 1. An infinite-volume Gibbs measure νJ,b (not necessarily extremal) for the
interaction (1.1) is called a torus state if it can be obtained by a (possibly subsequential)
weak limit as L → ∞ of the Gibbs states in volume [−L,L]d ∩ Z

d , for the interaction
(1.1) with periodic boundary conditions.

Given J and b, we let M (J, b) denote the subset of Conv(�) containing all magneti-
zations achieved by infinite-volume translation-invariant Gibbs states for the interaction
(1.1). Next, recall the notation M� from (3.6) for the average magnetization in� ⊂ Z

d .

Property 2. An infinite-volume Gibbs measure νJ,b (not necessarily extremal) for the
interaction (1.1) is said to have block-average magnetization m if

lim
�↗Zd

M�

|�| = m, νJ,b-almost surely. (3.17)

Here the convergence � ↗ Z
d is along the net of all the finite boxes � ⊂ Z

d with
partial order induced by set inclusion. (See [26] for more details.)
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Our first goal is to show that every torus state with a deterministic block-average mag-
netization satisfies the infrared bound. Suppose d ≥ 3 and let D−1 denote the Fourier
transform of the inverse lattice Laplacian with Dirichlet boundary condition. In lattice
coordinates, D−1 has the representation

D−1(x, y) =
∫

[−π,π ]d

ddk

(2π)d
1

D̂(k)
eik(x−y), x, y ∈ Z

d , (3.18)

where D̂(k) = 1− 1
d

∑d
j=1 cos(kj ). Note that the integral converges by our assumption

that d ≥ 3.

Lemma 3.2. Let d ≥ 3 and suppose that νJ,b is a Gibbs state for interaction (1.1) sat-
isfying Properties 1 and 2. Let 〈−〉J,b denote the expectation with respect to νJ,b and
let m denote the value of magnetization in νJ,b. Then for all (vx)x∈Zd such that vx ∈ R

and
∑
x∈Zd

|vx | < ∞,
∑

x,y∈Zd

vxvy
〈
(Sx − m,Sy − m)

〉
J,b ≤ nJ−1

∑

x,y∈Zd

vxvy D
−1(x, y). (3.19)

Here n denotes the dimension of E�.

Proof. Let�L = [−L,L]d ∩ Z
d and let ν(L)J,b be the finite-volume Gibbs state in�L for

the interaction (1.1) with periodic boundary conditions. Let

��L =
{( 2π

2L+ 1
n1, . . . ,

2π

2L+ 1
nd

)
: − L ≤ ni ≤ L

}
(3.20)

denote the reciprocal lattice. Let (wx)x∈�L be a collection of vectors from E� satisfying
that wx �= 0 for only a finite number of x ∈ Z

d and
∑
x∈�L wx = 0. Let 〈−〉(L)J,b denote

the expectation with respect to ν(L)J,b . Then we have the infrared bound [22–24],

∑

x,y∈�L

〈
(wx,Sx)(wy,Sy)

〉(L)
J,b ≤ J−1

∑

x,y∈�L
(wx,wy)D

−1
L (x, y), (3.21)

where

D−1
L (x, y) = 1

|��L|
∑

k∈��L�{0}

1

D̂(k)
eik(x−y). (3.22)

Now, let ê1, . . . , ên be an orthogonal basis in E� and choose wx = wx ê�, where (wx)x∈Zd

is such that wx �= 0 only for a finite number of x ∈ Z
d and

∑

x∈Zd

wx = 0. (3.23)

Passing to the limit L → ∞ in such a way that ν(L)J,b converges to the state νJ,b, and then
summing over � = 1, . . . , n gets us the bound

∑

x,y∈Zd

wxwy
〈
(Sx,Sy)

〉
J,b ≤ nJ−1

∑

x,y∈Zd

wxwy D
−1(x, y). (3.24)
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So far we have (3.24) only for (wx) with a finite support. But, using that fact that both
quantitiesD−1(x, y) and 〈(Sx,Sy)〉J,b are uniformly bounded, (3.24) is easily extended
to all absolutely-summable (wx)x∈Zd (i.e., those satisfying

∑
x∈Zd

|wx | < ∞) which
obey the constraint (3.23).

Let (vx) be as specified in the statement of the lemma and let a =∑x∈Zd
vx . FixK ,

let �K be as above and define (w(K)x ) by

w(K)x = vx − a

|�K |1{x∈�K }. (3.25)

Clearly, these (w(K)x ) obey the constraint (3.23). Our goal is to recover (3.19) from (3.24)
in the K → ∞ limit. Indeed, plugging this particular (w(K)x ) into (3.24), the left hand
side opens into four terms. The first of these is the sum of vxvy〈(Sx,Sy)〉J,b, which is
part of what we want in (3.19). The second and the third terms are of the same form and
both amount to

a
∑

x,y

vx1{x∈�K }
〈
(Sx,Sy)

〉
J,b = a

〈∑

x

vx

(
Sx,

1

|�K |
∑

y∈�K
Sy

)〉

J,b
. (3.26)

By our assumption of a sharp block-average magnetization in νJ,b, the average of the
spins in �K can be replaced, in the K → ∞ limit, by m. Similarly, we claim that

lim
K→∞

1

|�K |2
∑

x,y∈�K

〈
(Sx,Sy)

〉
J,b = |m|2, (3.27)

so, recalling the definition of a, the left-hand side is in a good shape.
As for the right-hand side of (3.24) with (wx) = (w

(K)
x ), here we invoke the fact that

(for d ≥ 3)

lim
K→∞

1

|�K |
∑

x∈�L
D−1(x, y) = 0, (3.28)

uniformly in y ∈ Z
d . The claim therefore follows. ��

Next we show that for any parameters J and b, and any m� ∈ M�(J, b), we can
always find a state with magnetization m� that is a limit of states satisfying Properties 1
and 2.

Lemma 3.3. For all J > 0, all b ∈ E� and all m� ∈ M�(J, b), there are sequences
(Jk), (bk) and (mk) with Jk → J , bk → b, mk → m� and M (Jk, bk) = {mk}. In
particular, there is a sequence (νJk,bk ) of infinite-volume Gibbs measures satisfying
Properties 1 and 2, which weakly converge (possibly along a subsequence) to a measure
νJ,b with magnetization m�.

Proof. The proof uses a little more of the convexity theory, let us recapitulate the nec-
essary background. Let f : R

n → (−∞,∞) be a convex and continuous function. Let
(·, ·) denote the inner product in R

n. For each x ∈ R
n, let S(x) be the set of all possible

limits of the gradients ∇f (xk) for sequences xk ∈ R
n such that xk → x as k → ∞.

Then Theorem 25.6 of [51] says that the set of all subgradients ∂f (x) of f at x,

∂f (x) = {a ∈ R
n : f (y)− f (x) ≥ (y − x, a), y ∈ R

n
}
, (3.29)
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can be written as

∂f (x) = Conv(S(x)), (3.30)

where Conv(S(x)) is the closed, convex hull of S(x). (Here we noted that since the
domain of f is all of R

n, the so-called normal cone is empty at all x ∈ R
n.) But S(x) is

closed and thus Conv(S(x)) is simply the convex hull of S(x). Now, by Corollary 18.3.1
of [51], we also know that if S ⊂ R

n is a bounded set of points and C is its convex hull
(no closure), then every extreme point of C is a point from S. Thus, we conclude: every
extreme point of ∂f (x) lies in S(x).

