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Abstract. We study a model of “organized” criticality, where a single avalanche propagates
through an a priori static (i.e., organized) sandpile configuration. The latter is chosen ac-
cording to an i.i.d. distribution from a Borel probability measure ρ on [0, 1]. The avalanche
dynamics is driven by a standard toppling rule, however, we simplify the geometry by plac-
ing the problem on a directed, rooted tree. As our main result, we characterize which ρ are
critical in the sense that they do not admit an infinite avalanche but exhibit a power-law decay
of avalanche sizes. Our analysis reveals close connections to directed site-percolation, both
in the characterization of criticality and in the values of the critical exponents.
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1. Introduction

1.1. Motivation

Since its discovery by Bak, Tang and Wisenfeld [1, 2], self-organized criticality
(SOC) has received massive attention in the physics literature. Variants of the orig-
inal sandpile model of [1] were studied and some of them even “exactly” solved
(see [4, 5, 10, 11] or the recent review [7]). However, despite great efforts and
literally thousands of published papers, the present mathematical understanding
of SOC lags far behind the bold claims made by physicists. Much of that failure
can be attributed to the fact that the models used to demonstrate SOC are difficult
to formulate precisely and/or too difficult to study using the current techniques
of probability theory and mathematical physics. From the perspective of the latter
fields, the situation seems ripe for considering models which concern at least some
aspects of SOC, provided there is a decent prospect of a self-contained rigorous
analysis.

The general idea behind SOC models is very appealing. Consider for instance
Zhang’s sandpile model [12] on Z

2, where each site has an energy variable which
evolves in discrete time-steps according to a simple “toppling” rule: If a variable
exceeds a threshold value, the excess is distributed equally among the neighbors.
The neighboring sites may thus turn supercritical and the process continues until the
excess is “thrown overboard” at the system boundary. What makes this dynamical
rule intriguing is that, if the toppling is initiated from a “highly excited” state, then
the terminal state (i.e., the state where the toppling stops) is not the most stable state,
but one of many least-stable, stable states. Moreover, the latter state is critical in the
sense that further insertion of a small excess typically leads to further large-scale
events. Using the sandpile analogy, such events are referred to as avalanches.

In this paper, we study the scaling properties of a single avalanche caused by
an overflow at some site of a critical (i.e., least-stable) state. However, as indicated
above, the full problem is way too hard and we have to resort to simplifications. Our
simplifications are twofold: First, we treat the energy variables of the critical state
as independent and, second, we consider the model on a directed, rooted tree rather
than Z

2. The first assumption is fairly reasonable, at least on a coarse-grained scale,
because numerical results [6] suggest a rather fast decay of spatial correlations in
the critical states. The second assumption will allow us to treat the correlations
between different branches of the avalanche as conditionally independent, which
will greatly facilitate the analysis. Finally, the reduced geometry allows for the
existence of a natural monotonicity not apparent in the full-fledged model.

While placing the model on a tree simplifies the underlying geometry, some
complexity is retained due to the generality of the single-site energy variable dis-
tribution. In fact, the set of underlying distributions plays the role of a parameter
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space in our case. As our main result, we characterize the subspace of distributions
for which the configurations of energy variables have exactly the behavior expected
from the SOC states: no infinite avalanches but a power-law decay of avalanche
sizes.As it turns out, there is a close connection to site-percolation on the underlying
graph, both in the characterization of criticality and in the values of the critical ex-
ponents. However, the significance of this connection for the general SOC models
has not yet been clarified.

1.2. The model

In order to precisely define our single-avalanche model, we need to introduce some
notation. Let b > 1 be an integer and let Tb be a b-nary rooted tree, with the root
vertex denoted by ∅. We use |σ | = k to denote that σ ∈ Tb is on the k-th layer.
When |σ | = k, we represent σ as a k-component object. Each component is an in-
teger in {1, . . . , b}; hence the site label can be used to trace the path from σ back to
the root. If σ is an �-th level site with � > 0, we let m(σ) denote the “mother-site.”
Explicitly, if σ = (σ1, . . . , σ�), then m(σ) = (σ1, . . . , σ�−1). The edges of Tb are
the usual directed edges

{
(σ ′, σ ) ∈ Tb × Tb : σ ′ = m(σ)

}
.

Let M be the space of all probability measures on the Borel σ -algebra of [0, 1].
Fix a ρ ∈ M and let Pρ = ρTb . Let Eρ denote the expectation with respect to Pρ .
The dynamical rule driving the evolution is defined as follows: Let X = (Xσ )σ∈Tb

be the collection of i.i.d. random variables with joint probability distribution Pρ

and let v ∈ (0,∞). The process generates the sequence

X(v)(t) = (
X(v)

σ (t)
)
σ∈Tb

, t = 0, 1, . . . , (1.1)

obtained from the initial condition

X(v)
σ (0) =

{
X∅ + v, if σ = ∅,

Xσ , otherwise,
(1.2)

by successive applications of the deterministic (Markov) update rule

X(v)
σ (t + 1) =






X
(v)
σ (t) + 1

b
X

(v)
m(σ)(t), if Xm(σ)(t) ≥ 1,

0, if X(v)
σ (t) ≥ 1,

X
(v)
σ (t), otherwise.

(1.3)

Note that, if X(v)
σ (t +1) = X

(v)
σ (t) for all σ ∈ Tb, then X

(v)
σ (t) ≤ 1 and the process

has effectively stopped. (However, we let X(v)
σ (t) be defined by (1.3) for all t ≥ 0.)

Here is an informal description of the above process: Starting at the root we
first check whether X∅ + v ≥ 1 or not. If not, the process stops but if so, then
this value is distributed evenly among the “daughter” cells, which have their val-
ues updated to X

(v)
σ (1) = Xσ + 1

b
(X∅ + v). The value X

(v)
∅

(1) is set to zero
and we say that the root has “avalanched.” If none of the updated “daughter” val-
ues exceed one, the process terminates; however, if there is any first-level σ with
X

(v)
σ (1) ≥ 1, then X

(v)
σ (1) is set to zero, the value X

(v)
σ (1) is evenly distributed
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among the “daughters” of σ and we say that σ has “avalanched.” The process at
future times is described similarly.

Obviously, the variables Xσ play the role of the “energy variables” in the de-
scription of Zhang’s avalanche model in Section 1.1. In our case the critical thresh-
old is one, but, in (1.3), we chose to distribute the entire value of an “avalanching”
site rather than just the excess to the (forward) neighbors. This choice is slightly
more advantageous technically.

1.3. Main questions and outline

Let A (v)(t) = {σ ∈ Tb : X
(v)
σ (t) = 0, X

(v)
σ (s) �= 0 for some s < t} be the set of

sites that have “avalanched” by time t . Similarly, let A (v) = ⋃
t≥0 A (v)(t) be the

set of sites that will ever avalanche. We use |A (v)| to denote the number of sites in
the avalanched set (which includes the possibility of |A (v)| = ∞). The set A (v)

and its dependence on ρ and v are the primary focus of our study.
The first question is whether the process X(v)(t) lives forever, i.e., is there an

infinite avalanche? More precisely, for what measures ρ ∈ M is the probability

A(v)
∞ = Pρ

(|A (v)| = ∞)
(1.4)

non-zero for some value of v? A related question is whether the average size of the
avalanched set is finite. The relevant object is defined by

χ(v) = Eρ

(|A (v)|). (1.5)

(Notice that, due to the directed nature of the dynamical rule, both quantities A
(v)
∞

and χ(v) are monotone in the underlying measure and v.) Again, we ask: For what
measures ρ we have χ(v) = ∞ for some v? In addition, we might ask: Is the di-
vergence of the mean avalanche size equivalent to the onset of infinite avalanches
or can there be an intermediate phase?

To give answers to the above questions, we will parametrize the set M by values
of a particular functional z : M → [0, 1]. Here z(ρ) roughly corresponds to the
conditional probability in distribution Pρ that, given the avalanche has reached a
site σ ∈ Tb far away from the root, the site σ will also avalanche. (The definition
of z is somewhat technical and we refer the reader to Section 2.2 for more details.)
The characterization of the avalanche regime in terms of z is then very transparent:
There is a critical value zc = 1

b
, such that the quantity χ(v) for measure ρ diverges

if z(ρ) > zc and v is sufficiently large, while it is finite for all v if z(ρ) < zc. Simi-
larly we show, for a reduced class of measures, that A(v)

∞ for measure ρ vanishes for
all v if and only if z(ρ) ≤ zc. These results are formulated as Theorems 2.4 and 3.1
in Sections 2.2 and 3.1, respectively. (Outside the reduced class of measures, there
are some exceptions to the rule that A(v)

∞ ≡ 0 for measures ρ with z(ρ) = zc, i.e.,
there are some measures which avalanche also at criticality, see Remarks 1 and 2
in Section 2 for more details. These examples are fairly contrived, so we exclude
them from further considerations.)

Note that, for both quantities (1.4) and (1.5), the transitions happen at the same
value, zc, which rules out the possibility of an intermediate phase. To elucidate the
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behavior of z near zc, it is worthwhile to introduce appropriate critical exponents.
In particular, we ask whether there is a critical exponent γ > 0 such that

χ(v) ∼ (
zc − z(ρ)

)−γ
, z(ρ) ↑ zc, (1.6)

an exponent β > 0 such that

A(v)
∞ ∼ (

z(ρ) − zc
)β

, z(ρ) ↓ zc, (1.7)

and, finally, an exponent δ > 0 such that if z(ρ) = zc, then

Pρ

(|A (v)| ≥ n
) ∼ n−1/δ, n → ∞. (1.8)

All of these three relations of course include an appropriate interpretation of the
symbol “∼” and, with the exception of the last relation, also an interpretation of
the limit “z(ρ) tends to zc.”

The relations for the critical exponents are the subject of Theorem 4.1 in Sec-
tion 4. The upshot is that all three exponents take the mean-field percolation values,

γ = 1, β = 1, δ = 2. (1.9)

Neither the fact that the critical value zc equals the percolation threshold for site per-
colation on Tb is a coincidence. Indeed, the avalanche problem can be characterized
in terms of a correlated-percolation problem on Tb (see Section 2).

We finish with a brief outline of the paper: Section 2 contains our percolation
criteria for the existence of infinite avalanches leading naturally to the definition of
the functional z. In Section 3 we show that zc = 1

b
is the unique critical “point” of

our model, thus ruling out the possibility of an intermediate phase. Section 4 proves
the above relations for the critical exponents. Finally, in Section 5 we develop a
coupling argument which is the core of the proofs of the aforementioned results in
Sections 3 and 4. The principal results of this paper are Theorem 2.4 (Section 2.2),
Theorem 3.1 (Section 3.1) and Theorem 4.1 (Section 4.1).

2. Percolation criteria

2.1. Simple percolation bounds

We start by deriving criteria for the presence and absence of an infinite avalanche
based on a comparison to site percolation on Tb. Let x� denote the maximum of
the support of ρ, i.e.,

x� = sup
{
y ∈ [0, 1] : ρ([y, 1]) > 0

}
, (2.1)

and let us define θb by

θb = b

b − 1
x�. (2.2)

It is noted that if X∅ + v ≤ θb, then the largest value that Xσ (t) for any σ ∈ Tb

could conceivably achieve (just prior to its own avalanche) is θb.
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The following is based on straightforward percolation arguments:

Proposition 2.1. Let ρ ∈ M and let A (v) be the avalanche set.

(1) If ρ([1 − 1
b
, 1]) > 1

b
, then Pρ(|A (v)| = ∞) > 0 for all v > 1 − x�.

(2) If either θb < 1 or θb > 1 and ρ([1− 1
b
θb, 1]) ≤ 1

b
, then Pρ(|A (v)| = ∞) = 0

for all v ≥ 0.

In both cases we note that the quantity 1
b

on the right-hand side of the inequal-
ities is the percolation threshold for Tb. Obviously, this is no coincidence; indeed,
the proof of part (1) is easily generalizable to any transitive infinite graph.

Proof of Proposition 2.1. Let us start with (1): A site σ �= ∅ is called occupied
if Xσ ≥ 1 − 1

b
, while the root ∅ is called occupied if X∅ + v ≥ 1. Denoting

by C (v) the connected component of occupied sites containing the origin, it is not
hard to see that A (v) ⊃ C (v). Indeed, assuming X∅ + v > 1, each daughter site of
the origin receives at least 1

b
; those daughter sites σ with Xσ ≥ 1 − 1

b
will be trig-

gered, which will in turn cause avalanches in the next generation of occupied sites,
etc. Evidently, whenever the occupied sites percolate, there is an infinite avalanche.

Part (2) is proved in a similar fashion. Suppose first that θb > 1 and call a
site σ �= ∅ occupied if Xσ ≥ 1 − 1

b
θb, and vacant otherwise. The definition is as

before for the root. As observed previously, if X∅ + v ≤ θb, then no site receives
more than 1

b
θb from its parent. Under these circumstances, a vacant site will never

avalanche and, denoting the occupied cluster of the origin by C̄ (v), we have A (v) ⊂
C̄ (v). Since ρ([1 − 1

b
θb, 1]) ≤ 1

b
was assumed, we have that |C̄ (v)| < ∞ almost

surely and thus |A (v)| < ∞ whenever X∅ + v ≤ θb. It is then easy to show,
however, that |A (v)| < ∞ almost surely for all v ≥ 0. Indeed, let k ≥ 0 be an
integer so large that

(x� + v − θb)b
−k < θb − 1. (2.3)

If σ is a site with |σ | = k that has been reached by an avalanche, then σ could not
receive more than

x�
(
b−1 + · · · + b−(k−1))+ b−k(X∅ + v) = b−1θb + b−k(X∅ + v − θb) (2.4)

from its parent. Now, if σ is vacant, then the maximal possible value for Xσ (k)

(i.e., prior to its own avalanche) is no larger than 1 + b−k(x� + v − θb). By (2.3),
this amount is strictly less than θb, so by our previous reasoning, σ cannot give rise
to an infinite avalanche. By absence of percolation, there is a “barrier” Sk of vacant
sites above the (k + 1)-st layer in Tb, that every path from the root to infinity must
pass through. Our previous arguments show that the avalanche cannot go beyond
the union of occupied connected components rooted at Sk . Hence, |A (v)| < ∞
with probability one.

The case θb < 1 is handled analogously. Indeed, a simple calculation reveals
that the right-hand side of (2.4) plus x� is eventually strictly less than one and the
avalanche terminates within a deterministic (v-dependent) amount of time. ��
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The arguments in the proof immediately give us the following corollary:

Corollary 2.2. If θb �= 1 and ρ([1 − 1
b
θb, 1 − 1

b
)) = 0, then there is an infinite

avalanche if and only if occupied sites, i.e., sites σ ∈ Tb with value Xσ ≥ 1 − 1
b

,
percolate. In addition, if X∅ + v ≤ θb, then A (v) coincides exactly with the occu-
pied connected component of the root.

