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This paper is dedicated to the memory of R. Dobrushin: A loss that cannot be replaced.

Abstract: For spin-systems with an internal symmetry, we provide sufficient conditions
for unicity of the Gibbs state and/or complete analyticity by comparison to random cluster
models.

Introductory Remarks

In the realm of statistical mechanics, under the subject headingshigh-temperature be-
havior, analyticityanduniqueness, the philosophical and mathematical contributions of
R. Dobrushin will remain intact as long as the subject still exists. The usual approach
to these questions consists of “expansion techniques” – high temperature expansions,
cluster expansions, etc. These expansions have the advantage that they may be applied to
virtually any (short-ranged) system, however, they suffer in that they are only functional
for extreme values of parameters. As was often stressed by Dobrushin, a peculiar fea-
ture of these expansions is that while the formulation and resolution of problems within
such a framework constitute definitive probabilistic statements, the intermediate steps
do not. Concrete actions towards the repair of this deficiency were taken in [D2] where
a not-cluster expansion was derived. Most of the usual high-temperature results can be
obtained by this method (but unfortunately with the same sorts of restrictions) and in
addition, certain new problems are suggested.

Carrying the probabilistic attitude to its extreme, we arrive at the other edge of the
spectrum: Graphical representations in statistical mechanics. These arefaithful repre-
sentations of the problem at hand, leading to stochastic-geometric problems that are
well defined for all values of parameters. Prominent examples include the random clus-
ter [FK] and random current [Ai] representations. The above examples aresuccessful

? Work supported in part by the NSF under the grant DMS-95-04462 (K.A.)



448 K.S. Alexander, L. Chayes

in the sense that phase transitions are characterized by a geometric phase transition in
the graphical representation ([ACCN] and [Ai], respectively).1 The shortcomings of this
approach are all too apparent: Such representations have only been found for a very
few systems – each new result along these lines represents a separate challenge. The
above cited applies, respectively, to the Potts ferromagnets and to Ising-type (Griffiths–
Simon class) systems, period. The complete list (to date, to the authors’ knowledge)
consists of the 2-component Widom-Rowlinson model [CCK, GLM] the cubic (gener-
alized Ashkin–Teller) models and some models with first-order transitions [CM].

In this paper, we will pursue a hybrid approach: we will consider graphical repre-
sentations for a “wider than usual” class of systems but sacrifice the “successfulness”
clause usually associated with such representations. Let us address the specifics of these
two points:

(i) The systems that we study consist of interacting spins taking values in a compact (or
discrete) group. The group structure is respected by the Hamiltonian and by the single-
spin measure – Haar measure. In other words, for a given spin, all spin states area priori
equivalent. Thus, we are well away from a statement concerning “all possible spin-
systems.” However, we are by no means restricted to phase transitions that result from
a break down of symmetry. For ease of exposition, we will further restrict to translation
invariant nearest neighbor interactions on thed-dimensional hypercubic lattices. By and
large, these latter restrictions are far less important. (Related results on non-translation
invariant systems, e.g. “disordered” systems, will appear in a future paper.)

(ii) In a successful representation, the usual signal of a phase transition in the underlying
spin-system ispercolationin the graphical problem. In one form or another, this is the
case in all the examples mentioned. Here we will find situations where percolation in
the graphical representation implies nothing in particular for the spin-system.

On the other hand, theabsenceof percolation in these representations is strongly
suggestive of high temperature behavior. Unfortunately, as of yet, these systems are too
poorly understood to demonstrate that absence of percolation is, in fact, a sufficient
criterion for uniqueness. Nevertheless, these representations can be compared with and
coupled to other graphical models, e.g. the independent percolation models. When the
comparison models fail to percolate, uniqueness and, under stronger conditions, com-
plete analyticity can be established.

Of course the use of “non-percolation” as a tool for establishing uniqueness or
complete analyticity is hardly new. These ideas are implicitly in play when the clus-
ter expansion is shown to converge and, e.g. in the original derivation of Dobrushin
[D1]. Furthermore, the works of [vdBM] and [N] both use (absence of) percolation in a
dominating measure to establish complete analyticity/uniqueness. However, as will be
discussed to some extent at the end, the results here represent an improvement over the
existing (general) sufficient conditions.

1 A related approach, designed for the study of lattice models that approximate field theories, are the random
walk expansions [BFSp, BFSo]. Although it may be that the full statistical mechanics model can be recovered
from this expansion, it is difficult to conceive of explicit expressions, e.g. for the probability of cylinder sets
in terms of the polymer weights. Nevertheless, it is presumably the case that some version of “percolation”
in these expansions corresponds to the multiple phase regime in the lattice system. E.g. in finite volume, the
dominant contribution to the two-point function, in finite volume, could come from terms where the polymer
fills a fraction of the available space. However, to the authors’ knowledge, such a statement has not appeared
in the literature.
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Derivation of the Expansion

In what follows, we will consider only nearest neighbor interactions onZd. The forth-
coming is easily generalizable to any system with pair interactions (i.e. any graph) and,
with some additional labor, to systems with multi-spin interactions including, e.g. lattice
gauge theories.