Now we can apply the above general facts to our situation. LetF(J, b) be the infinite-
volume free energy of the model in (1.1). Noting that F(J, b) is defined for all J ∈ R

and all b ∈ E�, the domain of F is R × E�. By well known arguments, F is continuous
and concave. Moreover, a comparison of (1.11) and (3.30) shows that K�(J, b) is – up
to a sign change – the subdifferential of F at (J, b). As a consequence of the previous
paragraph, every extreme point [e�,m�] ∈ K�(J, b) is given by a limit limk→∞[ek,mk],
where [ek,mk] are such that K�(Jk, bk) = {[ek,mk]} for some Jk → J and bk → b.
But m� ∈ M�(J, b) implies that [e�,m�] is an extreme point of K�(J, b) for some e�,
so the first part of the claim follows.

To prove the second part, note that any infinite-volume limit of the finite-volume
Gibbs state with periodic boundary condition and parameters Jk and bk must necessarily
have energy density ek and magnetization mk . By compactness of the set of all Gibbs
states (which is ensured by compactness of�), there is at least one (subsequential) limit
〈−〉J,b of the torus states as Jk → J and bk → b, which is then a translation-invariant
Gibbs state with parameters J and b such that

e� = 〈(Sx,Sy)
〉
J,b and m� = 〈Sx〉J,b, (3.31)

where x and y is any pair of nearest neighbors of Z
d . However, the block-average values

of both quantities must be constant almost-surely, because otherwise 〈−〉J,b could have
been decomposed into at least two ergodic states with distinct values of energy-density
/magnetization pair, which would in turn contradict that [e�,m�] is an extreme point of
K�(J, b). ��

We note that the limiting measure is automatically Z
d -translation and rotation in-

variant and, in addition, satisfies the block-average property. But, in the cases that are
of specific interest to the present work (i.e., when M�(J, b) contains several elements),
there is little hope that such a state is a torus state. Nevertheless, we can prove:

Corollary 3.4. Let J ≥ 0 and b ∈ E�. Then for any m� ∈ M�(J, b), there exists a
state νJ,b with (block-average) magnetization m� for which the infrared bound (3.19)
holds. Moreover, the state νJ,b is Z

d -translation and rotation invariant.

Proof. For J = 0 we have a unique Gibbs state and the claim trivially holds. Otherwise,
all of this follows from the weak convergence of the νJk,bk discussed above. ��

3.3. Proof of Main Theorem. Now we have all the ingredients ready to prove
Lemma 1.3:
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Proof of Lemma 1.3. Fix m� ∈ M�(J, b) and let νJ,b be the state described in Corol-
lary 3.4. To prove our claim, it just remains to choose (vx) as follows:

vx =
{ 1

2d , if |x| = 1,

0, otherwise,
(3.32)

and recall the definition of Id from (1.13). ��
Having established Lemma 1.3, we are ready to give the proof of the Key Estimate:

Proof of Key Estimate. Let J ≥ 0 and b ∈ E�. Let m� ∈ M�(J, b) and let 〈−〉J,b be the
state satisfying (1.15) and (1.17). Our goal is to prove the bound (1.16). To that end, let
m0 = m0(S) denote the spatially averaged magnetization of the neighbors of the origin.
The rotation symmetry of the state 〈−〉J,b then implies

〈
(Sx,S0)

〉
J,b = 〈(m0,S0)

〉
J,b. (3.33)

Next, conditioning on the spin configuration in the neighborhood of the origin, we use
the DLR condition for the state 〈−〉J,b which results in

〈
(m0,S0)

〉
J,b = 〈(m0,∇G(Jm0 + b))

〉
J,b. (3.34)

Finally, a simple calculation, which uses the fact that m� = 〈S0〉J,b = 〈m0〉J,b =
〈∇G(Jm0 + b)〉J,b, allows us to conclude that

〈
(m0,∇G(Jm0 + b))

〉
J,b − |m�|2

=
〈(

m0 − m�,∇G(Jm0 + b)− ∇G(Jm� + b)
)〉

J,b
. (3.35)

To proceed with our estimates, we need to understand the structure of the double
gradient of function G(h). Recall the notation 〈−〉0,h for the single-spin state tilted
by the external field h. Explicitly, for each measurable function f on �, we have
〈f (S)〉0,h = e−G(h)〈f (S)e(h,S)〉0. Then the components of the double gradient corres-
pond to the components of the covariance matrix of the vector-valued random variable
S. In formal vector notation, for any a ∈ E�,

(a,∇)2G(h) = 〈(a,S − 〈S〉0,h)
2〉

0,h. (3.36)

Pick h0,h1 ∈ E�. Then we can write

(
h1 − h0,∇G(h1)− ∇G(h0)

) =
∫ 1

0
dλ
〈(

h1 − h0,S − 〈S〉0,hλ
)2〉

0,hλ
, (3.37)

where hλ = (1 − λ)h0 + λh1. But the inner product on the right-hand side can be
bounded using the Cauchy-Schwarz inequality, and since

〈|S − 〈S〉0,hλ |2
〉
0,hλ

≤ max
S∈�

(S,S) = κ, (3.38)

we easily derive that
(
h1 − h0,∇G(h1)− ∇G(h0)

) ≤ κ|h1 − h0|2. (3.39)

This estimate shows that the right-hand side of (3.35) can by bounded by κJ 〈|m0 −
m�|2〉J,b. But for this we have the bound from Lemma 1.3: 〈|m0 − m�|2〉J,b ≤ nJ−1Id .
Putting all the previous arguments together, (1.16) follows. ��
Proof of Main Theorem. This now follows directly by plugging (1.16) into (1.9). ��
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4. Proofs of Results for Specific Models

By and large, this section is devoted to the specifics of the three models described in
Sect. 2. Throughout the entire section, we will assume that b = 0 and henceforth omit b
from the notation. We begin with some elementary observations which will be needed
in all three cases of interest but which are also of some general applicability.

4.1. General considerations.

4.1.1. Uniform closeness to global minima. We start by showing that, for the systems
under study, the magnetization is uniformly close to a mean-field magnetization. Let
MMF(J ) denote the set of all local minima ofΦJ . Obviously, if we know that the actual
magnetization comes close to minimizing the mean-field free energy, it must be close to
a minimum or a “near-minimum” of this function. A useful measure of this closeness is
the following: For J ∈ [0,∞] and ϑ > 0, we let

DJ (ϑ) = sup
{

dist
(
m,MMF(J )

) ∣∣∣m ∈ Conv(�), ΦJ (m) < FMF(J )+ ϑ
}
, (4.1)

where FMF(J ) denotes the absolute minimum of ΦJ . However, to control the “close-
ness” we will have to make some assumptions about the behavior of the (local) minima
of ΦJ . An important property ensuring the desired uniformity in all three models under
study is as follows:

Uniformity Property. If J ≥ 0 and if m ∈ Conv(�) is a global minimum of ΦJ , then
there is an ε > 0 and a continuous function m� : [J − ε, J + ε] → Conv(�) such that
limJ ′→J m�(J ′) = m and m�(J ′) is a local minimum ofΦJ ′ for all J ′ ∈ [J − ε, J + ε].