Remark 1. The exceptional cases, θb = 1, can only arise from the circumstance
that x� = 1− 1

b
. (Notice that the proof of Proposition 2.1(2) does not apply because

the inequality (2.3) cannot be satisfied.) For θb = 1, the situation is marginal and,
in fact, slightly subtle. Indeed, if x� = 1 − 1

b
and P(X ≥ x�) = 1

b
, then the exis-

tence of an infinite avalanche depends on the detailed asymptotic of P(X ≥ x� −ε)

as ε ↓ 0, see Remark 2 in the next section. We exclude the cases θb = 1 from our
analysis because we believe that this “pathological” behavior is in no way generic.

2.2. Phase transition

As is seen from Corollary 2.2, in certain cases the avalanche problem reduces to the
usual (independent) percolation model. The general problem can also be presented
as a percolation phenomenon albeit with correlations. Indeed, let X1, . . . , Xn are
i.i.d. with distribution ρ and let

Q(θ)
n = Xn + Xn−1

b
+ · · · + X1

bn−1 + θ

bn
. (2.5)

In the case n = 0, we let Q(θ)
0 = θ . Similarly, for σ ∈ Tb, we define Q

(θ)
σ by (2.5)

with n = |σ | and X1, . . . , X|σ | being the values along the unique path connecting σ

to the root. Explicitly, we set Q(θ)
∅

= θ and define

Q(θ)
σ = Xσ + 1

b
Q

(θ)
m(σ), σ �= ∅. (2.6)

Note that here θ plays the role of the quantity X∅ + v. Clearly, Q
(θ)
n

D= Q
(θ)
σ ,

whenever n = |σ |.
Proposition 2.3. Let v ≥ 0 and let θ = X∅ + v. For each σ ∈ Tb, let us call σ
open if Q(θ)

σ ≥ 1 and closed otherwise. Then σ ∈ A (v) if and only if σ belongs to
the open cluster containing the root. In particular, percolation of open sites is the
necessary and sufficient condition for infinite avalanches.

Proof. By definition, Q(θ)
∅

= θ = X∅ + v. Now, if Xσ (t) = Q
(θ)
σ for a site σ ∈ Tb

that avalanches at time t = |σ |, then any daughter site σ ′ of σ will have its value
updated to

Xσ ′(t + 1) = Xσ ′ + 1

b
Q(θ)

σ = Q
(θ)

σ ′ . (2.7)

Hence, if the site σ ∈ Tb avalanches at time t = |σ |, then Q
(θ)
σ = Xσ (t) ≥ 1. It

follows that A (v), with v = θ −X∅, is the set of sites that are open and connected
to the root by a path of open sites. ��
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Remark 2. Let us indicate what makes the case x� = 1 − 1
b

so subtle. Given a
sequence (ck) of positive numbers, let us call σ ∈ Tb open if Xσ ≥ x� − c|σ |b−|σ |
and closed otherwise. Letting pk = P(X ≥ x�−ckb

−k) and supposing, e.g., bpk =
1 + k−1/2, a general result of Lyons [9] implies that the open sites percolate. An
easy argument shows that if σ is connected to ∅ by a path of open sites, then
Q

(θ)
σ ≥ 1 + b−k(v − 1 − ∑

�≤k c�) for v = θ − X∅. Thus, if v > 1 + ∑
k≥0 ck ,

then, by Proposition 2.3, there is an infinite avalanche with a non-zero probability.

On a similar basis, we can write down the necessary and sufficient conditions
for divergence of the expected size of avalanches. The criterion will be based on
the asymptotic growth of the quantity

Zn(θ) = P
(
Q

(θ)
k ≥ 1, k = 0, . . . , n

)
, n ≥ 0. (2.8)

Notice that Zn(θ) = 0 whenever θ < 1.

Theorem 2.4. (1) For all ρ ∈ M and all θ ≥ 1, the limit

z = z(ρ) = lim
n→∞Zn(θ)

1/n (2.9)

exists and is independent of θ .
(2) For all ρ, ρ′ ∈ M, the function α �→ z(αρ + (1 − α)ρ′) is continuous in

α ∈ [0, 1].
(3) Let ρ ∈ M and let x� correspond to ρ via (2.1). Let us define zc = 1

b
.

If z(ρ) < zc, then Eρ(|A (v)|) < ∞ for all v ∈ (0,∞), while if z(ρ) > zc,
then Eρ(|A (v)|) = ∞ for all v > 1 − x�.

Theorem 2.4 defines a free-energy like functional z and gives the characteriza-
tion of the divergence of χ(v), as already discussed in Section 1.3. The continuity
statement in part (2) indicates that the sets of “avalanching” and “non-avalanching”
measuresρ ∈ M are separated by a “surface” (i.e., set of codimension one) of phase
transitions. We will not try to make the latter more precise; our main reason for
including part (2) is to have an interpretation of the limit z(ρ) → zc, which will be
needed in the discussion of the critical behavior. Under additional mild restrictions
on ρ, it will be shown in Section 4 that Eρ(|A (v)|) = ∞ even for the critical
measures ρ, i.e., those satisfying z(ρ) = zc.

Proof of Theorem 2.4(1). We will start with the cases θ = 1 and θ ≥ θb which are
amenable to subadditive-type arguments. Examining Zn+m(θ), we may write (by
conditioning on X1, . . . , Xm)

Zn+m(θ) = E

(
Zn(Q

(θ)
m )

m∏

j=0

1{Q(θ)
j ≥1}

)
. (2.10)

Since θ �→ Q
(θ)
n is manifestly non-decreasing in θ , so is the event on the right-

hand side of (2.8) and also Zn(θ) itself. Notice that if θ ≥ θb, then Q
(θ)
k ≤ θ for
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any k ≥ 0, while if θ = 1, then the conditions in (2.8) force Q
(θ)
k ≥ 1. Thus,

for θ = 1 we obtain the supermultiplicative bound

Zn+m(1) ≥ Zn(1)Zm(1), (2.11)

while for any θ ≥ θb we get the submultiplicative bound

Zn+m(θ) ≤ Zn(θ)Zm(θ). (2.12)

By standard theorems, Zn(1)1/n tends to a limit, z1, while Zn(θ)
1/n for θ ≥

θb tends to a (possibly θ -dependent) limit zθ . Moreover, (2.10) in fact implies
that Zn+m(θ) ≤ Zn(θb + θb−m) and zθ is thus constant for all θ > θb. We will
use z� to denote the common value of zθ for θ > θb. Note that Zn(1)1/n ≤ z1
while Zn(θ)

1/n ≥ z� for all n ≥ 1 and all θ > θb.
Since θ �→ Zn(θ) is non-decreasing, to prove (2.9), we just need to show

that z� equals z1. If x� < 1 − 1
b

, then z� = 0 and there is nothing to prove, so let us
suppose that x� ≥ 1 − 1

b
for the rest of the proof. As it turns out, we will have to

address a number of distinct cases. These are determined by whether the inequality
in x� ≥ 1 − 1

b
is strict or not and by whether the quantity

κε = ρ
(
[x� − ε, x�]

)
(2.13)

is strictly less than z1 or not for some (particular) ε > 0. Specifically, we will
distinguish the following cases:

CASE 1: x� > 1 − 1
b

and κε < z1 for some ε > 0 with x� − ε > 1 − 1
b

.
CASE 2: x� > 1 − 1

b
but κε = z1 for all ε > 0 with x� − ε > 1 − 1

b
.

CASE 3: x� = 1 − 1
b

.

As is easily observed, CASE 2 represents the situation where ρ assigns no mass to
the interval (1 − 1

b
, x�), while CASE 3 corresponds to the similar situation when

this interval itself is empty. In view of the trivial inequality z1 ≥ ρ([1 − 1
b
, x�]),

we must eventually have κε < z1 whenever ρ has any mass in (1 − 1
b
, x�). Hence,

the first situation is clearly generic.
In order to address the first two cases (with x� > 1 − 1

b
) we need to establish

an inequality between Zn(θ) and zn1 for all θ ∈ [1, θb). Explicitly, we claim that
for x� > 1 − 1

b
and any θ ∈ [1, θb), there is an H(θ) < ∞ such that

Zn(θ) ≤ H(θ)zn1, n ≥ 1. (2.14)

Indeed, let ε > 0 be such that θb − θ > ε b
b−1 and x� − ε ≥ 1 − 1

b
and pick m

so that

(x� − ε)
[
1 + 1

b
+ · · · + 1

bm−1

]
+ 1

bm
≥ θ. (2.15)

Consider the formula (2.8) for Zn+m(1) but with the first m coordinates restricted
to the event E = {X1, . . . , Xm ≥ x� − ε}. Notice that on E , the conditions involv-
ingQ

(1)
1 , . . . ,Q

(1)
m are automatically satisfied. By a derivation similar to (2.10-2.11)

we have

Zn+m(1) ≥ κm
ε Zn(θ). (2.16)
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Along with the upper bound Zn+m(1) ≤ zn+m
1 , this implies (2.14) with H(θ) =

(z1/κε)
m. (We note that, since x� is the supremum of the support of ρ, we have

κε > 0 for all ε > 0.)

Now we are ready to prove that z� = z1 in all of the three cases above:

CASE 1: Suppose that x� > 1− 1
b

and κε < z1 for some ε > 0 with x�−ε > 1− 1
b

.
Let θ > θb be small enough that θε = x� − ε + θ

b
< θb. Then

Zn(θ) ≤ κεZn−1(θ) + (1 − κε)Zn−1(θε)

= Zn−1(θ)

[
κε + (1 − κε)

Zn−1(θε)

Zn−1(θ)

]
.

(2.17)

Using (2.14) and the bound Zn−1(θ) ≥ zn−1
� we obtain

Zn(θ) ≤ Zn−1(θ)

[
κε + (1 − κε)H(θε)

(z1

z�

)n−1
]
. (2.18)

Let κε(n) denote the quantity in the square brackets, and let us set n = 2m in
(2.18) and iterate the bound m times. This gives Z2m(θ) ≤ κε(m)mZm(θ). If we
still entertain the possibility that z1 < z�, then the m → ∞ limit gives z� ≤
limm→∞ κε(m) = κε , which contradicts the bound z1 ≥ κε . Therefore, once x� >

1 − 1
b

and κε < z1 for some ε > 0 we have z1 = z�.

CASE 2: Suppose now that x� > 1− 1
b

but κε = z1 for all ε > 0 with x�−ε > 1− 1
b

.
Notice that this in fact implies that z1 = ρ({x�}). We first observe, using (2.16)
with n = 1, that Zm+1(1) ≥ κm

ε ρ([1− 1
b
θ, x�]) whenever θ , ε and m satisfy (2.15).

As a consequence of (2.11), we have

z1

κε
≥
[
ρ([1 − 1

b
θ, x�])

κε

] 1
m+1

. (2.19)

Now if ρ((1 − 1
b
θb, x�)) > 0, we would have ρ((1 − 1

b
θb, x�]) > ρ({x�}) = κε

which would by (2.19) imply that z1 > κε , a contradiction. (This fact will be im-
portant later, so we restate it as a corollary right after this proof.) Hence, we must
have ρ((1 − 1

b
θb, x�)) = 0. To prove that z1 = z�, let θ > θb be small enough that

θ0 = 1 + 1
b
(θ − θb) < θb. Now either Xk = x� for all k = 1, . . . , n, or there is a k

such that Xk ≤ 1 − 1
b
θb. Noting that then Q

(θ)
k ≤ θ0, we thus have

Zn(θ) ≤ ρ
({x�}

)n +
n∑

k=1

ρ
({x�}

)k−1
ρ
(
[0, 1 − 1

b
θb]
)
Zn−k(θ0). (2.20)

Using (2.14), this gives Zn(θ) ≤ zn1 + nzn−1
1 ρ([0, 1 − 1

b
θb])H(θ0), proving that

z� = z1 holds for CASE 2 as well.

CASE 3: Suppose finally that x� = 1 − 1
b

and note that then θb = 1. Immediately,
we have Zn(1) = ρ({x�})n and therefore z1 = ρ({x�}), while for any θ > θb we
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have
⋂n

k=0{Q(θ)
k ≥ 1} ⊂ ⋂n

k=1{Xk ≥ x� − b−k(θ − θb)}. Therefore,

Zn(θ) ≤
n∏

k=1

P
(
Xk ≥ x� − b−k(θ − θb)

)
, (2.21)

which implies that z� ≤ limk→∞ P(X1 ≥ x� − b−k(θ − θb)) = ρ({x�}) = z1. ��
This completes the proof of part (1) of Theorem 2.4. As mentioned earlier, we

would like to underscore one aspect of the above proof.

Corollary 2.5. Let ρ ∈ M and suppose that x� > 1− 1
b

and ρ((1− 1
b
θb, x�)) > 0.

Then there is an ε > 0 with x� − ε > 1 − 1
b

such that z(ρ) > ρ([x� − ε, x�]).

Proof. See the argument following (2.19). ��
Next we will prove the continuity of α �→ z(αρ + (1 − α)ρ′) as stated in

Theorem 2.4(2):

Proof of Theorem 2.4(2). Throughout this proof we will write Z
(ρ)
n (θ) instead of

just Zn(θ) to emphasize the dependence on the underlying measure ρ. Let ρ0, ρ1 ∈
M and let ρα = (1 − α)ρ0 + αρ1. Clearly, to prove (2), it suffices to show that
α �→ z(ρα) is right continuous at α = 0.

Fix α > 0 and let (Tk) be a sequence of 0, 1-valued i.i.d. random variables
with Prob(Tk = 0) = α. Let (Xk) and (X′

k) be two independent sequences of
i.i.d. random variables, both independent of (Tk), with distributions ρN

0 and ρN

1 ,

respectively. Let (X(α)
k ) be the sequence defined by

X
(α)
k = TkXk + (1 − Tk)X

′
k, k ≥ 1. (2.22)

Clearly, (X(α)
k ) are i.i.d. with joint distribution ρN

α . Let us use Pα to denote the joint
distribution of (Xk), (X′

k), and (Tk).

Let Q
(θ,α)
n be given by (2.5) with X1, . . . , Xn replaced by X

(α)
1 , . . . , X

(α)
n .

Then Z
(ρα)
n (θ) is given by (2.8) with Q

(θ)
n replaced by Q

(θ,α)
n and P replaced by Pα .

As will be seen shortly, the main object of interest is the conditional expectation
given the values (Tk):

Zn,α

(
θ |(Tk)

) = Pα

(
Q

(θ,α)
� ≥ 1, � = 0, . . . , n

∣∣(Tk)
)
. (2.23)

Indeed, let θ ∈ [1, θb] and, given (Tk), let (Ii) be the connected blocks of sites k ∈
{0, . . . , 1} such that Tk = 1 and let (Jj ) be the connected sets of sites with Tk = 0.