In simple terms, the Uniformity Property states that every global minimum can be ex-
tended into a one-parameter family of local minima. Based on the Uniformity Property,
we can state a lemma concerning the limit of DJ (ϑ) as ϑ ↓ 0:

Lemma 4.1. Suppose that ΦJ satisfies the above Uniformity Property. Then for all
J0 > 0,

lim
ϑ↓0

sup
0≤J≤J0

DJ (ϑ) = 0. (4.2)

Proof. This is essentially an undergraduate exercise in compactness. Indeed, if the above
fails, then for some ε > 0, we could produce a sequence ϑk ↓ 0 and Jk ∈ [0, J0]
such that

DJk (ϑk) ≥ 6ε. (4.3)

This, in turn, implies the existence of mk ∈ Conv(�) such that

dist
(
mk,MMF(Jk)

) ≥ 3ε while ΦJk (mk) < FMF(Jk)+ ϑk. (4.4)

Let us use J and m to denote the (subsequential) limits of the above sequences. Using
the continuity of ΦJ (m), to the right of the while we would have ΦJ (m) = FMF(J )

and m is thus a global minimum ofΦJ . By our hypothesis, for each k sufficiently large,
there is a local minimum m�(Jk) ofΦJk with m�(Jk) converging to m as k → ∞. Since
mk is also converging to m, the sequences mk and m�(Jk) will eventually be arbitrary
close. But that contradicts the bound to the left of the while. ��
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4.1.2. Monotonicity of mean-field magnetization. For spin systems with an internal sym-
metry (which, arguably, receive an inordinate share of attention), the magnetization
usually serves as an order parameter. In the context of mean-field theory, what would
typically be observed is an interval [0, JMF], where m = 0 is the global minimizer ofΦJ ,
while for J > JMF, the function ΦJ is minimized by a non-zero m. This is the case for
all three models under consideration. (It turns out that whenever 〈S〉0 = 0, the unique
global minimum of ΦJ for J sufficiently small is m = 0.)

In order to prove the existence of a symmetry-breaking transition, we need to prove
that the models under consideration have a unique point where the local minimum m = 0
ceases the status of a global minimum. This amounts to showing that, once the mini-
mizer of ΦJ has been different from zero, it will never jump back to m = 0. In the
mean-field theory with interaction (1.1), this can be proved using the monotonicity of
the energy density; an analogous argument can be used to achieve the same goal for the
corresponding systems on Z

d .

Lemma 4.2. Let J1 < J2 and let m1 be a global minimizer ofΦJ1 and m2 a global min-
imizer of ΦJ2 . Then |m1| ≤ |m2|. Moreover, if J 
→ m(J ) is a differentiable trajectory
of local minima, then

d

dJ
ΦJ
(
m(J )

) = −1

2

∣∣m(J )
∣∣2. (4.5)

Proof. The identity (4.5) is a simple consequence of the fact that, if m is a local minimum
ofΦJ , then ∇ΦJ (m) = 0. To prove the first part of the claim, let J, J ′ ≥ 0 and let m be
a minimizer of ΦJ . Let FMF(J ) be the mean-field free energy. First we claim that

FMF(J )− FMF(J
′) ≥ −J − J ′

2
|m|2. (4.6)

Indeed, since FMF(J ) = ΦJ (m), we have from the definition of ΦJ that

FMF(J ) = −J − J ′

2
|m|2 +ΦJ ′(m). (4.7)

Then the above follows using that ΦJ ′(m) ≥ FMF(J
′). Let J1 < J2 and m1 and m2 be

as stated. Then (4.6) for the choice J = J2, J ′ = J1 and m = m2 gives

FMF(J2)− FMF(J1)

J2 − J1
≥ −1

2
|m2|2, (4.8)

while (4.6) for the choice J = J1, J ′ = J2 and m = m1 gives

FMF(J1)− FMF(J2)

J1 − J2
≤ −1

2
|m1|2. (4.9)

Combining these two bounds, we have |m1| ≤ |m2| as stated. ��
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4.1.3. One-component mean-field problems. Often enough, the presence of symmetry
brings along a convenient property that the multicomponent mean-field equation (1.7)
can be reduced to a one-component problem. Since this holds for all cases under consid-
eration and we certainly intend to use this fact, let us spend a few minutes formalizing
the situation.

Suppose that there is a non-zero vector ω ∈ E� such that ∇G(hω) is colinear with ω
(and not-identically zero) for all h. As it turns out, then also ∇S(mω) is colinear with ω,
provided mω ∈ Conv(�). Under these conditions, let us restrict both h and m to scalar
multiples of ω and introduce the functions

g(h) = |ω|−2G(hω) and s(m) = |ω|−2S(mω). (4.10)

The normalization by |ω|−2 ensures that s(m) is given by the Legendre transform of g(h)
via the formula (1.4). Moreover, the mean-field free-energy function ΦJ (mω) equals
the |ω|2-multiple of the function

φJ (m) = −1

2
Jm2 − s(m). (4.11)

The mean-field equation (1.7) in turn reads

m = g′(Jm). (4.12)

In this one-dimensional setting, we can easily decide about whether a solution to (4.12)
is a local minimum of φJ or not just by looking at the stability of the solutions under
iterations of (4.12):

Lemma 4.3. Let m be a solution to (4.12) and suppose φJ is twice continuously differ-
entiable in a neighborhood of m. If

Jg′′(Jm) < 1, (4.13)

thenm is a local minimum of φJ . Informally, only “dynamically stable” solutions to the
(on-axis) mean-field equation can be local minima of φJ .

We remark that the term “dynamically stable” stems from the attempt to find solutions
to (4.12) by running the iterative scheme mk+1 = g′(Jmk).

Proof. Let h and m be such that g′(h) = m, which is equivalent to h = s′(m). An easy
calculation then shows that g′′(h) = −(s′′(m))−1. Suppose now that m is a solution to
(4.12) such that (4.13) holds. Then h = Jm and from (4.13) we have

s′′(m) = −(g′′(Jm)
)−1

< −J. (4.14)

But that implies

φ′′
J (m) = −J − s′′(m) > −J + J = 0, (4.15)

and, using the second derivative test, we conclude thatm is a local minimum of φJ . ��
With Lemmas 4.1, 4.2 and 4.3 established, our account of the general properties is

concluded and we can start discussing particular models. What follows in the next three
subsections are the three respective models laid out in order of increasing difficulty.
Our repeated – and not particularly elegant – strategy will be to pound at the various
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models using internal symmetry as the mallet. The upshot is inevitably that at most one
component becomes dominant while all other components act, among themselves, like
a system at high temperature. Thus all subdominant components are equivalent and the
full problem has been reduced to an effective scalar model. In short, there are some
parallels between the various treatments. However, somewhat to our disappointment,
we have not been able to find a unified derivation covering “all models of this sort.”

4.2. Potts model. In order to prove Theorem 2.1, we need to establish (rigorously) a few
detailed properties of the mean-field free-energy function (2.7). In view of (2.6) we will
interchangeably use the notations m and (x1, . . . , xq) to denote the same value of the
magnetization.

Lemma 4.4. Consider the q-state Potts model with q ≥ 3. Let ΦJ be the mean-field
free-energy function as defined in (2.7). If m ∈ Conv(�) is a local minimum ofΦJ then
the corresponding (x1, . . . , xq) is a permutation of the probability vector (x�1, . . . , x

�
q)

such that

x�1 ≥ x�2 = · · · = x�q . (4.16)

Moreover, when x�1 > x�2 , we also have

Jx�1 > 1 > Jx�2 . (4.17)

A complete proof of the claims in Lemma 4.4 was, to our best knowledge, first pro-
vided in [41]. (Strictly speaking, in [41] it was only shown that the global minima ofΦJ
take the above form; however, the proof in [41] can be adapted to also accommodate
local minima.) We will present a nearly identical proof but with a different interpretation
of the various steps. The advantage of our reinterpretation is that it is easily applied to
the other models of interest in this paper.

Proof of Lemma 4.4. If m corresponds to the vector (x1, . . . , xq), we letΦ(q)J (x1, . . . , xq)

be the quantityΦJ (m). Suppose that (x1, . . . , xq) is a local minimum. It is easy to verify
that (x1, . . . , xq) cannot lie on the boundary of Conv(�), so xk > 0 for all k = 1, . . . , q.
Pick any two coordinates – for simplicity we assume that our choice is x1 and x2 – and
let y = 1 − (x3 + · · · + xq), z1 = x1/y and z2 = x2/y. (Note that y = x1 + x2 and, in
particular, y > 0.) Then we have

Φ
(q)
J (x1, . . . , xq)

= −1

2
Jy2(z2

1 + z2
2)+ y(z1 log z1 + z2 log z2)+ R

(q)
J (x3, . . . , xq), (4.18)

where R(q)J (x3, . . . , xq) is independent of z1 and z2. Examining the form of the free
energy, we find that the first two terms are proportional to the mean-field free-energy
function of the Ising (q = 2) system with reduced coupling Jy:

Φ
(q)
J (x1, . . . , xq) = y Φ

(2)
Jy (z1, z2)+ R

(q)
J (x3, . . . , xq). (4.19)

Since the only z-dependence is in the first term, the pair (z1, z2) must be a local
minimum of Φ(2)Jy regardless of what x3, . . . , xq look like. But this reduces the problem
to the Ising model, about which much is known and yet more can easily be derived. The
properties of Φ(2)J (z1, z2) we will need are:
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(i) Jc = 2 is the critical coupling. For J ≤ Jc, the free-energy function Φ(2)J (z1, z2)

is lowest when z1 = z2, while for J > Jc, the free-energy function Φ(2)J (z1, z2)

is lowest when ρ = |z1 − z2| is the maximal (non-negative) solution to ρ =
tanh( 1

2Jρ).
(ii) Whenever J > Jc, the maximal solution to ρ = tanh( 1

2Jρ) satisfies J (1−ρ2) < 2,
which implies that either Jz1 > 1 and Jz2 < 1 or vice versa.

(iii) For all J and z1 ≥ z2, the mean-field free-energy function Φ(2)J (z1, z2) monotoni-
cally decreases as ρ = z1 − z2 moves towards the non-negative global minimum.

All three claims are straightforward to derive, except perhaps (ii), which is established
by noting that, whenever ρ > 0 satisfies the (Ising) mean-field equation, we have

1

2
J (1 − ρ2) = J

2 cosh( 1
2Jρ)

2
= Jρ

sinh(Jρ)
< 1. (4.20)

Hence, if J > Jc and z1 > z2, then Jz2 = 1
2J (1 − ρ) < 1

2J (1 − ρ2) < 1 and thus
Jz1 > 1 because J (z1 + z2) = J > Jc = 2.

Based on (i–iii), we can draw the following conclusions for any pair of distinct in-
dices xj and xk: If J (xj + xk) ≤ 2, then xj = xk , because the (k, j)th Ising pair is
subcritical, while if J (xj + xk) > 2 then, using our observation (ii), either Jxk > 1
and Jxj < 1 or vice versa. But then we cannot have Jxk > 1 for more than one index
k, because if Jxk > 1 and Jxj > 1, we would have J (xj + xk) > 2 and the (k, j)th

Ising pair would not be at a local minimum. All the other indices must then be equal
because the associated two-component Ising systems are subcritical. Consequently, only
one index from (x1, . . . , xq) can take a larger value; the other indices are equal. ��

Proposition 4.5. Consider the q-state Potts model with q ≥ 3. LetΦJ be the mean-field
free-energy function as defined in (2.7). Then there exist J1 and J2 = q with J1 < J2
such that

(1) m = 0 is a local minimum of ΦJ provided J < J2.
(2) m = x�1v̂1 +· · ·+x�q v̂1 with x�1 > x�2 = · · · = x�q is a local minimum ofΦJ provided

that J > J1 and x�1 = 1
q

+m, wherem is the maximal positive solution to Eq. (2.8).
(3) For all J ≥ 0, there are no local minima except as specified in (1) and (2).

Moreover, if JMF is as in (2.9), then the unique global minimum of ΦJ is as in (1)
for J < JMF while for J > JMF the function ΦJ has q distinct global minimizers as
described in (2) .

Proof of Proposition 4.5. Again, most of the above stated was proved in [41] but without
the leeway for local minima. (Of course, the formulas (2.8) and (2.9) date to an ear-
lier epoch, see e.g. [54].) What is not either easily derivable or already proved in [41]
amounts to showing that ifm is a “dynamically stable” solution to (2.8), the correspond-
ing m = x�1v̂1 + · · · + x�q v̂1 as described in (2) is a local minimum for the full ΦJ (m).
The rest of this proof is spent proving the latter claim.

We first observe that for the set

U(x) = {m = (x, x2, . . . , xq) : Jxk ≤ 1, k = 2, . . . , q
}

(4.21)

the unique (strict) global minimum of ΦJ occurs at

m(x) = (x, 1−x
q−1 , . . . ,

1−x
q−1

)
. (4.22)
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Indeed, otherwise we could further lower the value ofΦJ by bringing one of the (j, k)th

Ising pairs closer to its equilibrium, using the properties (ii–iii) above. Now, suppose
thatm satisfying (2.8) is “dynamically stable” in the sense of Lemma 4.3. By (4.17) we
have that the corresponding x�1 = 1

q
+ m satisfies Jx�1 > 1 while the common value

of x�k for k = 2, . . . , q is such that Jx�k < 1. Suppose that the corresponding m is not
a local minimum of the full ΦJ . Then there exists a sequence (mk) tending to m such
thatΦJ (mk) < ΦJ (m). But then there is also a sequence m′

k such thatΦJ (m′
k) < ΦJ (m),

where each m′
k now takes the form (4.22). This contradicts that the restriction of ΦJ to

the “diagonal,” namely the function φJ (m), has a local minimum at m. ��
Now we are ready to prove our main result about the q-state Potts model.

Proof of Theorem 2.1. By well known facts from the FK representation of the Potts
model, the quantities e�(J ) and m�(J ) arise from the pair [ew

� ,mw
� ] corresponding to

the state with constant boundary conditions (the wired state). Therefore, [ew
� ,mw

� ] is an
extreme point of the convex set K�(J ) and mw

� ∈ M�(J ) for all J . In particular, the
bound (1.12) for mw

� can be used without apology.
Let δd be the part of the error bound in (1.12) which does not depend on J . Explicitly,

we have δd = 1
2q (q−1)2Id , because κ = (q−1)/q and dim E� = q−1. Since Id → 0

as d → ∞, we have δd → 0 as d → ∞. Let us define

ε1 = ε1(d, J ) = sup
0≤J ′≤J

DJ ′(J δd), (4.23)

where DJ is as in (4.1). It is easy to check that the Uniformity Property holds. Lemma
4.1 then guarantees that every (extremal) physical magnetization m� ∈ M�(J ) has to
lie within ε1 from a local minimum ΦJ . Since the asymmetric minima exist only for
J > J1 > 0 while m = 0 is a local minimum only for J < J2 = q, we havem�(J ) ≤ ε1
for J ≤ J1, while |m�(J )−mMF(J )| ≤ ε1 for J > J2. But from the FKG properties of
the random cluster representation we know that J 
→ m�(J ) is non-decreasing so there
must be a point, Jt ∈ (J1, J2], such that (2.10–2.11) hold.