By (2.22), the X
(α)
k for k ∈ Ii are distributed according to ρ0, while those for

k ∈ Jj are distributed according to ρ1. Then an analogue of (2.10) for the quantity
in (2.23) along with the bounds Zn(1) ≤ Zn(θ) ≤ Zn(θb) for θ ∈ [1, θb] allow us
to conclude that
∏

i

Z
(ρ0)
|Ii | (1)

∏

j

Z
(ρ1)
|Jj | (1) ≤ Zn,α

(
θ |(Tk)

) ≤
∏

i

Z
(ρ0)
|Ii | (θb)

∏

j

Z
(ρ1)
|Jj | (θb). (2.24)
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In order to estimate the right hand side of (2.24), note that the existence of
the limit in (2.9) implies that for all δ > 0 there is Cδ ∈ [1,∞), such that for
both ρ = ρ0 and ρ = ρ1,

Z(ρ)
n (θb) ≤ Cδ(1 + δ)nz(ρ)n, n ≥ 1. (2.25)

Let Eα denote the expectation with respect to Pα . Using (2.25) in (2.24), observ-
ing that the total number of occurrences of Cδ is less than 2k1(Y ), where k1(Y ) =∑

j |Jj |, and noting that k1(Y ) has the binomial distribution with parameter α

under Pα allows us to write

Z(ρα)
n (θ) = EαZn,α

(
θ |(Tk)

) ≤ (1 + δ)n
(
(1 − α)z(ρ0) + αC2

δ z(ρ1)
)n

. (2.26)

By taking n → ∞, we get limα↓0 z(ρα) ≤ (1 + δ)z(ρ0). But δ was arbitrary,
hence, limα↓0 z(ρα) ≤ z(ρ0). The argument for the lower bound, limα↓0 z(ρα) ≥
z(ρ0), is completely analogous. ��

Finally, we also need to prove part (3) of Theorem 2.4:

Proof of Theorem 2.4(3). By Proposition 2.3, σ ∈ A (v) is exactly the event that
the path between (and including) σ and ∅ consists of sites σ ′ with Q

(θ)

σ ′ ≥ 1,
where θ = X∅ + v. But then

Pρ(σ ∈ A (v)) = Eρ

(
Z|σ |(X∅ + v)

)
, (2.27)

where the final average is over X∅. To get the expected size of A (v), we sum over
all σ ,

Eρ

(|A (v)|) =
∑

n≥0

Eρ

(
Zn(X∅ + v)

)
bn. (2.28)

The existence of the limit Z
1/n
n (θ) independent of θ (for θ ≥ 1) tells us that

Eρ(|A (v)|) < ∞ whenever z(ρ) < zc, while Eρ(|A (v)|) = ∞ once z(ρ) > zc
and v > 1 − x�. ��

3. Absence of intermediate phase

3.1. Sharpness of phase transition

The goal of this section is to show that the phase transitions defined by presence/
absence of an infinite avalanche and divergence of avalanche size occur at the same
“point,” zc = 1

b
. This rules out the possibility of an intermediate phase. Moreover,

we will prove that the transition is second order in the sense that there is no infinite
avalanche at z = zc.

Unfortunately, our proof will require certain restrictions on the underlying mea-
sure ρ. The delicate portion of [0, 1] is the region I = [1 − 1

b
θb, 1 − 1

b
). Clearly,

some conditions are needed to ensure that there is not too much mass at the right-
end of I—i.e., that ρ([(1 − 1

b
− ε, 1 − 1

b
)) → 0 sufficiently fast as ε ↓ 0—to avoid

the sort of counterexamples described in Remarks 1 and 2 of Section 2. With a lot
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of additional work than what is about to hit, all of the forthcoming can be proved
under the assumption that ρ has an Lp density, for a p > 1, in the interval I .
However, this requires dealing with “singularities” in the region above I . (The re-
gion below I is of no consequence because any directed path in the avalanched set
can only harbor a finite number of values from this set.) Notwithstanding, most of
the interesting mathematics—with only a fraction of unpleasant technicalities—is
captured by assuming that the measure ρ has a bounded density.

Definition 1. Let M
 be the set of Borel probability measures ρ on [0, 1] that are
absolutely continuous with respect to Lebesgue measure on [0, 1] with the associ-
ated density φρ bounded in L∞ norm on [0, 1], i.e., ‖φρ‖∞ < ∞, and that obey
ρ([1 − 1

b
, 1]) > 0.

The requirement that ρ has positive mass in [1 − 1
b
, 1] represents no additional

loss of generality since the opposite case, namely x� < 1− 1
b

, actually has z(ρ) = 0
and is therefore far away from having an avalanche (see Theorem 2.4). It is worth
noting that M
 is a convex subset of M. The ability to take convex combinations
of elements of M
 will be crucial in the discussion of the critical behavior, see
Section 4.

Our second main theorem is then as follows:

Theorem 3.1. Suppose that ρ ∈ M
 and define zc = 1
b

.
(1) If z(ρ) ≤ zc, then Pρ(|A (v)| = ∞) = 0 for all v ∈ (0,∞).
(2) If z(ρ) > zc, then Pρ(|A (v)| = ∞) > 0 for all v ∈ (1 − x�,∞).

The proof of Theorem 3.1 requires introducing two auxiliary random vari-
ables V∞ and Q∞. These will be defined in next two subsections, the proof is
therefore deferred to Section 3.4. The random variable Q∞ will be a cornerstone
of our analysis of the critical process, see Section 4. The underlying significance
of both V∞ and Q∞ is the distributional identity that each of them satisfies.

3.2. Definition of V∞

In this section we define a random variable V∞ which is, roughly speaking, the
minimal value of v that needs to be added to the root in order to trigger an infinite
avalanche. For n ≥ 1 let

Vn = inf
{
v ∈ (0,∞) : X(v)(t + 1) �= X(v)(t), t = 0, . . . , n − 1

}
. (3.1)

(A logical extension of this definition to n = 0 isV0 ≡ 0.) In plain words, if v ≥ Vn,
then the avalanche process will propagate to at least the n-th level. Clearly, Vn is an
increasing sequence; we let V∞ denote the n → ∞ limit of Vn. Formally, V∞ can
be infinite; in fact, since the event {V∞ < ∞} is clearly a tail event, Pρ(V∞ < ∞)

is either one or zero.
Let us use �n to denote the distribution function of Vn, i.e.,

�n(ϑ) = Pρ(Vn ≤ ϑ). (3.2)
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The aforementioned properties of Vn lead us to a few immediate observations
about �n: First, �n is a decreasing sequence of non-decreasing functions. Second,
the limit

�(ϑ) = lim
n→∞�n(ϑ), (3.3)

exists for all ϑ ∈ (0,∞) and �(ϑ) = Pρ(V∞ ≤ ϑ). Third, we have � �≡ 0 if and
only if Pρ(V∞ < ∞) = 1. Moreover, each of �n is in principle computable:

Lemma 3.2. Let ρ ∈ M. Then the sequence (�n) satisfies the recurrence equation

�n+1(ϑ) = Eρ

(
�b

(
�n

(X∅+ϑ

b

))
1{X∅≥1−ϑ}

)
, n ≥ 0, (3.4)

where �0(ϑ) = 1{ϑ≥0} and

�b(y) = 1 − (1 − y)b, 0 ≤ y ≤ 1. (3.5)

Proof. Let T
(σ )
b denote the subtree of Tb rooted at σ and let V (σ)

n denote the random

variable defined in the same way as Vn but here for the tree T
(σ )
b . Then we have

{Vn+1 ≤ ϑ} = {X∅ ≥ 1 − ϑ} ∩
{

min
σ∈{1,...,b}

V (σ)
n ≤ X∅ + ϑ

b

}
. (3.6)

But for all σ ∈ {1, . . . , b}, the V
(σ)
n ’s are i.i.d. with common distribution func-

tion �n, so we have

Pρ

(
min

σ∈{1,...,b}
V (σ)
n ≤ ϑ

) = �b

(
�n(ϑ)

)
. (3.7)

From here the claim follows by noting that V (σ)
n are independent of X∅. ��

Corollary 3.3. Let ρ ∈ M. Then the distribution function of V∞ satisfies the
equation

�(ϑ) = Eρ

(
�b

(
�
(X∅+ϑ

b

))
1{X∅≥1−ϑ}

)
, ϑ ≥ 0. (3.8)

Proof. This is an easy consequence of (3.4) and the Bounded Convergence Theo-
rem. ��

On the basis of (3.8) and some percolation arguments, the answer to the impor-
tant question whether � ≡ 0 or not can be given by checking whether �(ϑ) = 0
for reasonable values of ϑ :

Proposition 3.4. Let ρ ∈ M
. Suppose that � �≡ 0. Then

inf
{
ϑ ≥ 0 : �(ϑ) > 0

} = 1 − x�. (3.9)
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Proof. Letϑ� denote the infimum on the left-hand side of (3.9). Note that x� > 1− 1
b

by ρ ∈ M
. Since ρ is absolutely continuous with respect to the Lebesgue measure
on [0, 1], there is an η > 0 such that x� − η > 1 − 1

b
and ρ([x� − η, x�]) < 1

b
.

Now 1
b

is the threshold for the site percolation on Tb, so the sites with Xσ > x� −η

do not percolate. Let Gn = {σ ∈ Tb : |σ | = n} be the n-th generation of Tb. Pick
two integers N,N ′ such that N ′ ≥ N and let HN,N ′ be the event that GN and GN ′
are separated by a “barrier” of sites σ with Xσ ≤ x� − η. By taking N ′ � N � 1,
the probability of HN,N ′ can be made as close to one as desired.

Let ϑ > ϑ� and pick N0 so large that ϑb−N0 is less than η
2 . Find N,N ′ ≥ N0

such that 1 − Pρ(HN,N ′) is strictly smaller than Pρ(|A (ϑ)| = ∞), i.e., we have
Pρ({|A (ϑ)| = ∞} ∩ HN,N ′) > 0. Now for any ε ∈ (0, η

2 ), we will produce a
configuration with an infinite avalanche that has a starting value v = 1 − x� + ε.
Draw a configuration (X̄σ ) subject to the constraint that X̄σ ≥ x�−ε for all σ ∈ Tb

with |σ | ≤ N ′. Let (Xσ ) belong to the set {|A (ϑ)| = ∞} ∩ HN,N ′ and define X′
σ

by putting

X′
σ =

{
X̄σ ∨ Xσ , if |σ | ≤ N ′,
Xσ , otherwise.

(3.10)

Let X′,(v)
σ (t) denote the process corresponding to the initial configuration (X′

σ ) and
initial value v > 0, and let X(ϑ)

σ (t) be the corresponding process for (Xσ ) and ϑ .
Let A ′,(v) and A (ϑ) be the corresponding avalanche sets.

The configuration (Xσ ) exhibits an infinite avalanche, so there is a site σ on
one of the aforementioned “barriers” separating GN and GN ′ , which belongs to an
infinite oriented path inside A (ϑ). By the assumption that x� −η > 1− 1

b
it is clear

that, if v > 1 − x� + ε and t = |σ |, then A ′,(v) will reach σ . But X′
σ ′ ≥ Xσ for all

sites on the path from ∅ to σ , so we have

X′,(v)
σ (t) − X(ϑ)

σ (t) ≥ η − ε − ϑ − v

bN
> 0, (3.11)

where we used that bNϑ ≤ η
2 and ε <

η
2 to derive the last inequality. Now the

set A (ϑ) contains a path from σ to infinity and, by (3.11) and X′
σ ′ ≥ Xσ ′ for σ ′

“beyond” σ , this path will also be contained in A ′,(v). Consequently, an infinite
avalanche will occur in configuration (X′

σ ) starting from a value v > 1 − x� + ε

whenever it did in configuration (Xσ ) starting from ϑ . This establishes ϑ� = 1−x�,
as claimed. ��

3.3. Definition of Q∞

The second random variable, denoted byQ∞ is a limiting version of the objectsQ(θ)
n

defined in (2.5). Let Y = (Y1, Y2, . . . ) be a sequence of i.i.d. random variables
with joint distribution P = ρN. These are, in a certain sense, the same quantities
as the X’s discussed earlier, however, the Y ’s will be ordered in the opposite way.



16 M. Biskup et al.

Similarly to (2.5), let

Q
(θ)
n,k = Yk + 1

b
Yk+1 + · · · + 1

bn−k
Yn + θ

bn−k+1 , 1 ≤ k ≤ n. (3.12)

For completeness, we also let Q(θ)
0,1 = θ .

Let B be the Borel σ -algebra on [0, 1]N equipped with the standard product
topology. Suppose that ρ([1 − 1

b
, 1]) > 0—which is assured if ρ ∈ M
. For

any n ≥ 1 and θ ≥ 1, let P
(θ)
n be the conditional law on B defined by

P
(θ)
n ( · ) = P

( · ∣∣Q(θ)
n,� ≥ 1, � = 2, . . . , n

)
, (3.13)

The latter is well defined because P(Q
(θ)
n,� ≥ 1) > 0 for all � = 2, . . . , n, {Q(θ)

n,� ≥ 1}
are increasing and P(·) is FKG. Intentionally, the variable Y1 is not constrained by
the conditioning in (3.13).

Next we give conditions for the existence of the limiting law limn→∞ P
(θ)
n :

Proposition 3.5. Let ρ ∈ M
 and let θ0 > θb. Then there exists numbers A =
A(ρ, θ0) < ∞ and ζ = ζ(ρ) > 0 such that for all bounded measurable func-
tions f = f (Y1, . . . , Yk) and all θ, θ ′ ∈ [1, θ0],

∣∣E(θ)
n+1(f ) − E

(θ ′)
n (f )

∣∣ ≤ Ae−ζ(n−k)‖f ‖∞, n ≥ k. (3.14)

In particular, whenever θ ≥ 1, the limit law

P̂(·) = lim
n→∞ P

(θ)
n (·) (3.15)

exists and is independent of θ . Moreover, the quantities A(ρ, θ0) and ζ(ρ) are
bounded away from infinity and zero uniformly in any convex set N ⊂ M
 with
finitely many extreme points.

The proof of Proposition 3.5 uses a coupling argument, which requires some
rather extensive preparations and is therefore deferred to Section 5. (The actual
proof appears at the end of Section 5.3.)

We will use Ê to denote the expectation with respect to P̂ whenever the latter is
well defined. Let us define a random variable Q∞ on ([0, 1]N,B, P̂) by the formula

Q∞ =
∑

k≥1

Yk

bk−1 . (3.16)

Notice that Q∞ is supported in [ 1
b
, θb], because Y1 is not constrained by the con-

ditioning in (3.13).

Corollary 3.6. Let ρ ∈ M
 and let θ ≥ 1. Let Q
(θ)
n,1 be as in (3.12), where the

variables Y1, . . . , Yn are distributed according to P
(θ)
n . Then Q

(θ)
n,1 tends to Q∞ in

distribution as n → ∞. Moreover, for each θ0 > θb and each C < ∞ there are
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constants D = D(ρ, θ0) < ∞ and ς = ς(ρ) > 0 such that if f (θ) is a function
obeying the Lipschitz bound on [0, θ0],

∣∣f (θ) − f (θ ′)
∣∣ ≤ C‖f ‖∞ |θ − θ ′|, θ, θ ′ ∈ [0, θ0], (3.17)

where ‖f ‖∞ = supθ≤θ0
|f (θ)|, then

∣∣∣E(θ)
n

(
f (Q

(θ)
n,1)

)− Ê
(
f (Q∞)

)∣∣∣ ≤ D ‖f ‖∞e−ςn (3.18)

holds for all θ ∈ [1, θ0]. The quantities D(ρ, θ0) and ς(ρ) are bounded away from
infinity and zero uniformly in any convex set N ⊂ M
 with finitely many extreme
points.