It remains to show that |Jt − JMF| tends to zero as d → ∞. For J ∈ (J1, J2), let
ϕS(J ), resp., ϕA(J ) denote the value of ΦJ at the symmetric, resp., asymmetric local
minima. The magnetization corresponding to the asymmetric local minimum exceeds
some κ > 0 throughout (J1, J2). Integrating (4.5) with respect to J and using that
ϕS(JMF) = ϕA(JMF) then gives us the bound

∣∣ϕS(J )− ϕA(J )
∣∣ ≥ 1

2
κ

2|J − JMF|. (4.24)

However, in the ε1-neighborhood US(ε1) of the symmetric minimum, we will have
∣∣ΦJ (m)− ϕS(J )

∣∣ ≤ ε1K, (4.25)

whereK is a uniform bound on the derivative ofΦJ (m) for m ∈ US(ε1) and J ∈ (J1, J2).
Since the asymmetric minima are well separated from the boundary of Conv(�) for
J ∈ (J1, J2), a similar bound holds for the ε1-neighborhood of the asymmetric mini-
mum. Comparing (4.24–4.25) and (1.12), we find that if

1

2
κ

2|J − JMF| − 2ε1K > Jδd, (4.26)

no value of magnetization in the ε1-neighborhood of the local minima with a larger
value of ΦJ is allowed. In particular, |Jt − JMF| ≤ ε2, where ε2 = ε2(d) tends to zero
as d → ∞. ��
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4.3. Cubic model. Our first goal is to prove Proposition 2.2. We will begin by showing
that the local minima ofΦJ andK(r)

J are in one-to-one correspondence. Let us introduce
the notation

X =
{
(ȳ, µ̄) : |µj | ≤ 1, yj ≥ 0,

r∑

j=1

yj = 1
}

(4.27)

and let X(m) denote the subspace of X, where m = y1µ1 + · · · + yrµr .

Lemma 4.6. Let m ∈ Conv(�) be a local minimum of ΦJ . Then there exists a (ȳ, µ̄) ∈
X(m) which is a local minimum of K(r)

J (as defined in (2.15)).

Proof. Let m be a local minimum ofΦJ . SinceX(m) is compact andK(r)
J is continuous

on X, the infimum

ΦJ (m) = inf
(ȳ,µ̄)∈X(m)

K
(r)
J (ȳ, µ̄) (4.28)

is attained at some (ȳ, µ̄) ∈ X(m). We claim that this (ȳ, µ̄) is a local minimum ofK(r)
J .

Indeed, if the opposite is true, there is a sequence (ȳk, µ̄k) ∈ X converging to (ȳ, µ̄)
such that

K
(r)
J (ȳk, µ̄k) < K

(r)
J (ȳ, µ̄) = ΦJ (m). (4.29)

Now, (ȳ, µ̄) was an absolute minimum of K(r)
J on X(m), so (ȳk, µ̄k) �∈ X(m) and the

magnetization mk corresponding to (ȳk, µ̄k) is different from m for all k. Noting that

ΦJ (mk) ≤ K
(r)
J (ȳk, µ̄k) (4.30)

and combining (4.29–4.30), we thus have ΦJ (mk) < ΦJ (m) for all k. But mk tends
to m in Conv(�), which contradicts the fact that m is a local minimum of ΦJ . ��

Lemma 4.6 allows us to analyze the local minima in a bigger, simpler space:

Lemma 4.7. Let K(r)
J (ȳ, µ̄) be the quantity in (2.15). Then each local minimum of

K
(r)
J (ȳ, µ̄) is an index-permutation of a state (ȳ, µ̄) with y1 ≥ y2 = · · · = yr and

µ2 = · · · = µr = 0. Moreover, if y1 > y2, then µ1 �= 0.

Proof. Let (ȳ, µ̄) be a local minimum of K(r)
J such that y1 ≥ y2 ≥ · · · ≥ yr and fix a k

between 1 and r . We abbreviate y = yk + yk+1 and introduce the variables z1 = yk/y,
z2 = yk+1/y, ν1 = µk and ν2 = µk+1. Then

K
(r)
J (ȳ, µ̄) = y K

(2)
Jy (z̄, ν̄)+ R, (4.31)

where K(2)
Jy (z̄, ν̄) is the mean-field free energy of an r = 2 cubic model with coupling

constant Jy, and R is a quantity independent of (z̄, ν̄). As was mentioned previously,
the r = 2 cubic model is equivalent to two decoupled Ising models. Thus,

K
(2)
Jy (z̄, ν̄) = ΘJy(ρ1)+ΘJy(ρ2), (4.32)



Phase Transitions and Mean-Field Theory 83

where ρ1 and ρ2 are related to z1, z2, ν1 and ν2 via the equations

z1 = 1
2 (1 + ρ1ρ2), z1ν1 = 1

2 (ρ1 + ρ2),

z2 = 1
2 (1 − ρ1ρ2), z2ν2 = 1

2 (ρ1 − ρ2).
(4.33)

Now, the local minima ofΘJ (ρ) occur at ρ = ±ρ(J ), where ρ(J ) is the largest non-neg-
ative solution to the equation ρ = tanh( 1

2Jρ). Moreover, by the properties (i–iii) from
the proof of Lemma 4.4 we know that ρ(J ) = 0 for J ≤ 2 while 1

2J (1 − ρ(J )2) < 1
once J > 2. From these observations we learn that if yk = yk+1, then Jy ≤ 2 and
µk = µk+1 = 0. On the other hand, ifyk > yk+1, thenJy > 2,yk = 1

2y(1+ρ(Jy)2) and
yk+1 = 1

2y(1 − ρ(Jy)2) so, in particular, Jyk > 1 > Jyk+1. However, that forces that
k = 1, because otherwise we would also haveJyk−1 > 1 andJ (yk−1+yk) > 2, implying
that (ȳ, µ̄) is not a local minimum ofK(r)

J in the (k−1, k)th sector. Hence, y2 = · · · = yr
and µ2 = · · · = µr = 0, while if y1 > y2, then we have µ1 = ±ρ(J )/z1 �= 0. ��

The proof of Lemma 4.7 gives us the following useful observation:

Corollary 4.8. Let m = (m1,m2, . . . , mr) be contained in Conv(�) and suppose that
m1,m2 �= 0. Then one of the four vectors

(m1 ±m2, 0,m3, . . . , mr), (0,m2 ±m1,m3, . . . , mr) (4.34)

corresponds to a magnetization m′ ∈ Conv(�) with ΦJ (m′) < ΦJ (m).

Proof. Since m is in the interior of Conv(�), there exists (ȳ, µ̄), where the infimum
(4.28) is achieved. Let z1, z2, ν1 and ν2 be related to y1, y2, µ1 and µ2 as in (4.31–4.33).
Now by (4.32) the free energy of the corresponding sector of (ȳ, µ̄) equals the sum of
the free energies of two decoupled Ising models with biases ρ1 and ρ2. Without loss
of generality, suppose that ρ1 > ρ2 ≥ 0. Recalling the property (iii) from the proof of
Lemma 4.4, ρ 
→ ΘJ (ρ) decreases when ρ ≥ 0 gets closer to the non-negative local
minimum. Thus, if ρ1 is nearer to the local minimum of ΘJy than ρ2, by increasing ρ2
we lower the free energy by a non-trivial amount. Similarly, if ρ2 is the one that is closer,
we decrease ρ1.

By inspection of (4.33), the former operation produces a new quadruple z′1, z′2, ν′
1

and ν′
2, with ν′

2 = 0 and z′1ν
′
1 = ρ1. But that corresponds to the magnetization vector

(m′
1,m

′
2,m3, . . . , mr), where

m′
1 = ρ1y = m1 +m2 and m′

2 = 0, (4.35)

which is what we stated above. The other situations are handled analogously. ��
Now we are finally ready to establish the claim about local/global minima of ΦJ :

Proof of Proposition 2.2. By Lemma 4.6, every local minimum of ΦJ corresponds to a
local minimum ofK(r)

J . Thus, using Lemma 4.7 we know that all local minima m ofΦJ
will have at most one non-zero component. Writing ω = (1, 0, . . . , 0), h = hω and
m = mω, we can use the formalism from Sect. 4.1. In particular, the on-axis moment
generating function g(h) is given by

g(h) = − log(2r)+ log(r − 1 + cosh h). (4.36)



84 M. Biskup, L. Chayes

Differentiating this expression, (4.12) shows that every local minimum m has to satisfy
Eq. (2.16). Now, for r > 2, a little work shows that h 
→ g′(h) is convex for

(r − 1)2 − (r − 1) cosh h+ 2 > 0 (4.37)

and concave otherwise. In particular, for r > 3, Eq. (2.16) has either one non-negative
solution m = 0 or three non-negative solutions, m = 0, m = m−(J ) and m = m+(J ),
where 0 ≤ m−(J ) ≤ m+(J ). However, m+(J ) is “dynamically stable” and, using
Lemma 4.3, m−(J ) never corresponds to a local minimum.

To finish the proof we need to show that m = (m+(J ), 0, . . . , 0) is a local minimum
of the full ΦJ . If the contrary were true, we would have a sequence mk tending to m
such that ΦJ (mk) < ΦJ (m). Then an (r − 1)-fold use of Corollary 4.8 combined with
the symmetry of ΦJ implies the existence of a sequence m′

k = (mk, 0, . . . , 0) tending
to m and satisfying ΦJ (m′

k) ≤ ΦJ (mk) for all k. But that contradicts that m+(J ) is a
local minimum of the on-axis mean-field free energy function. So m was a local min-
imum of ΦJ after all. The existence of a unique mean-field transition point JMF is a
consequence of Lemma 4.2 and the fact that m = 0 ceases to be a local minimum for
J ≥ r . ��
Proof of Theorem 2.3. The proof is basically identical to that of Theorem 2.1, so we
will be rather sketchy. First we note that m�(J ) is achieved at some extremal transla-
tion-invariant state whose magnetization m� is an element of M�(J ). Let δd = 1

2 rId
and define ε1 as in (4.23). Then m� has to be within ε1 from a local minimum of ΦJ .
While this time we cannot proclaim that J 
→ m�(J ) is non-decreasing, all the benefits
of monotonicity can be achieved by using the monotonicity of the energy density e�(J ).
Indeed, J 
→ e�(J ) is non-decreasing and, by Corollary 1.2 and the Key Estimate, we
have

∣∣∣ e�(J )− 1

2
m�(J )

2
∣∣∣ ≤ J

2
rId = Jδd . (4.38)

But then e�(J )must undergo a unique large jump at some Jt from values e�(J ) ≤ 2Jδd
to values near 1

2mMF(J )
2 by less than 2Jδd . Som�(J ) has to jump at J = Jt as well, in

order to obey (4.38). The width of the “transition region” is controlled exactly as in the
case of the Potts model. ��

4.4. Nematic model. The nematic models present us with the difficulty that an explicit
formula for ΦJ (m) seems impossible to derive. However, the situation improves in the
dual Legendre variables. Indeed, examining (1.4–1.6), it is seen that the stationary points
of ΦJ (m) are in one-to-one correspondence with the stationary points of the (Gibbs)
free-energy function

ΨJ (h) = 1

2J
|h|2 −G(h), (4.39)

via the relation h = Jm. (In the case at hand, h takes values in E� which was defined
as the space of all N ×N traceless matrices.) Moreover, if m = ∇G(h), then we have

ΨJ (h)−ΦJ (m) = 1

2J
|h − Jm|2 (4.40)
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so the values ΨJ (m) and ΦJ (h) at the corresponding stationary points are the same.
Furthermore, some juggling with Legendre transforms shows that if m is a local mini-
mum of ΦJ , then h = Jm is a local minimum of ΨJ . Similarly for local maxima and
saddle points of ΦJ .

Lemma 4.9. Each stationary point of ΨJ (h) on E� is a traceless N ×N matrix h with
eigenvalues that can be reordered to the form h1 ≥ h2 = · · · = hN .

Proof. The claim is trivial for N = 2 so let N ≥ 3. Without loss of generality, we can
restrict ourselves to diagonal, traceless matrices h. Let h = diag(h1, . . . , hN) be such
that

∑
α hα = 0 and let vα , with α = 1, . . . , N , be the components of a unit vector

in R
N . Let 〈−〉0 be the expectation with respect to the a priori measure µ on � and let

〈−〉h be the state on � tilted by h. Explicitly, we have

〈f 〉h = e−G(h)
∫
µ(dv)f (v) exp

{ N∑

α=1

hαv
2
α

}
(4.41)

for any measurable function f on the unit sphere in R
N .

As in the case of the Potts and cubic models, the proof will be reduced to the two-
component problem. Let h be a stationary point of �J and let α and β be two distinct
indices between 1 and N . The relevant properties of 〈−〉h are then as follows:

(i) If J 〈v4
α + v4

β〉h > 3, then hα �= hβ .

(ii) If hα > hβ , then J 〈v4
α〉h >

3
2 > J 〈v4

β〉h.

The proof of these facts involves a non-trivial adventure with modified Bessel functions,
In(x), where n is any non-negative integer and In(x) = 1

π

∫ π
0 dθ ex cos θ cos(nθ). To

keep the computations succinct, we introduce the polar coordinates, vα = r cos θ and
vβ = r sin θ , where θ ∈ [0, 2π) and r ≥ 0. Let 〈−〉α,β denote the expectation with
respect to the r-marginal of the state 〈−〉h′ where h′ = diag(h′

1, . . . , h
′
N) is related to

h via h′
α = h′

β = 1
2 (hα + hβ), while h′

γ = hγ for γ �= α, β. Explicitly, if f̄ (r, θ)
corresponds to f (vα, vβ) via the above change of coordinates, then

〈
f (vα, vβ)

〉
h =

〈∫ 2π
0 dθ er

2� cos(2θ) f̄ (r, θ)
〉

αβ〈∫ 2π
0 dθ er2� cos(2θ)

〉

αβ

, (4.42)

where � = 1
2 (hα − hβ).

We begin by deriving several identities involving modified Bessel functions. First, a
straightforward calculation shows that

〈v2
α − v2

β〉h = Aαβ(�)
〈
r2I1(r

2�)
〉
αβ
, (4.43)

where Aαβ(�)−1 = 〈I0(r
2�)〉αβ . Similarly we get

〈v2
αv

2
β〉h = Aαβ(�)

〈 1
8 r

4(I0(r
2�)− I2(r

2�)
)〉
αβ
. (4.44)

But I0(x)− I2(x) = (2/x)I1(x), whereby we have the identity

2(hα − hβ)〈v2
αv

2
β〉h = 〈v2

α − v2
β〉h. (4.45)
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A similar calculation using trigonometric formulas shows that

〈v4
α〉h = Aαβ(�)

〈
r4( 3

8I0(r
2�)+ 1

2I1(r
2�)+ 1

8I2(r
2�)

)〉
αβ
, (4.46)

〈v4
β〉h = Aαβ(�)

〈
r4( 3

8I0(r
2�)− 1

2I1(r
2�)+ 1

8I2(r
2�)

)〉
αβ
. (4.47)

In particular, since I0(0) = 1 while I1(0) = I2(0) = 0, we have

hα = hβ ⇒ 〈v4
α〉h = 〈v4

β〉h = 3〈v2
αv

2
β〉h. (4.48)

The identities (4.44–4.48) will now allow us to prove (i–ii).
First we note that the fact that h was a stationary point of ΨJ implies that hγ −hγ ′ =

J 〈v2
γ − v2

γ ′ 〉h for all γ, γ ′ = 1, . . . , N . Using this in (4.45), we have the following
dichotomy:

either hα = hβ or 2J 〈v2
αv

2
β〉h = 1. (4.49)

To establish (i), suppose that J 〈v4
α + v4

β〉h > 3 but hα = hβ . Then (4.48) gives us

2J 〈v2
αv

2
β〉h > 1, in contradiction with (4.49). Hence, (i) must hold. To prove (ii), as-

sume that hα > hβ and note that then � > 0. Applying that I1(x) > 0 and I2(x) > 0
for x > 0 in (4.46), we easily show using (4.46) that 〈v4