The proof of Corollary 3.6 is given in Section 5.4. As already mentioned, a
principal tool for our later investigations will be the distributional identity for Q∞
stated below.

Proposition 3.7. Let ρ ∈ M
. If X is a random variable with law P = ρ, inde-
pendent of Q∞, then

P ⊗ P̂

(
X + Q∞

b
∈ ·

∣∣∣∣Q∞ ≥ 1

)
= P̂(Q∞ ∈ · ). (3.19)

The proof of Proposition 3.7 will also be given in Section 5. Proposition 3.5
and the proof of Proposition 3.7 immediately yield an extension of Theorem 2.4(1),
stated as Corollary 3.8, which will also be useful in subsequent developments. The
proof of Corollary 3.8 is given in Section 5.4.

Corollary 3.8. Suppose that ρ ∈ M
. Then z(ρ) = P̂(Q∞ ≥ 1). Moreover, the
limit

ψρ(θ) = lim
n→∞Zn(θ)z(ρ)

−n (3.20)

exists for all θ ≥ 0 and, for all θ0 > θb, there are A′ = A′(ρ, θ0) < ∞ and ζ ′ =
ζ ′(ρ) > 0 such that

∣∣Zn(θ)z(ρ)
−n − ψρ(θ)

∣∣ ≤ A′e−ζ ′n (3.21)

holds for all θ ∈ [0, θ0] and all n ≥ 1. Furthermore, the function ψρ has the
following properties:

(1) ψρ(θ) ∈ (0,∞) for all θ ≥ 1 while ψρ(θ) = 0 for θ < 1.
(2) θ �→ ψρ(θ) is non-decreasing and Lipschitz continuous for all θ ≥ 1. More

precisely, there is a C = C(ρ, θ0) < ∞ such that |ψρ(θ) − ψρ(θ
′)| ≤

Cψρ(θ0)|θ − θ ′| for all θ, θ ′ ∈ [1, θ0].
(3) If ρ, ρ′ ∈ M
 and ρα = (1−α)ρ +αρ′ for each α ∈ [0, 1], then α �→ ψρα (θ)

is continuous in α ∈ [0, 1] for all θ ≥ 0.

The quantities A′(ρ, θ0), ζ ′(ρ) and C(ρ, θ0) are bounded away from infinity and
zero uniformly in any convex set N ⊂ M
 with finitely many extreme points.
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Remark 3. The Lipschitz continuity of θ �→ ψρ(θ) is a direct consequence of our
assumption that ρ has a bounded density φρ with respect to the Lebesgue measure
on [0, 1]. If φρ is only in Lp([0, 1]) for some p > 1, then the appropriate concept
will be Hölder continuity with a p-dependent exponent. The same will be true for
various other Lipschitz continuous quantities later in this paper.

3.4. Proof of Theorem 3.1

With random variable Q∞ at our disposal, the sharpness of the phase transition in
our avalanche model is almost immediate.

Proof of Theorem 3.1. Let ρ ∈ M
 and abbreviate z = z(ρ). Let x� be as in (2.1).
We begin by introducing the quantity

Gn = Ê

(
�n

(
Q∞
b

)
1{Q∞≥1}

)
. (3.22)

The recursive equation (3.4) and Proposition 3.7 then give

Gn+1 = P̂(Q∞ ≥ 1)Eρ ⊗ Ê

(
�n

(
X∅+ 1

b
Q∞

b

)
1{X∅+ 1

b
Q∞≥1}

∣∣∣Q∞ ≥ 1

)

= z Ê

(
�b

(
�n

(
Q∞
b

)
1{Q∞≥1}

))
,

(3.23)

where we have used the fact that z = P̂(Q∞ ≥ 1) from Corollary 3.8.
Let us first analyze the cases bz ≤ 1. By using Jensen’s inequality in (3.23) we

get that

Gn+1 ≤ z�b(Gn) ≤ 1

b
�b(Gn). (3.24)

An inspection of the graph of y �→ �b(y) reveals that if (3.24) holds, then Gn → 0.
By Proposition 3.4, this is compatible with � �≡ 0 only if

Q∞
b

≤ 1 − x� P̂-almost surely. (3.25)

However, a simple argument shows that esssupQ∞ = x�
b

b−1 whenever z > 0. This

contradicts (3.25), because x� > b−1
b

(as implied by ρ ∈ M
) forces 1 − x� <

x�
b

b−1 . Thus, if bz ≤ 1, then � must be identically zero.
Next we will attend to the cases bz > 1. We will suppose that �n → 0 and

work to derive a contradiction. Since n �→ �n is a monotone sequence of monotone
functions, the convergence to � is uniform on [0, 1] and, in particular, on the range
of values that 1

b
Q∞ takes. Using that �b(y) ≥ by − 1

2b(b− 1)y2 for all y ∈ [0, 1]
and invoking (3.23), we can write

Gn+1 ≥ bz(1 − εn)Gn, (3.26)

where εn = 1
2 (b − 1)�n(1). Since bz > 1 and εn → 0, we have Gn+1 ≥ Gn

for n large enough. An inspection of (3.4) shows that, since x� > 1 − 1
b

, we
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have �n(ϑ) > 0 for all ϑ > 1
b

. Hence Gn > 0 for all n ≥ 0. But then (3.26)
forces Gn to stay uniformly bounded away from zero, in contradiction with our
assumption that Gn → 0. Therefore, once bz > 1, we must have � �≡ 0. ��

4. Critical behavior

4.1. Critical exponents

In this section we establish, under certain conditions on ρ, the essential behavior of
the model at the critical point zc = 1

b
. In particular, we describe the asymptotics for

the critical distribution of avalanche sizes, the power law behavior for the proba-
bility of an infinite avalanche as z ↓ zc and, finally, the exponent for the divergence
of χ(v) as z ↑ zc.

Theorem 4.1. Let ρ ∈ M
 and let x� be as in (2.1). Suppose z(ρ) = zc, where
zc = 1

b
. Then there are functions τ, T : (1 − x�,∞) → (0,∞) and Θ : [0,∞) →

[0,∞) such that the following holds:

(1) If ρ′ ∈ M
 and ρα = αρ′ + (1 − α)ρ satisfies z(ρα) < zc for all α ∈ (0, 1],
then for all v > 1 − x�,

Eρα

(|A (v)|) = τ(v)

zc − z(ρα)

[
1 + o(1)

]
, α ↓ 0. (4.1)

(2) For all v ≥ 0,

Pρ

(|A (v)| ≥ n
) = Θ(v)

n1/2

[
1 + o(1)

]
, n → ∞, (4.2)

where Θ(v) > 0 for v > 1 − x�.
(3) If ρ′ ∈ M
 and ρα = αρ′ + (1 − α)ρ satisfies z(ρα) > zc for all α ∈ (0, 1],

then for all v > 1 − x�,

Pρα

(|A (v)| = ∞) = (
z(ρα) − zc

)
T (v)

[
1 + o(1)

]
, α ↓ 0. (4.3)

Remark 4. The proof of Theorem 4.1 makes frequent use of the properties of the
random variable Q∞ defined in Section 3.2. The relevant statements are Proposi-
tions 3.5 and 3.7 and Corollaries 3.6 and 3.8, whose proofs come only in Section 5.
Modulo these claims, Section 4 is essentially self-contained and can be read without
a reference to Section 5.

Part (1) of Theorem 4.1 can be proved based on the already-available informa-
tion; the other parts will require some preparations and their proofs are postponed
to the next section.

Proof of Theorem 4.1(1). Let ρ, ρ′ ∈ M
 be such that z(ρα) < zc = z(ρ) for ρα =
(1 − α)ρ + αρ′ and all α ∈ (0, 1]. Let χ(v)(α) = Eρα (|A (v)|). By (2.28),

χ(v)(α) =
∑

n≥0

Eρα

(
Z(ρα)

n (X∅ + v)
)
bn, (4.4)
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where Eρα is the expectation with respect to X∅ in ρα and Z
(ρα)
n is defined by (2.8)

using ρα .
In order to estimate the sum we will use A′′ and ζ ′′ to denote the worst case

scenarios for the quantities A′(ρα, θ0) and ζ ′(ρα) from Corollary 3.8. Explicitly,
we let A′′ = sup0≤α≤1 A′(ρα, θ0) and ζ ′′ = inf0≤α≤1 ζ ′(ρα), where θ0 > θb is to
be determined shortly. Note that A′′ < ∞ and ζ ′′ > 0 by uniformity of the bounds
on A′(ρα, θ0) and ζ ′(ρα) in the convex set N = {ρα : α ∈ [0, 1]}. Then we have,
for all n ≥ 1 and all θ ∈ [1, θ0],

bnZ(ρα)
n (θ) = bnz(ρα)

nψρα (θ) + bnz(ρα)
nEn(θ), (4.5)

where ψρα (θ) is as in (3.20) while En(θ) is the “error term.” Using the bounds
from Corollary 3.8, En(θ) is estimated by |En(θ)| ≤ A′′e−ζ ′′n. By continuity
of α �→ ψρα (θ), we get

∑

n≥0

bnZ(ρα)
n (θ) = ψρ(θ) + o(1)

1 − bz(ρα)
, (4.6)

where o(1) tends to zero as α ↓ 0 uniformly on compact sets of θ ∈ [1, θ0].
Let τ(v) = b−1

Eρ(ψρ(X∅ + v)) and note that τ(v) > 0 for all v > 1 − x�.
Let us take the maximum of x� + v and 2θb for the quantity θ0 above. Then (4.4)
and (4.6) imply

χ(v)(α) = τ(v)

zc − z(ρα)

[
1 + o(1)

]
, (4.7)

where o(1) tends to zero as α ↓ 0, for all v ≥ 1 − x�. ��
It remains to establish parts (2) and (3) of Theorem 4.1. To ease derivations, in-

stead of looking at the asymptotic size of A (v), we will focus on a slightly different
set:

B(θ) =
{

{∅}, if A (θ−X∅) = ∅,
{
σ ∈ Tb : m(σ) ∈ A (θ−X∅)

}
, otherwise.

(4.8)

(Here we take A (θ ′) = ∅ whenever θ ′ < 1.) Clearly, B(θ) is the original avalanche
set together with its boundary (i.e., the set of sites in Tb, where the avalanche has
“spilled” some material). Since both sets are connected and both contain the root
(with the exception of the case A (θ−X∅) = ∅), their sizes satisfy the relation:

|B(θ)| = (b − 1)|A (θ−X∅)| + 1. (4.9)

(This relation holds even if A (θ−X∅) = ∅.) The asymptotic probability of the
events {|A (v)| ≥ n} as n → ∞ is thus basically equivalent to that of {|B(θ)| ≥
(b − 1)n}.
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4.2. Avalanches in an external field

Following a route which is often used in the analysis of critical systems, our proof
of Theorem 4.1 will be accomplished by the addition of extra degrees of freedom
that play the role of an external field. Let λ ∈ [0, 1] be fixed and let us color each
site of Tb “green” with probability λ. Given a realization of this process, let G
denote the random set of “green” sites in Tb. Let Pρ,λ(·) be the joint probability
distribution of the “green” sites and (Xσ ). The principal quantity of interest is then

B∞(θ, λ) = Pρ,λ

(
B(θ) ∩ G �= ∅). (4.10)

It is easy to check that, as λ ↓ 0, the number B∞(θ, λ) tends to the probabil-
ity Pρ(|B(θ)| = ∞). In particular, Theorem 3.1 guarantees that B∞(θ, λ) →
0 as λ ↓ 0 if z(ρ) ≤ zc, while B∞(θ, λ) stays uniformly positive as λ ↓ 0
when z(ρ) > zc and θ ≥ 1.

Let ψρ(θ) be as in Corollary 3.8 and let cρ ∈ (0,∞) be the quantity defined by

1

c2
ρ

= b − 1

2
Ê

([
E
(
ψρ

(
X+ Q∞

b

))]2
∣∣∣Q∞ ≥ 1

)
. (4.11)

Here X and Q∞ are independent with distributions P = ρ and P̂, respectively.
It turns out that the asymptotics of B∞(θ, λ) for critical ρ can be described very
precisely:

Proposition 4.2. Let ρ ∈ M
 satisfy z(ρ) = zc. For each θ ∈ (0,∞),

lim
λ↓0

B∞(θ, λ)√
λ

= cρψρ(θ). (4.12)

Proposition 4.2 is proved in Section 4.4. Now we are ready to prove Theo-
rem 4.1(2):

Proof of Theorem 4.1(2). We begin by noting the identity

B∞(θ, λ)

λ
=
∑

n≥1

Pρ

(|B(θ)| ≥ n
)
(1 − λ)n−1, λ ∈ (0, 1], (4.13)

which is derived by expressing Pρ(|B(θ)| = n) as the difference between the prob-
abilities Pρ(|B(θ)| ≥ n) and Pρ(|B(θ)| ≥ n + 1). Since B∞(θ, λ) asymptotically
equals

√
λ (cρψρ(θ)+ o(1)) as λ ↓ 0 and since n �→ Pρ(|B(θ)| ≥ n) is a decreas-

ing sequence, standard Tauberian theorems (e.g., Karamata’s Tauberian Theorem
for Power Series, see Corollary 1.7.3 in [3]) guarantee that

Pρ(|B(θ)| ≥ n) = cρ
ψρ(θ)

�( 1
2 )

1√
n

[
1 + o(1)

]
, n → ∞, (4.14)

(Strictly speaking, the above Tauberian theorem applies only when ψρ(θ) > 0; in
the opposite case, i.e., when θ < 1, we have B(θ) = {∅} and there is nothing to
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prove.) In order to obtain the corresponding asymptotics for Pρ(|A (v)| ≥ n), we
first note that, by (4.9),

Pρ

(|A (v)| ≥ n
) = Pρ

(|B(X∅+v)| ≥ (b − 1)n + 1
)
. (4.15)

By applying (4.14) on the right-hand side and invoking the Bounded Convergence
Theorem, we immediately get the desired formula (4.2) with

Θ(v) = cρ

(b − 1)1/2�( 1
2 )

Eρ

(
ψρ(X∅ + v)

)
, (4.16)

where Eρ is the expectation over X∅. Clearly, v �→ Θ(v) is non-decreasing
because θ �→ ψρ(θ) is non-decreasing, while Θ(v) > 0 for v > 1 − x� be-
cause ψρ(θ) > 0 for θ ≥ 1. ��

Similarly we can also describe the asymptotics of Pρ(|B(θ)| = ∞) as z(ρ)
decreases down to zc:

Proposition 4.3. Let ρ, ρ′ ∈ M
 and define ρα = (1 − α)ρ + αρ′. Suppose
that z(ρ) = zc and z(ρα) > zc for all α ∈ (0, 1]. Then for all θ ∈ (0,∞),

Pρ(|B(θ)| = ∞)

z(ρα) − zc
= bc2

ρψρ(θ) + o(1), α ↓ 0, (4.17)

where ψρ(θ) is as in Corollary 3.8 and cρ is as in (4.11).

Proposition 4.3 is proved in Section 4.5. Now we are ready to finish the proof
of Theorem 4.1(3):

Proof of Theorem 4.1(3). By (4.9) we clearly have that

Pρ

(|A (v)| = ∞) = Pρ

(|B(X∅+v)| = ∞)
. (4.18)

By conditioning on X∅ + v = θ and invoking (4.17), we conclude that the asymp-
totic formula (4.3) holds with T given by T (v) = bc2

ρEρ(ψρ(X∅ + v)). ��
As we have seen, Propositions 4.2 and 4.3 have been instrumental in the proof

of Theorem 4.1(2) and (3). The following three sections are devoted to the proofs
of the two propositions. After some preliminary estimates, which constitute a sub-
stantial part of Section 4.3, we will proceed to establish the critical asymptotics
(Section 4.4). The supercritical cases can then be handled along very much the
same lines of argument, the necessary changes are listed in Section 4.5.

4.3. Preliminaries

This section collects some facts about the quantity B∞(θ, λ) and its θ and λ de-
pendence. We begin by proving a simple identity for B∞(θ, λ):

Lemma 4.4. Let ρ ∈ M and let �b be as in (3.5). Then

B∞(θ, λ) = λ + (1 − λ)1{θ≥1} �b

(
EρB∞

(
X∅ + 1

b
θ, λ

))
, (4.19)
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Proof. If θ < 1, then B∞(θ, λ) = λ and (4.19) clearly holds true. Let us therefore
suppose that θ ≥ 1. Let B(θ)

σ denote the object B(θ) for the subtree of Tb rooted
at σ . Then

{
B(θ) ∩ G �= ∅} = {∅ ∈ G } ∪

(
{∅ �∈ G } ∩

b⋃

σ=1

{
B

(Xσ + 1
b
θ)

σ ∩ G �= ∅}
)
. (4.20)

The claim then follows by using the independence of the sets in the large parentheses
on the right hand side of (4.20) under the measure Pρ,λ(·). ��

Our next claim concerns continuity properties of B∞(θ, λ) as a function of θ :

Lemma 4.5. For each ρ ∈ M
 satisfying z(ρ) < zce and each θ0 > θb there is a
number C = C(ρ, θ0) < ∞ such that

∣∣B∞(θ, λ) − B∞(θ ′, λ)
∣∣ ≤ CB∞(θ0, λ)|θ − θ ′| (4.21)

for all λ ≥ 0 and all θ, θ ′ ∈ [1, θ0]. The bound C(ρ, θ0) < ∞ is uniform in any
convex set N ⊂ {ρ ∈ M
 : z(ρ) < zce} with finitely many extreme points.

Proof. Let us assume that θ ≥ θ ′. To derive (4.21), we will regard B∞(θ, λ)

and B∞(θ ′, λ) as originating from the same realization of (Xσ ) and the “green”
sites. Then� = B∞(θ, λ)−B∞(θ ′, λ) is dominated by the probability (under Pρ,λ)
that there is a site σ ∈ Tb, σ �= ∅, with the properties:

(1) Q
(θ ′)
σ ′ ≥ 1 for all σ ′ = mk(σ) with k = 1, . . . , |σ |.

(2) Q
(θ ′)
σ < 1 but Q(θ)

σ ≥ 1.
(3) B(θ0)

σ ∩ G �= ∅, where B(θ0)
σ is the set B(θ0) for the subtree T

(σ )
b rooted at σ .

Indeed, any realization of (Xσ ) and the “green” sites contributing to � obeys
B(θ ′)∩G = ∅ and B(θ)∩G �= ∅. But then there must be a site σ on the inner bound-
ary of B(θ ′) where the avalanche corresponding to θ ′ stops but that corresponding

to θ goes on. (Since θ, θ ′ ≥ 1, we must have σ �= ∅.) Consequently, Q(θ ′)
σ ′ ≥ 1

for any σ ′ on the path connecting σ to the root, but Q(θ ′)
σ < 1 ≤ Q

(θ)
σ , justifying

conditions (1) and (2) above. Since Q
(θ)
σ ≤ θ0, and since the θ -avalanche continu-

ing on from σ must eventually reach a “green” site, we see that also condition (3)
above must hold.

Let ρ ∈ M
 be such that z(ρ) < zce. Using the independence of the events
described in (1), (2) and (3) above, and recalling the definitions (2.8) and (3.13),
we can thus estimate

� ≤ B∞(θ0, λ)
∑

σ∈Tb�{∅}
Z|σ |−1(θ

′)P
(θ ′)
|σ |

(
Q

(θ)
|σ |,1 ≥ 1 > Q

(θ ′)
|σ |,1

)
. (4.22)

Abbreviate Kn(θ, θ
′) = P

(θ ′)
n (Q

(θ)
n,1 ≥ 1 > Q

(θ ′)
n,1 ). Since Y1 is independent of all

the other Y ’s in the measure P
(θ ′)
n , we have

Kn(θ, θ
′) ≤ sup

{
ρ([1 − ϑ ′

b
, 1 − ϑ

b
)) : ϑ ′ − ϑ ≤ |θ − θ ′|b−n+1}. (4.23)
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Here ϑ , resp., ϑ ′ play the role of Q(θ)
n,2, resp., Q(θ ′)

n,2 and the interval in the argument
of ρ exactly corresponds to the inequalities

Q
(θ)
n,1 = Y1 + 1

b
ϑ ≥ 1 > Y1 + 1

b
ϑ ′ = Q

(θ ′)
n,1 . (4.24)

To estimate the supremum, we recall that ρ(dx) = φρ(x)dx where φρ is bound-
ed. Then

Kn(θ, θ
′) ≤ ‖φρ‖∞ |θ − θ ′| b−n+1, n ∈ N. (4.25)

Now, by Corollary 3.8,Zn(θ) ≤ Cz(ρ)n for someC < ∞ uniformly inρ on convex
sets N ⊂ {ρ ∈ M
 : z(ρ) < zce} with finitely many extreme points and uniformly
in θ ≤ θ0. Therefore, the right-hand side of (4.22) is bounded by B∞(θ0, λ)|θ −θ ′|
times a sum that converges whenever z(ρ) < zce, uniformly in ρ ∈ N , where N
is as above. This proves the desired claim. ��

Let ρ ∈ M
 and let Q∞ be the random variable defined in Section 3.3, inde-
pendent of both the green sites and Xσ . Let us introduce the quantity

B�
∞(λ) = Ê

(
B∞(Q∞, λ)

)
, (4.26)

The significance of B�∞(λ) is that it represents a stationary form of B∞(·, λ),
i.e., B�∞(λ) is a very good approximation of Pρ,λ(B

(θ ′)
σ ∩ G = ∅ | σ ∈ A (v)),

where θ ′ = Q
(X∅+v)
σ and where B(θ ′)

σ is the quantity B(θ ′) for trees rooted at σ
very far from ∅. Let

κρ(λ) = Ê

([
E
(
B∞

(
X+ Q∞

b
, λ
))]2

∣∣∣Q∞ ≥ 1
)
, (4.27)

where X and Q∞ are independent with distributions P = ρ and P̂, respectively.
For critical distributions, B�∞(λ) and κρ(λ) are related as follows:

Lemma 4.6. Let ρ ∈ M
 be such that z(ρ) = zc. Then

B�
∞(λ) = 1 − b − 1

2λ
κρ(λ)

[
1 + o(1)

]
, λ ↓ 0. (4.28)

Proof. Since B∞(θ, λ) → 0 as λ ↓ 0, we can expand �b on the right hand side of
(4.19) to the second order of Taylor expansion, use that z(ρ) = P̂(Q∞ ≥ 1) and
apply bz(ρ) = 1 with the result

B�
∞(λ) = λ + (1 − λ)B�

∞(λ) − b − 1

2
κρ(λ)

[
1 + o(1)

]
, λ ↓ 0. (4.29)

(Here we noted that B∞(X + 1
b
Q∞) ≤ B∞(θb) allows us to estimate the error

in the Taylor expansion by κρ(λ)B∞(θb)O(1), which is κρ(λ)o(1) as λ ↓ 0.)
Subtracting (1 − λ)B�∞(λ) from both sides and dividing by λ, (4.28) follows. ��

Note that, by the resulting expression (4.28), κρ(λ)/λ tends to a definite limit
as λ ↓ 0. In the supercritical cases, on the other hand, Lemma 4.6 gets replaced by
the following claim:
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Lemma 4.7. Let ρ, ρ′ ∈ M
 and define ρα = (1 − α)ρ + αρ′. Suppose that
z(ρ) = zc and z(ρα) > zc for all α ∈ (0, 1]. Let B�∞(0, α) denote the quanti-
ty B�∞(0) for the underlying measure ρα . Then

B�
∞(0, α) = b − 1

2b

κρα (0)

z(ρα) − zc

[
1 + o(1)

]
, α ↓ 0. (4.30)

Proof. Similarly as in Lemma 4.6, we will use that B∞(θ, 0, α) → 0 as α → 0,
where B∞(θ, 0, α) denotes the quantity B∞(θ, 0) for the underlying measure ρα .
However, instead of (4.29), this time we get

B�
∞(0, α)

(
1 − bz(ρα)

) = −b − 1

2
κρα (0)

[
1 + o(1)

]
, α ↓ 0, (4.31)

where we again used that the error in the Taylor approximation can be bounded
by κραo(1). Dividing by z(ρα) − zc �= 0, (4.30) follows. ��

4.4. Critical asymptotics

The purpose of this section is to finally give the proof of Proposition 4.2. We begin
by proving an appropriate upper bound on B∞(θ, λ). Note that, despite being used
only marginally, equation (4.28) is a key ingredient of the proof.

Lemma 4.8. Let ρ ∈ M
 satisfy z(ρ) = zc. For each θ ≥ 1 there is a number
K(θ) ∈ (0,∞) such that

lim sup
λ↓0

B∞(θ, λ)√
λ

≤ K(θ). (4.32)

Proof. Let z = z(ρ). We begin by proving (4.32) for θ = 1. Let

ι(ρ) = Ê

(
ρ
(
[1 − 1

b
Q∞, 1])2

∣∣∣Q∞ ≥ 1
)

(4.33)

and recall the definition of κρ(λ) in (4.27). Using the inequality B∞(θ, λ) ≥
B∞(1, λ)1{θ≥1} we derive that κρ(λ) ≥ ι(ρ)B∞(1, λ)2. Inserting this in (4.28),
we have

B�
∞(λ) ≤ 1 − b − 1

2λ
ι(ρ) B∞(1, λ)2[1 + o(1)

]
, λ ↓ 0. (4.34)

Since the left-hand side is always non-negative, (4.32) for θ = 1 follows with
K(1)−2 = b−1

2 ι(ρ).
Next we will show that for any θ < θb, B∞(θ, λ) is bounded above by a (θ -

dependent) multiple of B∞(1, λ). Indeed, pick an ε > 0 such that θb − θ > ε b
b−1

and let m be so large that (2.15) holds. Fix a directed path of m steps in Tb starting
from the root. By conditioning on the event that Xσ ≥ x� − ε for all σ �= ∅ in the
path, we have B∞(1, λ) ≥ ρ([x� − ε, 1])mB∞(θ, λ), i.e.,

B∞(θ, λ) ≤ C(θ)B∞(1, λ), θ < θb, (4.35)

with C(θ) = ρ([x� − ε, 1])−m < ∞.
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As the third step we prove that (4.32) holds for values θ in slight excess of θb.
(The reader will notice slight similarities with the latter portion of the proof of
Theorem 2.4(1).) Let ε > 0 be such that x� − ε > 1 − 1

b
. By Corollary 2.5 and the

fact that ρ ∈ M
, we can assume that κε = ρ([x� − ε, x�]) < z. If θ > θb is such
that θε = x� − ε + 1

b
θ < θb, then (4.19) and the bound �b(y) ≤ by imply

B∞(θ, λ) ≤ λ + (1 − λ)b
[
κεB∞(θ, λ) + (1 − κε)B∞(θε, λ)

]
, (4.36)

because X + 1
b
θ ≤ θ for all X in the support of ρ. Since (1 − λ)bκε < bκε < 1,

we have

B∞(θ, λ) ≤ λ + (1 − λ)(1 − κε)bC(θε)B∞(1, λ)

1 − (1 − λ)bκε
. (4.37)

Dividing by
√
λ and taking the limit λ ↓ 0, (4.32) follows with K(θ) given by

b(1 − κε)C(θε)K(1)/(1 − bκε).
Finally, it remains to prove (4.32) for general θ ≥ θb. But for that we just need

to observe that

B∞(θ, λ) ≤ [1 − (1 − λ)b
k+1

] + (1 − λ)b
k+1

B∞(θb + θb−k, λ) (4.38)

as follows by conditioning on the first k layers of Tb to be green-free. By tak-
ing k large enough, θb + θb−k is arbitrary close to θb, so the result follows by the
preceding arguments. ��

Lemma 4.8 allows us to write the following expression for B∞(θ, λ):

Lemma 4.9. Let ρ ∈ M
 satisfy z(ρ) = zc. Let ε(λ, θ) be defined by

B∞(θ, λ) = ψρ(θ)B
�
∞(λ) + ε(λ, θ), (4.39)

where ψρ(θ) is as in (3.20). Then limλ↓0 ε(λ, θ)λ−1/2 = 0 uniformly on compact
sets of θ .

Proof. Recall the notation Q
(θ)
n,1 from (3.12), and let E

(θ)
n denote the expectation

with respect to the measure P
(θ)
n in (3.13). We will first show that

B∞(θ, λ) = Zn(θ)b
n

E
(θ)
n

(
B∞(Q

(θ)
n,1, λ)

)+ ε̃n(λ) (4.40)

holds with an ε̃n(λ) satisfying limλ↓0 ε̃n(λ)λ
−1/2 = 0 for all n ≥ 1. Let Gn denote

the n-th generation of Tb, i.e., Gn = {σ ∈ Tb : |σ | = n}, and let Hn = ⋃
m<n Gm.

Recall the notation B(θ)
σ for the object B(θ) on the subtree T

(σ )
b of Tb rooted at σ

and let Q(θ)
σ be as described in (2.6). Given a σ ∈ Gn, let π(σ) = {mk(σ) : k =

1, . . . , n} be the path of connecting σ to the root.
A moment’s thought reveals that, if G ∩Hn = ∅ (i.e., if there are no green sites

in the first n − 1 generations of Tb), then in order for B(θ) ∩ G �= ∅ to occur, the
following must hold: First, there is a σ ∈ Gn, such that Q(θ)

σ ′ ≥ 1 for all σ ′ ∈ π(σ).
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Second, the avalanche starting from this σ with an initial amount Q(θ)
σ reaches G .