α〉h > 3〈v2
αv

2
β〉h. Similarly, the

bound I1(x) > I2(x) for x > 0, applied in (4.47), shows that 〈v4
β〉h < 3〈v2

αv
2
β〉h. From

here (ii) follows by invoking (4.49).
Now we are ready to prove the desired claim. Let h be a stationary point. First let us

prove that there are no three components of h such that hα > hβ > hγ . Indeed, if that
would be the case, (i–ii) leads to a contradiction, because hα > hβ would require that
J 〈v4

β〉h < 3/2 while hβ > hγ would stipulate that J 〈v4
β〉h > 3/2! Thus, any stationary

point h ofΨJ can only have two values for 〈v4
α〉h. However, if (say) both 〈v4

1〉h and 〈v4
2〉h

take on the larger value (implying that h1 = h2), then J 〈v4
1 + v4

2〉h > 3 and h cannot be
a stationary point. From here the claim follows. ��

The symmetry of the problem at hand allows us to restrict ourselves to the on-axis
formalism from Sect. 4.1. In particular, we let ω = diag(1,− 1

N−1 , . . . ,− 1
N−1 ), h = hω

and λ = λω and define the functions g(h), s(λ) and φJ (λ) as in (4.10–4.11). Lemma 4.9
in turn guarantees that all local minimizers of ΦJ appear within the domain of φJ .
What remains to be proved is the converse. This can be done using some of the items
established above.

Lemma 4.10. Suppose that λ is a stationary point of the scalar free energy φJ which
satisfies Jg′′(Jλ) < 1. Then λ = λω, with ω = diag(1,− 1

N−1 , . . . ,− 1
N−1 ), is a local

minimizer of ΦJ .

Proof. To simplify the exposition, we will exploit the O(N)-symmetry of the problem:
If g ∈ O(N,R) is any N ×N orthogonal matrix, then

ΦJ (m) = ΦJ (g−1m g), (4.50)

with similar considerations applying to ΨJ (h). Thus, for all intents and purposes, we
may assume that the arguments of these functions are already in the diagonal form and
regard the diagonal as an N -component vector. (Indeed, we will transfer back and forth
between the vector and matrix language without further ado.)
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Again we are forced to work with the dual variables. To that end, let ψJ (h) be the
quantity |ω|−2ΨJ (hω). Clearly, the relation between ψJ and φJ is as for ΨJ and ΦJ .
First, let us demonstrate that every stationary point of the scalar free energy ψJ repre-
sents a stationary point of the full ΨJ . Indeed, let K be the orthogonal complement of
vector ω in R

N . As a simple computation shows, any k ∈ K has a zero first component.
If k = (0, k2, . . . , kN) ∈ K is small, then

G(hω + k) = G(hω)+
〈∑

β

kβ v
2
β

〉

hω
+O

(|k|2), (4.51)

where 〈−〉h is as in (4.41). Now 〈v2
β〉hω is the same for all β = 2, . . . , N , and in the

view of the fact that
∑
β kβ = 0, the expectation vanishes. Hence, ∇ΨJ (hω) has all

components corresponding to the subspace K equal to zero. Now if h is a stationary
point of ψJ , we know that (ω,∇ΨJ (hω)) = 0 and thus ∇ΨJ (hω) = 0 as claimed.

To prove the desired claim, it now suffices to show that the Hessian of ΨJ is positive
definite at h = h�ω when h� satisfies Jg′′(h�) < 1. (Recall that the corresponding
stationary points of ψJ and φJ are related by h = Jλ.) This in turn amounts to showing
that ∇∇G(hω) is dominated by the J−1-multiple of the unit matrix. Although we must
confine ourselves to E�, it is convenient to consider the Hessian of G(h) in a larger
space which contains the constant vector and restrict our directional probes to vectors
from E�. In general, the entries of the Hessian are given in terms of truncated correlation
functions:

(
Hess(G)

)
αβ

= 〈v2
αv

2
β〉h − 〈v2

α〉h〈v2
β〉h. (4.52)

For the problem at hand, there are only four distinct entries:

Hess(G) =





A B . . . . . . B
B C D . . . D
... D

. . .
. . .

...
...
...
. . . C D

B D . . . D C




. (4.53)

Clearly, ω itself is an eigenvector of Hess(G) with the eigenvalue A − B. On the other
hand, if k ∈ K, then the first row and column of Hess(G) are irrelevant. Writing the
remaining (N − 1)× (N − 1) block in the form (C − D)1 + C S, where S is the matrix
with all entries equal to one, it follows easily that all of K is an eigenspace of Hess(G)
with eigenvalue C − D.

It remains to show that these eigenvalues are strictly smaller than J−1. The first one,
namely, A − B is less than J−1 by our assumption that Jg′′(h�) < 1. As to the other
eigenvalue, C − D, we note that

C − D = 〈v4
α〉h − 〈v2

αv
2
β〉h, α > β > 1. (4.54)

Now, Eq. (4.48) tells us that, under our conditions, 〈v2
αv

2
β〉h equals 1

3 〈v4
α〉h. So we need

that 2
3 〈v4

α〉h is less than J . But since h1 = h� > hα , that is exactly the condition (ii)
derived in the proof of Lemma 4.9. ��

Now we are ready to establish our claims concerning the local minima of ΦJ :
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Proof of Proposition 2.4. Let ω be as above and note that |ω|2 = N/(N − 1). Then the
on-axis moment generating function from (4.10) becomes

g(h) = N − 1

N
log
∫
πN(dv) eh

N
N−1 (v

2
1− 1

N
), (4.55)

where πN is the uniform probability measure on the unit sphere in R
N and v1 is the first

component of v. An argument involving the N -dimensional spherical coordinates then
shows that

πN(v1 ∈ dx) = C(N) (1 − x2)
N−3

2 dx, (4.56)

where C(N) is the ratio of the surfaces of the unit spheres in R
N−1 and R

N . By substi-
tuting this into (4.55) and applying (4.12), we easily find that, in order for λ = λω to be
a local minimum of ΦJ , the scalar λ has to satisfy Eq. (2.25).

A simple analysis of (2.25) shows that for J � 1, the only solution to (2.25) is
λ = 0, while for J � N2, the solution λ = 0 is no longer perturbatively stable. Since
Lemma 4.2 guarantees that the norm of all global minimizers increases with J , there
must be a unique JMF ∈ (0,∞) and a non-decreasing function J 
→ λMF(J ) such that
λMF(J ) solves (2.25) and that every global minimizer of ΦJ at any J > JMF which
is a continuity point of J 
→ λMF(J ) corresponds to λ = λMF(J ). (At any possible
point of discontinuity of J 
→ λMF(J ), the λ corresponding to any global minimizer is
sandwiched between limJ ′↑J λMF(J

′) and limJ ′↑J λMF(J
′).) The claim is proved. ��

In order to prove the large-N part of our statements concerning the mean-field theory
of the nematic model, we will need to establish the following scaling property:

Lemma 4.11. Let Φ(N)J denote the free-energy function of the O(N)-nematic Hamilto-
nian. Introduce the matrix ω = diag(1,− 1

N−1 , . . . ,− 1
N−1 ) and define the normalized

mean-field free-energy function

φ
(N)
J (λ) = 1

N
|ω|−2Φ

(N)
JN (λω), λ < 1. (4.57)

Then, asN → ∞, the function λ 
→ φ
(N)
J (λ) converges, along with all of its derivatives,

to the function

φ
(∞)
J (λ) = −J

2
λ2 + 1

2
log

1

1 − λ
. (4.58)

Proof. The proof is a straightforward application of Laplace’s method to the measure on
the right-hand side of (2.25). Indeed, for any h ≥ 0, consider the measure ρh,N on [0, 1]
defined by

ρh,N(dx) = (1 − x2)
N−3

2 ehNx
2

∫ 1
0 dx (1 − x2)

N−3
2 ehNx

2
dx. (4.59)

Noting that the function x 
→ (1 − x2)
1
2 ehx

2
has a unique maximum at x = xh, where

x2
h = max

{
0, 1 − 1

2h

}
, (4.60)
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we easily conclude that

lim
N→∞

ρh,N(·) = δxh(·), (4.61)

where δa(·) denotes the Dirac point mass at x = a. Here the limit is taken in the sense
of weak convergence on the space of all bounded continuous functions on [0, 1]. The
proof of this amounts to standard estimates for the Laplace method; we leave the details
to the reader.