Introducing the event

Un =
⋃

σ∈Gn

({
B(Q

(θ)
σ )

σ ∩ G �= ∅} ∩
⋂

σ ′∈π(σ)

{Q(θ)

σ ′ ≥ 1}
)
, (4.41)

we thus have

Pρ,λ(Un) ≤ B∞(θ, λ) ≤ Pρ,λ(Un) + Pρ,λ

({G ∩ Hn �= ∅}). (4.42)

Since Pρ(G ∩ Hn �= ∅) = O(λ), it clearly suffices to show that Pλ,ρ(Un) has the
same asymptotics as claimed on the right-hand side of (4.40).

Since Un is the union of bn events with the same probability, the upper bound

Pρ,λ(Un) ≤ bnZn(θ)E
(θ)
n

(
B∞(Q

(θ)
n,1, λ)

)
(4.43)

directly follows using the identity

Eρ

(
B∞(Q(θ)

σ , λ)
∏

σ ′∈π(σ)

1{Q(θ)

σ ′ ≥1}
)

= Zn(θ)E
(θ)
n

(
B∞(Q

(θ)
n,1, λ)

)
. (4.44)

To derive the lower bound, we use the inclusion-exclusion formula. The exclusion
term (i.e., the sum over intersections of pairs of events from the union in (4.41))
is estimated, using the bound in Lemma 4.8, to be less than K(θ̄)2b2nλ, where
θ̄ = θ ∨ θb. This proves (4.40).

Since z(ρ)b = 1, Corollary 3.8 tells us that Zn(θ)b
n = ψρ(θ) + o(1). The

final task is to show that E
(θ)
n (B∞(Q

(θ)
n,1, λ)) can safely be replaced by its limiting

version, B�∞(λ). We cannot use Corollary 3.6 directly, because θ �→ B∞(θ, λ) is
known to be Lipschitz continuous only for θ ≥ 1. However, by Lemma 4.4 we
know that B∞(θ, λ) = λ for θ < 1, which means that we can write

B∞(θ, λ) = B∞
(
θ ∨ 1, λ) + [

λ − B∞(1, λ)
]
1{θ<1}. (4.45)

Now, B1∞(θ, λ) = B∞(θ ∨ 1, λ) is Lipschitz continuous in θ for all θ ≥ 0, so by
(4.21) and (3.18),

∣∣∣E(θ)
n

(
B1

∞(Q
(θ)
n,1, λ)

)− Ê
(
B1

∞(Q∞, λ)
)∣∣∣ ≤ DB∞(θ̄ , λ)e−ςn (4.46)

where ς > 0 and D = D(θ̄) < ∞. To estimate the contribution of the second term
in (4.45), we first note that λ−B∞(1, λ) is a constant bounded between −B∞(θ̄ , λ)

and zero. Hence, we thus need to estimate the difference P
(θ)
n (Q

(θ)
n,1 < 1)−P̂(Q∞ <

1). But that can be done using Proposition 3.5: Let k = �n
2 � and use the monoto-

nicity of θ �→ Q
(θ)
k,1 and (3.14) to estimate

∣∣P(θ)
n (Q

(θ)
n,1 < 1) − P̂(Q∞ < 1)

∣∣

≤ P
(θ)
n (Q

(θ̄)
k,1 ≥ 1) − P̂(Q

(1)
k,1 ≥ 1) ≤ A′′e−ζ(n−k), (4.47)
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where A′′ = A/(1 − e−ζ ). By combining all the previous estimates and invoking
(4.32), we find that the difference E

(θ)
n (B∞(Q

(θ)
n,1, λ)) − B�∞(λ) is proportional

to e−ς ′n√λ, where ς ′ > 0. Using this back in (4.40) the claim follows by taking
the limits λ ↓ 0 and n → ∞. ��

Lemmas 4.8 and 4.9 finally allow us to prove Proposition 4.2:

Proof of Proposition 4.2. Note that, by using (4.39) in (4.27) and the definition
of cρ in (4.11), we have

b − 1

2
κρ(λ) = B�

∞(λ)2c−2
ρ + o(λ), λ ↓ 0. (4.48)

Then the fact that B�∞(λ) tends to zero as λ ↓ 0 forces, in light of (4.28), that
b−1
2λ κρ(λ) → 1 as λ ↓ 0. This in turn gives that

B�
∞(λ) =

√
λ
(
cρ + o(1)

)
, λ ↓ 0. (4.49)

Plugging this back in (4.39) proves the desired claim. ��

4.5. Supercritical case

Here we will indicate the changes to the arguments from the previous two sections
that are needed to prove Proposition 4.3. We begin with an analogue of Lemma 4.8:

Lemma 4.10. Let ρ, ρ′ ∈ M
 and define ρα = (1 − α)ρ + αρ′. Suppose that
z(ρ) = zc and z(ρα) > zc for all α ∈ (0, 1]. Then for each θ ≥ 1, there is a
constant K ′(θ) ∈ (0,∞) such that

lim sup
α↓0

Pρα (|B(θ)| = ∞)

z(ρα) − zc
≤ K ′(θ). (4.50)

Proof. The only important change compared to the proof of Lemma 4.8 is the
derivation of the bound for θ = 1. Indeed, in this case we use that κρα (0) ≥
B�∞(0, α)B∞(1, 0, α) in (4.30), where B∞(1, 0, α) is the quantity B∞(θ, λ) for
λ = 0, θ = 1 and ρ = ρα . Applying B�∞(0, α) > 0 for all α ∈ (0, 1], as follows by
Theorem 3.1(2), we find that (4.50) holds with K ′(1) = 2b

b−1 . Once we set λ = 0,
the rest of the proof can literally be copied. ��

Next we need to state the appropriate version of Lemma 4.9:

Lemma 4.11. Let ρ, ρ′ ∈ M
 and define ρα = (1 − α)ρ + αρ′. Suppose that
z(ρ) = zc and z(ρα) > zc for all α ∈ (0, 1]. Then

Pρα (|B(θ)| = ∞)

z(ρα) − zc
= ψρ(θ)

Êα(Pρα (|B(Q∞)| = ∞))

z(ρα) − zc
+ o(1), α ↓ 0, (4.51)

where Êα is the expectation corresponding to P̂ for measure ρα .
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Proof. Also in this case the required changes are only minuscule. First, we have an
analogue of (4.40),

Pρα

(|B(θ)| = ∞) = bnZ(ρα)
n (θ)E

(θ)
n,α

(
Pρα

(|B(Q
(θ)
n,1)| = ∞))+ ε̃′

n(α), (4.52)

where E
(θ)
n,α is the expectation E

(θ)
n and Z

(ρα)
n the object Zn(θ) for the underlying

measure ρα and where ε̃′
n(α) is the quantity in (4.40) for λ = 0 and ρ = ρα . We

claim that

lim
α↓0

ε̃′
n(α)

z(ρα) − zc
= 0 (4.53)

for all finite n ≥ 1. Indeed, the entire derivation (4.41-4.46) carries over, provided
we set λ = 0. The role of the “small parameter” is now taken over by z(ρα) − zc.
A computation shows that ε̃n(α) = O((z(ρα) − zc)

2) as α ↓ 0, proving (4.53).
To finish the proof, it now remains to note that bnZ

(ρα)
n (θ) → bnZ

(ρ)
n (θ) as

α ↓ 0 and that, by Corollary 3.8 and the fact that z(ρ) = zc, we have bnZ
(ρ)
n (θ) =

ψρ(θ) + o(1) as n → ∞. ��
Recall the definition of cρ in (4.11). To prove Proposition 4.3, we will need to

know some basic continuity properties of cρ in ρ. Note that these do not follow
simply from the continuity of α �→ ψρα (θ), because also the expectation Ê in
(4.11) depends on the underlying measure.

Lemma 4.12. Letρ, ρ′ ∈ M
 be such thatρα = (1−α)ρ+αρ′ satisfies z(ρα) > 0
for all α ∈ [0, 1]. Let cρ be as in (4.11). Then limα↓0 cρα = cρ .

Proof. Let ψ∗
ρα

(θ) = Eρα (ψρα (X∅ + 1
b
θ)). In general, ψρα (θ) is Lipschitz contin-

uous for θ ≥ 1. Thus, ψρα converges uniformly to ψρ on compact sets of θ . Hence,
we just need to show

lim
α↓0

Êα

(
ψ∗

ρ (Q∞)2
∣∣Q∞ ≥ 1

) = Ê
(
ψ∗

ρ (Q∞)2
∣∣Q∞ ≥ 1

)
. (4.54)

Choose n ≥ 1 and replace Êα , Ê and Q∞ by their finite-n versions. By Cor-
ollary 3.6, the error thus incurred is uniformly small in α ∈ [0, 1]. Hence, it is
enough to show that

lim
α↓0

E
(θ)
n,ρα

(
ψ∗

ρ (Q
(θ)
n,1)

2
∣∣Q(θ)

n,1 ≥ 1
) = E

(θ)
n,ρ

(
ψ∗

ρ (Q
(θ)
n,1)

2
∣∣Q(θ)

n,1 ≥ 1
)
, (4.55)

for some θ ∈ [1, θb], where E
(θ)
n,ρ denotes the expectation with respect to P

(θ)
n for

measure ρ. However, in (4.55) only a finite number of coordinates are involved
and the result follows. ��

With Lemmas 4.10, 4.12 and 4.11, we can finish the proof of Proposition 4.3:

Proof of Proposition 4.3. From (4.51) we have

b − 1

2
κρα (0) = B�

∞(0, α)2c−2
ρα

+ o
(
z(ρα) − zc

)
, α ↓ 0. (4.56)
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Using this in (4.30) and invoking Lemma 4.12, we have

B�∞(0, α)

z(ρα) − zc
= bc2

ρ + o(1), α ↓ 0. (4.57)

The proof is finished by plugging this back into (4.51) and invoking the continuity
of α �→ ψρα (θ). ��

5. Coupling argument

5.1. Coupling measure

The goal of this section is to define a coupling of the measures P
(θ)
n and P

(θ ′)
n that

appear in (3.14). As the first step, we will write P
(θ)
n (·) as the distribution of a

time-inhomogeneous process. To have the process running in forward time direc-
tion, we will need to express all quantities in terms of the (more or less) original
variables (Xk), which relate to the Y ’s through

Xk = Yn−k+1 or Yk = Xn−k+1, 1 ≤ k ≤ n, (5.1)

see Section 3.3. Abusing the notation slightly, P
(θ)
n (·) will temporarily be used to

denote the distribution of the X1, . . . , Xn as well. We will return to the Y ’s in the
proofs of Propositions 3.5 and 3.7.

Let Zn(θ) be as in (2.8) and note that, since ρ ∈ M
, we have Zn(θ) > 0
for all n ≥ 0 and all θ ≥ 1. Given 1 ≤ k ≤ n − 1 and, for k > 1, a se-
quence (X1, . . . , Xk−1) ∈ [0, 1]k−1, we let t

(θ)
n,k(·) = t

(θ)
n,k( · |X1, . . . , Xk−1) be

given by

t
(θ)
n,k(x) = Zn−k−1(x + 1

b
Q

(θ)
k−1)

Zn−k(Q
(θ)
k−1)

1{Q(θ)
k−1≥1}, 0 ≤ x ≤ 1, (5.2)

where the indicator ensures that we are not dividing by zero. The (X1, . . . , Xk−1)-
dependence of t (θ)n,k will be often left implicit.

To interpret these objects, let us consider the case k = 1. Suppose that we
wish to elucidate the distribution of X1 knowing that the process will survive long
enough to produce an Xn−1. (The variable Xn corresponds to Y1, which will be
uncorrelated with the other Y ’s.) The only prior history we know is the value of θ ;
obviously we are only interested in the case θ ≥ 1. The total weight of all configu-
rations is just Zn−1(θ); hence the denominator of (5.2). Now, if X1 takes value x,
the weight of configurations in which the process survives is like the weight of a
string of length n− 2 with an effective “θ” given by x + 1

b
θ . Hence Zn−2(x + 1

b
θ)

in the numerator. (Notice that if x + 1
b
θ < 1, this automatically vanishes.) We

conclude that P
(θ)
n (X1 ∈ dx) = t

(θ)
n,1(x)ρ(dx).

A similar reasoning shows that the probability of {Xk ∈ dx} given the values
ofX1, . . . , Xk−1 equals t (θ)n,k(x)ρ(dx). This allows us to view P

(θ)
n as the distribution

of an inhomogeneous process:
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Lemma 5.1. For all θ ≥ 1, all n ≥ 1 and all Borel-measurable sets A ⊂ [0, 1]n,

P
(θ)
n (A) = E

(
1A

n−1∏

k=1

t
(θ)
n,k(Xk|X1, . . . , Xk−1)

)
. (5.3)

Proof. The result immediately follows from the formula

n−1∏

k=1

t
(θ)
n,k(Xk|X1, . . . , Xk−1) = 1

Zn−1(θ)

{ n−1∏

k=1

1{Xk+ 1
b
Q

(θ)
k−1≥1}

}
, (5.4)

the identity Q
(θ)
k = Xk + 1

b
Q

(θ)
k−1 and the definition of P

(θ)
n (·), see (3.13). ��

Next we will define the coupled measure. The idea is to use the so-called
Vasershtein coupling, see [8], which generates new (coupled) pairs from the “max-
imal overlap” of the individual distributions. Let θ, θ ′ ≥ 1 and let us suppose
that the corresponding sequences X = (X1, . . . , Xk−1) ∈ [0, 1]k−1 and X′ =
(X′

1, . . . , X
′
k−1) ∈ [0, 1]k−1 have been generated. Assume also that a sequence

(ω1, . . . , ωk−1) ∈ {0, 1}k−1 satisfying ω� ≤ 1{X�=X′
�} for all 1 ≤ � ≤ k − 1 has

been generated. (This sequence marks down when X� was coupled with X′
�. Note

that we could have that X� = X′
� even when X� and X′

� are not coupled.) Let t be

the quantity t
(θ)
n,k for the sequence X and let t ′ be the corresponding quantity for the

sequence X′. Let

R( · ) = R
(θ,θ ′)
n,k ( · |X1, . . . , Xk−1;X′

1, . . . , X
′
k−1;ω1, . . . , ωk−1) (5.5)

be the transition kernel of the joint process, which is a probability measure on
[0, 1] × [0, 1] × {0, 1} defined by the expression

R
(
dx × dx′ × {ω})

=






t (x) ∧ t ′(x) ρ(dx)δx(dx′), if ω = 1,

1
1−q

[t (x) − t ′(x)]+ [t ′(x′) − t (x′)]+ ρ(dx)ρ(dx′), if ω = 0.
(5.6)

Here t (x)∧t ′(x) denotes the minimum of t (x) and t ′(x) and [t (x)−t ′(x)]+ denotes

the positive part of t (x) − t ′(x). The quantity q = q
(θ,θ ′)
n,k;X,X′ is given by

q =
∫

t (x) ∧ t ′(x) ρ(dx) = 1 −
∫ [

t (x) − t ′(x)
]
+ρ(dx). (5.7)

The interpretation of (5.6) is simple: In order to sample a new triple (Xk,X
′
k, ωk),

we first choose ωk ∈ {0, 1} with Prob(ωk = 1) = q. If ωk = 1, the pair (Xk,X
′
k) is

sampled from distribution 1
q
t (x)∧ t ′(x) ρ(dx)δx(dx′)—and, in particular, Xk gets

glued together with X′
k—while for the case ωk = 0 we use the distribution in the

second line of (5.6).
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Remark 5. It turns out that whenever the above processes X and X′ have glued
together, they have a tendency to stay glued. However, the above coupling is not
monotone, because the processes may come apart no matter how long they have
been glued together. Our strategy lies in showing that q tends to one rapidly enough
so that the number of “unglueing” instances is finite almost surely.

Let P
(θ,θ ′)
n (·) be the probability measure on [0, 1]n × [0, 1]n ×{0, 1}n assigning

mass

P
(θ,θ ′)
n (B) =

∑

(ωk)

∫

B

ρ(dxn)ρ(dx
′
n)1{ωn=1}

n−1∏

k=1

R
(θ,θ ′)
n,k;x,x′,ω

(
dxk×dx′

k×{ωk}
)

(5.8)

to any Borel-measurable set B ⊂ [0, 1]n × [0, 1]n ×{0, 1}n. Here R
(θ,θ ′)
n,k;x,x′,ω(dxk×

dx′
k×{ωk}) = R

(θ,θ ′)
n,k (dxk×dx′

k×{ωk}|x1, . . . , xk−1; x′
1, . . . , x

′
k−1;ω1, . . . , ωk−1).

As can be expected from the construction, P
(θ)
n (·) and P

(θ ′)
n (·) are the first and

second marginals of P
(θ,θ ′)
n (·), respectively:

Lemma 5.2. Let θ, θ ′ ≥ 1. Then

P
(θ,θ ′)
n

(
A × [0, 1]n × {0, 1}n) = P

(θ)
n (A) (5.9)

and

P
(θ,θ ′)
n

(
[0, 1]n × A × {0, 1}n) = P

(θ ′)
n (A), (5.10)

for all Borel-measurable A ⊂ [0, 1]n.

Proof. To prove formula (5.9), let X = (X1, . . . , Xk−1) and X′ = (X′
1, . . . , X

′
k−1)

be two sequences from [0, 1]k−1. If Q
(θ)
k−1 ≥ 1 and the same holds for the cor-

responding quantity for the sequence X′, let t (·) = t
(θ)
n,k(·), t ′(·) = t

(θ ′)
n,k (·), and

let R(·) and q be as in (5.6) and (5.7), respectively. Using (5.7) we have, for all
Borel sets C ⊂ [0, 1],

∑

ω∈{0,1}

∫

C×[0,1]
R(dx × dx′ × {ω})

=
∫

C

(
t (x) ∧ t ′(x) + [t (x) − t ′(x)]+

)
ρ(dx) =

∫

C

t (x)ρ(dx). (5.11)

In other words, the first marginal of the coupled process is a process on [0, 1] with
the transition kernel t (·)ρ(·), which, as shown in Lemma 5.1, generates P

(θ)
n . This

proves (5.9); the proof of (5.10) is analogous. ��
Clearly, the number q represents the probability that the two processes get cou-

pled. The following lemma provides a bound that will be useful in controlling q:
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Lemma 5.3. Let θ, θ ′ ≥ 1, 1 ≤ k ≤ n − 1 and X = (X1, . . . , Xk−1) ∈ [0, 1]k−1

and X′ = (X′
1, . . . , X

′
k−1) ∈ [0, 1]k−1. Let Q be the quantity Q

(θ)
k−1 corresponding

to X and let Q′ be the quantity Q
(θ ′)
k−1 corresponding to X′. If Q ∧ Q′ ≥ 1, then

q
(θ,θ ′)
n,k;X,X′ ≥ Zn−k(Q ∧ Q′)

Zn−k(Q ∨ Q′)
. (5.12)

Proof. Let t be the quantity t
(θ)
n,k for the sequence X and let t ′ be the corresponding

quantity for the sequence X′. By inspection of (5.2) and monotonicity of θ �→
Zn(θ),

t (x) ≥ Zn−k−1(x + 1
b
(Q ∧ Q′))

Zn−k(Q ∨ Q′)
, (5.13)

and similarly for t ′(x). From here the claim follows by integrating with respect
to ρ(dx). ��

5.2. Domination by a discrete process

The goal of this section is to show that the coupled measure defined in the previous
section has the desirable property that, after a finite number of steps, the process-
es X and X′ get stuck forever. Since the information about coalescence of X and X′
is encoded into the sequence ω, we just need to show that, eventually, ωk = 1. For
technical reasons, we will concentrate from the start on infinite sequences (ωk)k∈N:

Let P (θ,θ ′)
n (·) be the law of (ωk)k∈N ∈ {0, 1}N induced by the distribution P

(θ,θ ′)
n (·)

and the requirement P (θ,θ ′)
n (ωk = 1, k ≥ n) = 1.

The coalescence of X and X′ will be shown by a comparison with a simpler sto-

chastic process on {0, 1}N whose law will be distributionally lower than P
(θ,θ ′)
n (·),

i.e., in the FKG sense. Let � be the partial order on ω,ω′ ∈ {0, 1}N defined by

ω � ω′ ⇔ ωk ≤ ω′
k, k ≥ 1. (5.14)

Next, note that, by x� > 1 − 1
b

, we have 1 − b(1 − x�) > θb − 1. Choose a num-

ber δρ ∈ (θb − 1, 1 − b(1 − x�)) and, noting that ρ([1 − 1−δρ
b

, x�]) > 0, define a
collection of weights (λρ(s)) by

1 − λρ(s)

λρ(s)
=
∑

k≥s

sup
θ−θ ′≤δρb−k

ρ
(
[1 − θ

b
, 1 − θ ′

b
)
)

ρ
(
[1 − 1−δρ

b
, x�]

) , s ∈ N ∪ {0}. (5.15)

Note that s �→ λ(s) is increasing. It is also easy to verify that λρ(·) ∈ (0, 1], so
any of these weights can be interpreted as a probability. This allows us to define a
process on (ω′

k)k∈N ∈ {0, 1}N, with the transition kernel

pρ( ω
′
k = 1 |ω′

1, . . . , ω
′
k−1) = λρ

(
min{0 ≤ j ≤ k − 1: ω′

k−j−1 = 0}), (5.16)

where, for definiteness, we set ω′
0 = 0. Let P̃ρ(·) denote the law of the entire

process with transition probabilities pρ( · | · ) and “initial” value ω′
0 = 0.
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Proposition 5.4. Let ρ ∈ M
 and let δρ be as above. For all n ≥ 1 and all θ, θ ′

with 1 ≤ θ, θ ′ ≤ θb, the measure P
(θ,θ ′)
n (·) stochastically dominates P̃ρ(·) in

partial order �.

Let δρ be fixed for the rest of this Subsection. In order to give a proof of Prop-
osition 5.4, we first establish a few simple bounds.

Lemma 5.5. Let ρ ∈ M
 and let δρ be as above. Let n ≥ 0 and suppose θ, θ ′ ≥ 1
satisfy 0 ≤ θ − θ ′ ≤ δρb

−k for some k ≥ 0. Then

Zn(θ
′)

Zn(θ)
≥ λρ(k). (5.17)

Proof. Consider a configuration X1, . . . , Xn which contributes to Zn(θ) but not

toZn(θ
′). This implies that there is an � ∈ {1, . . . , n} whereQ

(θ)
� ≥ 1 butQ(θ ′)

� < 1.
With this in mind, we claim the identity

n∏

m=1

1{Q(θ)
m ≥1} −

n∏

m=1

1{Q(θ ′)
m ≥1}

=
n∑

�=1

[ �−1∏

m=1

1{Q(θ ′)
m ≥1}

]
1{Q(θ ′)

� <1≤Q
(θ)
� }

[ n∏

m=�+1

1{Q(θ)
m ≥1}

]
. (5.18)

Thence,

Zn(θ) − Zn(θ
′) =

n∑

�=1

E

(
Zn−�

(
Q

(θ)
�

)
1{Q(θ ′)

� <1≤Q
(θ)
� }

�−1∏

m=1

1{Q(θ ′)
m ≥1}

)
. (5.19)

Since θ − θ ′ ≤ δρb
−k , we have Q

(θ)
� − 1 ≤ Q

(θ)
� − Q

(θ ′)
� ≤ δρb

−k−� for any �

contributing on the right-hand side. In particular, we have Q
(θ)
� ≤ 1 + δρ

b
, which

implies Zn−�(Q
(θ)
� ) ≤ Zn−�(1 + δρ

b
). Then

Zn(θ) − Zn(θ
′)

≤
n∑

�=1

Zn−�

(
1 + δρ

b

)
E

(
ρ
(
[1 − 1

b
Q

(θ)
�−1, 1 − 1

b
Q

(θ ′)
�−1)

) �−1∏

m=1

1{Q(θ ′)
m ≥1}

)
, (5.20)

or, replacing ρ([1 − 1
b
Q

(θ)
�−1, 1 − 1

b
Q

(θ ′)
�−1)) by its maximal value,

Zn(θ) −Zn(θ
′)

≤
n∑

�=1

Zn−�

(
1 + δρ

b

)
Z�−1(θ

′) sup
ϑ−ϑ ′≤δρb−k−�+1

ρ
(
[1 − ϑ

b
, 1 − ϑ ′

b
)
)
. (5.21)

On the other hand, by simply demanding that X� ≥ 1 − 1−δρ
b

(which implies

Q
(θ)
� ≥ 1 + δρ

b
) in (2.10) we have for all 1 ≤ � ≤ n that

Zn(θ
′) ≥ Zn−�

(
1 + δρ

b

)
ρ
(
[1 − 1−δρ

b
, x�]

)
Z�−1(θ

′). (5.22)
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Using (5.22) in (5.21), and applying (5.15), we have

Zn(θ) − Zn(θ
′) ≤ 1 − λρ(k)

λρ(k)
Zn(θ

′), (5.23)

whereby the claim directly follows. ��
Next we prove a bound between kernels (5.6) and (5.16):

Lemma 5.6. Let 1 ≤ k ≤ n − 1 and let ω′ = (ω′
1, . . . , ω

′
k−1) ∈ {0, 1}k−1,

X = (X1, . . . , Xk−1) ∈ [0, 1]k−1, X′ = (X′
1, . . . , X

′
k−1) ∈ [0, 1]k−1 and ω =

(ω1, . . . , ωk−1) ∈ {0, 1}k−1. For all θ, θ ′ ≥ 1 and all � = 1, . . . , k − 1, let Q(θ)
�

correspond to X via (2.5), and let Q(θ ′)
� correspond to X′. Suppose that

Q
(θ)
j ≥ 1, Q

(θ ′)
j ≥ 1 and ω′

j ≤ ωj ≤ 1{Xj=X′
j }, 1 ≤ j ≤ k − 1. (5.24)

If R(θ,θ ′)
n,k;X,X′,ω(·) is the quantity defined in (5.8), then

R
(θ,θ ′)
n,k;X,X′,ω

({ωk = 1}) ≥ pρ( ω
′
k = 1 |ω′

1, . . . , ω
′
k−1), (5.25)

for all θ, θ ′ with 1 ≤ θ, θ ′ ≤ θb.

Proof. Note that, since 1 ≤ θ, θ ′ ≤ θb and 1 + δρ ≥ θb, we have 1 ≤ Q
(θ)
� ,Q

(θ ′)
� ≤

1 + δρ and thus |Q(θ)
� − Q

(θ ′)
� | ≤ δρ for all � = 1, . . . , k − 1. This allows us to

define the quantity

s = max
{
� : 0 ≤ � ≤ k, |Q(θ)

k−1 − Q
(θ ′)
k−1| ≤ δρb

−�
}
. (5.26)

By Lemmas 5.3 and 5.5, we have R({ωk = 1}) ≥ λρ(s), where R(·) stands for the
quantity on the left-hand side of (5.25). Recall our convention ω′

0 = 0 and let

s′ = min
{
0 ≤ j ≤ k − 1: ω′

k−j−1 = 0
}
. (5.27)

In other words, s′ is the length of the largest contingent block of 1’s in ω′ direct-
ly preceding ω′

k . We claim that s ≥ s′. Indeed, by our previous reasoning, we

have |Q(θ)

k−s′−1 − Q
(θ ′)
k−s′−1| ≤ δρ . By our assumptions, 1 = ω′

j ≤ 1{Xj=X′
j } and,

therefore, Xj = X′
j for all j = k − s′, . . . , k − 1. This implies

∣∣Q(θ)
k−1 − Q

(θ ′)
k−1

∣∣ ≤ δρb
−s′

(5.28)

and hence s ≥ s′. Using that s′ is the argument of λ in (5.16) we have R({ωk =
1}) ≥ λρ(s) ≥ λρ(s

′) = pρ( ω
′
k = 1 |ω′

1, . . . , ω
′
k−1). This proves the claim. ��

Now we are ready to prove Proposition 5.4:

Proof of Proposition 5.4. The inequality (5.25) is a sufficient condition for the ex-
istence of so-called Strassen’s coupling, see [8]. In particular, the inhomogeneous-
time process generating the triples (Xk,X

′
k, ωk) can be coupled with the process

generating ω′
k in such a way that (5.24) holds at all times less than n. The (ω, ω′)

marginal of this process will be, by definition, concentrated on {ω � ω′}. Since

ωk = 1 for k > n, P
(θ,θ ′)
n -almost surely, the required stochastic domination

follows. ��
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5.3. Existence of the limiting measure

The goal of this section is to show that, under proper conditions, the process ω′
with distribution P̃ρ(·) equals one except at a finite number of sites. Then we will
give the proof of Proposition 3.5. Let

pn =
{(

1 − λρ(n)
)∏n−1

k=0 λρ(k), if n ∈ N ∪ {0},
∏∞

k=0 λρ(k), if n = ∞,
(5.29)

and observe that pn is the probability of seeing a block of 1’s of length n in the
prime configuration. We begin with an estimate of λ(k):

Lemma 5.7. For each ρ ∈ M
, there is C(ρ) < ∞ and � > 0 such that

1 − λρ(k) ≤ C(ρ)e−�k. (5.30)

Moreover, the quantity C(ρ) is bounded away from infinity uniformly in any sub-
set N ⊂ M
 with finitely many extreme points.