Let gN(h) denote the function g(hN), where g is as in (4.55). Since any derivative of
gN(h) can be expressed as a truncated correlation function of measure ρh,N , we easily
conclude that h 
→ gN(h) converges, along with all of its derivatives, to the function

g∞(h) = lim
N→∞

gN(h) = max
{

0, h− 1

2
− 1

2
log(2h)

}
, (4.62)

for all h ≥ 0. Now, the function sN(λ) = 1
N

|ω|−2S(λω) – where S(·) is the entropy of
the O(N)-nematic model – is the Legendre transform of gN , so we also get

s∞(λ) = lim
N→∞

sN(λ) = −1

2
log

1

1 − λ
. (4.63)

(Again, the convergence extends to all derivatives, provided λ < 1.) From here the claim
follows by noting that φ(N)J (λ) = − J

2 λ
2 − sN(λ), which tends to φ(∞)

J (λ) in the desired
sense. ��
Proof of Proposition 2.5. By Lemma 4.11, the scaled mean-field free-energy func-
tion φ(N)J is, along with any finite number of its derivatives, uniformly close to φ(∞)

J
on compact subsets of [0, 1), provided N is sufficiently large. Now the local minima
of φ(∞)

J will again satisfy a mean-field equation, this time involving the function g∞
from (4.62). Since

g′(h) =
{

1 − 1
2h , if h > 1

2 ,

0, otherwise,
(4.64)

there are at most two perturbatively stable solutions to the mean-field equation: One at
λ = 0 and the other at

λ = 1

2

(
1 +

√
1 − 4J−2

)
. (4.65)

Moreover, these local minima interchange the role of the global minimum at some finite
and non-zero J (∞)

MF , which is a solution of a particular transcendental equation. For J

near J (∞)
MF , the second derivative of φ(∞)

J is uniformly positive around both local minima.
The convergence stated in Lemma 4.11 ensures that all of the previously listed facts

will be (at least qualitatively) satisfied by φ(N)J for N large as well. Thus, φ(N)J has at

most one positive local minimum, which immediately implies that J 
→ λ
(N)
MF (J ) is

continuous whenever it is defined. Moreover, since the local minima of φ(N)J converge

to those of φ(∞)
J , we also easily recover the asymptotic statements (2.27–2.28). This

finishes the proof. ��
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Proof of Theorem 2.6. The proof is similar to that of the Potts and cubic models; the
only extra impediment is that now we cannot take for granted that there is only one
non-zero local minimum. As before, most of the difficulties will be resolved by invo-
king the monotonicity of the energy density e�(J ), which is defined e.g. by optimizing
1
2 〈(Q0,Qx)〉J over all Gibbs states invariant under the lattice translations and rotations.

In the present case, κ and n in the Main Theorem are given by κ = (N − 1)/N and
n = 1

2N(N − 1). Thus, letting δd = 1
4 (N − 1)2Id , the quantity Jδd is the correspond-

ing error term on the right-hand side of (1.12). Define ε1 by the formula (4.23). Then
Lemma 4.9 guarantees that the diagonal form λ of 〈Q0〉J for any Gibbs state is an index
permutation of a vector of the type

(
λ+ a1,− λ

N − 1
+ a2, . . . ,− λ

N − 1
+ aN

)
, (4.66)

where
∑
i ai = 0,

∑
i a

2
i ≤ ε2

1 and λ corresponds to a local minimum of ΦJ . If λ is the
physical magnetization giving rise to λ�(J ), we let λ�MF(J ) be a value of λ, correspond-
ing to a local minimum of ΦJ , for which λ takes the form (4.66). Then Corollary 1.2
and the Key Estimate give

∣∣∣e�(J )− 1

2

N

N − 1
λ�MF(J )

2
∣∣∣ ≤ 2Jδd . (4.67)

Now for J ≤ J0 � 1, we know the only local minimum is for λ�MF(J ) = 0, while for
J ≥ J1 � N2, the zero vector is no longer a local minimum and hence λ�MF(J ) exceeds
some κ

′ > 0. But J 
→ e�(J ) is non-decreasing so there must be a Jt ∈ [J0, J1],
where e�(J ) jumps by at least κ

′ − 2Jtδd , which is positive once d is sufficiently large.
The fact that Jt must be close to JMF for large enough d is proved exactly as for the Potts
and cubic models. ��

5. Mean-Field Theory and Complete-Graph Models

Here we will show that the mean-field formalism developed in Sect. 1.2 has a very natural
interpretation for the model on a complete graph. An important reason for the complete
graph picture is to provide a tangible physical system to motivate some of the physical
arguments. The forthcoming derivation is a rather standard exercise in large-deviation
theory [16, 19], so we will keep it rather brief.

We will begin by a precise definition of the problem. Let GN be a complete graph onN
vertices and consider a spin system on GN with single-spin space� and the Hamiltonian

βHN(S) = − J

N

∑

1≤x<y≤N
(Sx,Sy)−

N∑

x=1

(b,Sx). (5.1)

(Recall that � is a compact subset of a finite-dimensional vector space E� with inner
product denoted as in the previous formula.) Let µ denote the a priori spin measure and
let 〈−〉0 denote the corresponding expectation. For each configuration S, introduce the
empirical magnetization by the formula

mN(S) = 1

N

N∑

x=1

Sx. (5.2)
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If m ∈ Conv(�) and ε > 0, let Uε(m) denote the ε-neighborhood of m in Conv(�) in
the metric induced by the inner product on E�. Then we have:

Theorem 5.1. For each m ∈ Conv(�),

lim
ε↓0

lim
N→∞

1

N
log
〈
e−βHN(S)1{mN(S)∈Uε (m)}

〉

0
= −ΦJ,b(m), (5.3)

where ΦJ,b(m) is as defined in Sect. 1.2. Moreover, if νN denotes the Gibbs measure
obtained by normalizing e−βHN(S) and if FMF(J, b) denotes the infimum of ΦJ,b(m)
over m ∈ Conv(�), then

lim
N→∞

νN
(
ΦJ,b(mN(S)) ≥ FMF(J, b)+ ε

) = 0 (5.4)

for every ε > 0.

Proof. By our assumption, E� is a finite-dimensional vector space. Moreover,� is com-
pact and thus the logarithmic generating function G(h) defined in (1.3) exists for all
h ∈ E�. As a consequence of Cramér’s Theorem for i.i.d. random variables on R

n, see
Theorem 2.2.30 in [16], the measures

µN(·) = µ
(
mN(S) ∈ ·) (5.5)

satisfy a large-deviation principle on R
d with rate function (1.4). In particular,

lim
ε↓0

lim
N→∞

1

N
logµN

(Uε(m)
) = S(m), m ∈ Conv(�). (5.6)

Now βHN can be written as follows:

βHN = NEJ,b
(
mN(S)

)− J

N

∑

x=1

(Sx,Sx). (5.7)

Since the second term is bounded by a non-random constant almost surely and since
m 
→ EJ,b(m) is uniformly continuous throughout Conv(�), (5.3) follows by inspecting
the definition of ΦJ,b(m). ��
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