Proof. Let φρ be the density of ρ with respect to the Lebesgue measure on [0, 1].
Then

sup
θ−θ ′≤δρb−n

ρ
(
[1 − θ

b
, 1 − θ ′

b
)
) ≤ δρb

−n‖φρ‖∞. (5.31)

The claim then follows by inspection of (5.15) with � = log b and an appropriate
choice of C(ρ). The bound on C(ρ) is uniform in any N with the above properties,
because the bound ‖φρ‖p < ∞ is itself uniform. ��

The preceding estimate demonstrates that the discrete process locks, and in fact
does so fairly rapidly. Indeed, we now have p∞ > 0, which ensures that eventually
the configuration is all ones, and further that the pn tend to zero exponentially. It
remains to show that the waiting times till locking are themselves exponential.

Lemma 5.8. Let ρ ∈ M
 and, for n ≥ 1, let E(n) = {ω′ ∈ {0, 1}N : ω′
j = 1, j ≥

n}. Let α0 > 0 be such that ϕ(α) = ∑
0≤k<∞ eα(k+1)pk < ∞ for all α ∈ (0, α0).

Then

P̃ρ

(
E(n)c) ≤ n e−µ(ρ)n, n ≥ 1, (5.32)

where

µ(ρ) = sup
{
α ≥ 0 : ϕ(α) ≤ 1

}
. (5.33)

We note that both quantities α0 and µ(ρ) are nontrivial. Indeed, α0 ≥ � > 0
and, since p∞ can be written as p∞ = 1 −∑

n≥0 pn > 0, we have that µ(ρ) > 0.

Proof. An inspection of (5.16) shows that “blocks of 1’s” form a renewal process.
Indeed, suppose ξ� for � = 1, . . . , k−1 mark down the lengths of first k−1 “blocks
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of 1’s” including the terminating zero (i.e., ξ� = n refers to a block of n − 1 ones
and followed by a zero). Denoting Nk−1 = ∑k−1

j=1 ξj , the k-th block’s length is then

ξk = min{j > 0 : ω′
j+Nk−1

= 0}. (5.34)

As is seen from (5.16), (ξ�) can be continued into an infinite sequence of i.i.d.
random variables on N ∪ {∞} with distribution Prob(ξk = n + 1) = pn, where pn

is as in (5.29). The physical sequence terminates after the first ξk = ∞ is encoun-
tered. Let Gn(k) be the event that ξ1, . . . , ξk are all finite and

∑k
i=1 ξi > n. Then,

clearly, E(n)c = ⋃n
k=1 Gn(k).

The probability of Gn(k) is easily bounded using the exponential Chebyshev
inequality:

Prob
(
Gn(k)

) ≤ ϕ(α)ke−αn, 0 ≤ α < α0. (5.35)

Noting that
∑n

k=1 ϕ(α)k ≤ n for α ≤ µ(ρ), the claim follows. ��
Now we are finally ready to prove Proposition 3.5:

Proof of Proposition 3.5. Let ρ ∈ M
 and n be fixed. Let k ≤ n and suppose that f
is a function that depends only on the first k of the Y -coordinates. Let θ0 > θb and
let θ, θ ′ ∈ [1, θ0]. Noting that P

(θ)
n (·|Q(θ)

n,m ∈ dQ) = P
(Q)
n−m(·), we have

∣∣E(θ)
n+1(f ) − E

(θ ′)
n (f )

∣∣ ≤ E
(θ)
n+1

(∣∣E
(Q

(θ)
n+1,n)

n (f ) − E
(θ ′)
n (f )

∣∣
)
. (5.36)

Since Q
(θ)
n+1,n ∈ [1, θ0] by our choice of θ , we just need to estimate |E(θ)

n (f ) −
E

(θ ′)
n (f )| by the right-hand side of (3.14) for all θ, θ ′ ∈ [1, θ0].

Introduce the quantity

Dn(f ) = sup
{|E(θ)

n (f ) − E
(θ ′)
n (f )| : θ, θ ′ ∈ [1, θ0]

}
. (5.37)

We need to show Dn(f ) is exponentially small in n. By Lemmas 5.1, 5.2, and
Proposition 5.4, the probability that Xi �= X′

i for some n − k ≤ i ≤ n under

the coupling measure P
(θ,θ ′)
n (·) is dominated by the probability that ω′

i = 0 for
some n − k ≤ i ≤ n under P̃ρ(·). Since f depends only on the first k of the Y

variables (i.e., the last k of the X variables), the coupling inequality gives us
∣∣E(θ)

n (f ) − E
(θ ′)
n (f )

∣∣ ≤ 2‖f ‖∞ P̃ρ

(
E(n − k)c), (5.38)

where E(n − k) is as in Lemma 5.8.
Let µ = µ(ρ) be as in Lemma 5.8. Then (5.32) and (5.38) give

Dn(f ) ≤ 2‖f ‖∞(n − k) e−µ(n−k) ≤ 4(µe)−1‖f ‖∞e− 1
2 µ(n−k), (5.39)

This proves (3.14) with ζ = 1
2µ and A = 4(µe)−1. The bounds ζ > 0 and A <

∞ are uniform in sets N ⊂ M
 with finitely-many extreme points, because the
bound µ(ρ) > 0 is itself uniform. The existence of the limit (3.15) and its inde-
pendence of θ is then a direct consequence of (3.14). ��
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5.4. Distributional identity

Here we will show the validity of the distributional identity (3.19). The proof we
follow requires establishing that the distribution of Q∞ has no atom at Q∞ = 1:

Lemma 5.9. Let ρ ∈ M
. Then P̂(Q∞ = 1) = 0.

Proof. Notice that the almost-sure bound Q
(1)
n,1 ≤ Q∞ ≤ Q

(θb)
n,1 holds for all n ≥ 1,

with Q
(1)
n,1 ↑ Q∞ and Q

(θb)
n,1 ↓ Q∞ as n → ∞. Therefore,

P̂(Q∞ = 1) = lim
n→∞ P̂

(
Q

(1)
n,1 < 1, Q

(θb)
n,1 ≥ 1

)
. (5.40)

But Y1 is unconstrained under P̂(·) which by 0 ≤ Q
(θb)
n,1 − Q

(1)
n,1 ≤ (θb − 1)b−n

allows us to write

P̂
(
Q

(1)
n,1 < 1, Q

(θb)
n,1 ≥ 1

) ≤ l.h.s. of (5.31). (5.41)

Hence, P̂(Q
(1)
n,1 < 1, Q

(θb)
n,1 ≥ 1) → 0 as n → ∞ and we have P̂(Q∞ = 1) = 0,

as claimed. ��
Proof of Proposition 3.7. Let X be a random variable with distribution P(·) = ρ(·),
independent of Y1, Y2, . . . , and let θ ≥ 1. For all a ∈ R, define the (distribution)
functions

F (θ)
n (a) = P

(θ)
n

(
Q

(θ)
n,1 ≥ a

)
. (5.42)

and

F̃ (θ)
n (a) = P ⊗ P

(θ)
n

(
X + Q

(θ)
n,1

b
≥ a, Q

(θ)
n,1 ≥ 1

)
. (5.43)

Since Q
(θ)
n,1

D= Q
(θ)
n+1,2, X

D= Y1 and Y1 + 1
b
Q

(θ)
n+1,2 = Q

(θ)
n+1,1, these functions obey

the relation

F̃ (θ)
n (a) = F (θ)

n (1) F (θ)
n+1(a), n ≥ 1, a ∈ R. (5.44)

Let F(a) = P̂(Q∞ ≥ a) and let

F̃ (a) = P ⊗ P̂

(
X + Q∞

b
≥ a, Q∞ ≥ 1

)
. (5.45)

Both F(·) and F̃ (·) are non-increasing, left-continuous and they both have a right-
limit at every a ∈ R. In particular, both functions are determined by their restriction
to any dense subset of R. The proof then boils down to showing that there is a
set A ⊂ R dense in R such that

lim
n→∞F (θ)

n (a) = F(a) a ∈ A ∪ {1}, (5.46)
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and

lim
n→∞ F̃ (θ)

n (a) = F̃ (a), a ∈ A. (5.47)

Indeed, then (5.44) implies F̃ (a) = F(1)F (a) for all a ∈ A, which by continuity
extends to all a ∈ R, proving (3.19).

Let A be the set of continuity points of both F(·) and F̃ (·). Clearly, Ac is
countable and hence A is dense in R. The limits in (5.46) will be taken in too
stages; first we take the limit of the distribution and then that of the event. Since
Q

(1)
m,1 ≤ Q

(θ)
n,1 ≤ Q

(θb)
m,1 for any m ≤ n, we have, by (3.15),

P̂(Q
(1)
m,1 ≥ a) ≤ lim inf

n→∞ F (θ)
n (a) ≤ lim sup

n→∞
F (θ)
n (a) ≤ P̂(Q

(θb)
m,1 ≥ a) (5.48)

for all θ ≥ 1 and all m ≥ 1. The m → ∞ of the extremes exists by monotonicity.
Since Q

(θb)
m,1 ≥ Q∞, the right-hand side converges to F(a). As for the left-hand

side, it is clear that the event {Q∞ > a} implies that, eventually, {Q(1)
m,1 ≥ a}

occurs. Thus the limit of the extreme left is at least as big as P̂(Q∞ > a). However,
the latter equals F(a) because, by assumption, a is a continuity point of F . This
proves (5.46). The argument for the limit (5.47) is fairly similar; the right-hand
side will directly converge to F̃ (a), while the limit of the left hand side will be no
smaller than P ⊗ P̂(X + 1

b
Q∞ > a, Q∞ > 1). However, by Lemma 5.9 we have

that P̂(Q∞ = 1) = 0 and thus the limit equals F̃ (a), because a ∈ A. ��

Proof of Corollary 3.6. The proof of Q
(θ)
n,1

D−→ Q∞ is immediate from (5.46). To
prove (3.18), we note that (3.17) and (2.5) imply the deterministic bounds

∣∣f (Q
(θ)
2n,1) − f (Q

(θb)
n,1 )

∣∣ ≤ C‖f ‖∞ b−nθ0, (5.49)

and

∣∣f (Q∞) − f (Q
(θb)
n,1 )

∣∣ ≤ C‖f ‖∞ b−nθ0, (5.50)

where we used that Q(θ)
2n,1 ≤ θ0 for θ ≤ θ0. The bound (5.49) implies that

∣∣E(θ)
2n (f (Q

(θ)
2n,1)) − E

(θ)
2n (f (Q

(θb)
n,1 ))

∣∣ ≤ C′‖f ‖∞e−ηn, (5.51)

where C′ < ∞ and η > 0, while the bound (5.50) guarantees that Ê(f (Q∞)) can
be replaced by Ê(f (Q

(θb)
n,1 )) with a similar error. Then (3.18) with 2n replacing n

boils down to the estimate of
∣∣∣E(θ)

2n

(
f (Q

(θ)
n,1)

)− Ê
(
f (Q

(θ)
n,1)

)∣∣∣. (5.52)
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But, by Proposition 3.5, the latter is bounded by A‖f ‖∞e−ζn. Combining all of
the previous estimates, the claim follows. ��
Proof of Corollary 3.8. We begin by showing that z(ρ) = P̂(Q∞ ≥ 1). Indeed, we
can use that Zn(θ) = 0 for θ < 1 to compute

Ê
(
Zn(Q∞)

) = P̂(Q∞ ≥ 1)E ⊗ Ê

(
Zn−1

(
X + 1

b
Q∞

) ∣∣∣Q∞ ≥ 1
)

= P̂(Q∞ ≥ 1) Ê
(
Zn−1(Q∞)

) = · · · = P̂(Q∞ ≥ 1)n+1, (5.53)

where we used Proposition 3.7 to derive the second equality. From here z(ρ) =
P̂(Q∞ ≥ 1) follows by noting that P̂(Q∞ ≥ 1)Zn(1) ≤ Ê(Zn(Q∞)) ≤ Zn(θb)

and applying Theorem 2.4(1).
In order to prove the existence of the limit (3.20), we first notice that

Zn+1(θ)

Zn(θ)
= P

(θ)
n+1

(
Q

(θ)
n+1,1 ≥ 1

)
. (5.54)

Next we claim that P
(θ)
n+1(Q

(θ)
n+1,1 ≥ 1) − z(ρ), for θ ≥ 1, decays exponentially

with n. Indeed, let θ0 > θb and θ ∈ [1, θ0], pick k = �n
2 �, use Q

(1)
k,1 ≤ Q

(θ)
n+1,1 ≤

Q
(θb)
k,1 and apply Proposition 3.5, to get

P̂
(
Q

(1)
k,1 ≥ 1

)− Āe−ζk ≤ P
(θ)
n+1

(
Q

(θ)
n+1,1 ≥ 1

) ≤ P̂
(
Q

(θ0)
k,1 ≥ 1

)+ Āe−ζk, (5.55)

where Ā < ∞ is proportional to A(ρ, θ0) from (3.14). On the other hand, we
clearly have

P̂
(
Q

(1)
k,1 ≥ 1

) ≤ P̂(Q∞ ≥ 1) ≤ P̂
(
Q

(θ0)
k,1 ≥ 1

)
. (5.56)

But the right and left-hand sides of (5.56) differ only by P̂(Q
(1)
k,1 < 1, Q

(θ0)
k,1 ≥ 1),

which can be estimated as in (5.41) by a number tending to zero exponentially fast
as k → ∞. From here we have

∣∣∣∣
Zn+1(θ)

Zn(θ)z(ρ)
− 1

∣∣∣∣ ≤ A′e−ζ ′n, θ ∈ [1, θ0], (5.57)

where A′ = A′(ρ, θ0) < ∞ and ζ ′ = ζ ′(ρ) > 0. The uniformity of these estimates
is a consequence of the uniformity of the bounds A < ∞ and ζ > 0 and that as in
(5.41).

The existence of the limit (3.20) for θ ∈ [1, θ0] is a direct consequence of
(5.57) and the identity

ψρ(θ) = lim
n→∞Zn(θ)z(ρ)

−n = lim
n→∞

n−1∏

k=0

Zk+1(θ)

z(ρ)Zk(θ)
=

∞∏

k=0

Zk+1(θ)

z(ρ)Zk(θ)
, (5.58)

and the fact that the corresponding infinite product converges. For θ < 1 we
have Zn(θ) = 0 and the limit exists trivially. To prove that θ �→ ψρ(θ) is Lipschitz
continuous for θ ≥ 1, we first note that, by (5.23) and the result of Lemma 5.7,

∣∣Zn(θ) − Zn(θ
′)
∣∣ ≤ C|θ − θ ′|ψρ(θ0)z(ρ)

−n, θ, θ ′ ∈ [1, θ0], (5.59)
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where C = C(ρ, θ0) < ∞ is on sets N ⊂ M
 with finitely many extreme points.
From here the bound in part (2) directly follows.

Let Z
(ρ)
n (θ) denote explicitly that Zn(θ) is computed using the underlying

measure ρ. The continuity of α �→ ψρα (θ) then follows using three facts: First,

α �→ Z
(ρα)
n (θ), being an expectation with respect to ρn

α , is continuous. Second, by
Theorem 2.4(2), α �→ z(ρα) is also continuous. Third, the infinite product (5.58)
converges uniformly in α. ��
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