Let G denote a compact group, leth : G × G → R denote a left-invariant function
and consider the Hamiltonian described by the formal expression

H =
1
2

∑
i,j∈Zd

|i−j|=1

h(si, sj). (1)

Remarks and restrictions.(a) Here, the left-invariance ofh is the mechanism for assur-
ing that the spin-states at a single site area priori equivalent. (b) In the above formula,
each neighboring pair is counted twice. We will get rid of this convention – and the1

2 –
by asserting thath is symmetric (which is physically reasonable). For future convenience
– but of no physical significance – we will assume that eachbondof the lattice has some
fixed orientation and, for|i− j| = 1 use〈i, j〉 as notation for the bond pointing fromi to
j. (c) We will only consider (again on physical grounds) the cases whereh is continuous,
or in the discrete cases, bounded. Without loss of generality, we will set the maximum
value to zero.

Throughout this work, we will often considergraphicalsubsets ofZd; that is, collections
of sites and some of the edges (or bonds) connecting nearest neighbor pairs. Although
we will often be notationally cavalier regarding the distinction between the bonds and/or
the sites of a graph and/or the graph itself, in all instances, the meaning should be clear
from context.

Let 3 ⊂ Zd and let|3| denote the number of sites in3. The boundary,∂3, is here
defined as the sites inZd \3 with a neighbor in3 and we will use3 to denote3∪∂3.
For |3| < ∞, and fixed spin configurations∂3 ∈ G|∂3|, the Hamiltonian is a well
defined function of spin configurations3 ∈ G|3|, that can be inferred from Eq. (1) and
will be denoted byH(s3 | s∂3). The partition function on3 at temperature 1/β with
boundary conditions∂3 is given by

Z3,s∂3
H,β =

∫
e−βH(s3|s∂3)d|3|s, (2)

whereds is normalized Haar measure. To avoid cumbersome expressions, we will use
� as notation for both the generic lattice3 and the generic boundary conditions∂3;
indeed, we will further extend the notation and allow� to stand for superpositions of
boundary conditions, periodic boundary conditions, etc. As usual, the integrand in Eq.
(2) defines the finite volume Gibbs measures onG|3|; we denote these measures (or
their densities) byg�

H,β(−).
The derivation of the expansion follows closely the derivation of the random cluster

representation in [FK]; a less compressed version (for the discrete cases) of what is to
follow can be found in [CM]. Fort ∈ G, let E(t) = h(e, t) (wheree is the identity) and
defineRt = Rt(β) = eβ|E(t)| − 1. The partition function admits the expression

Z�
H,β =

∫
d|3|s

∏
〈i,j〉

(Rs−1
i

sj
(β) + 1), (3)
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where we assume that a single spin configuration provides the boundary condition on
∂3 or there are free boundary conditions on3. (Otherwise, a boundary spin integral
would be required.) LetB3 denote the set of bonds of3 – including those connecting
3 with ∂3. Let ω ⊂ B3 and forb ∈ B3, defineωb = 1 (or “occupied ”) ifb ∈ ω and 0
(or “vacant”) if b /∈ ω. Expanding the product in Eq. (3), we may identify each term in
the expansion with anω ⊂ B3: ωb is occupied if the “R” term is selected and is vacant
otherwise. This defines a set of graphical weights:

W�
H,β(ω) =

∫
d|3|s

∏
〈i,j〉∈ω

Rs−1
i

sj
(β) (4)

which will be our principal tool. We will denote the corresponding finite volume graph-
ical measures (measures on{0, 1}B3 ≡ �B3

) by µ�
H,β(−) and we will refer to these as

thegreymeasures.
The configurationω divides the lattice into connected components – isolated sites

andclusters(components that contain bonds). We will denote the total number of clusters
by k(ω) and, for future reference, the total number of components byc(ω). Obviously,
the isolated sites can be integrated away which allows us to express the weights as a
product over clusters:

W�
H,β(ω) =

k(ω)∏
`=1

∫
d|K`|s

∏
〈i,j〉∈K`

Rs−1
i

sj
(β), (5)

whereK` is the`th cluster ofω and|K`| denotes the number of sites within this cluster.
Already Eq. (5) hints at a conditional independence for the behavior of spins residing
in disjoint clusters; this matter will be discussed in greater depth after the following
paragraph.

At this point it is worth pausing to make contact with the familiar random cluster
representation for the Potts model. Here,s ∈ {1, . . . q}, the group structure is of no
particular significance (we may takeG = Zq) andRs(β) = eβ − 1 if s = e and is
zero otherwise (which serves to define the Potts Hamiltonian). We will consider, for
simplicity, the case of free boundary conditions on3. Examining Eq. (5) for this case, it
is seen that the “integral” over any cluster vanishes unless all spins of the cluster are in the
same state. In theq cases where this happens, the result is a factor ofR

||K`||
e (β), where

||A|| denotes the number of bonds in the setA. Multiplying in the normalization constant
of 1/q for the single-spin measure at each site we obtain the factor ofqR

||K`||
e (β)q−|K`|

for the clusterK`. Now, multiplying the total weight for any configuration by an irrelevant
factor ofq|3|, and using [components] = [clusters] + [isolated sites], the weight of the
configurationω is given byqc(ω)R

||ω||
e (β). This is equivalent to the usual random cluster

weights (with free boundary conditions), i.e.WFK;f
q,p ∝ p||ω||(1−p)[||3||−||ω||]qc(ω) with

Re(β) = p/(1 − p).
Although information about the spin-system is clearly lost in going to the grey

representation, this can, in principal, be recovered or “built back”. Letω ∈ �B3
denote

a bond configuration ands3 a spin configuration and assume, for simplicity, that the
boundary condition has been provided by a single spin configuration. Consider the
function

g�
H,β(s3 | ω) =

1

W�
H,β(ω)

∏
〈i,j〉∈ω

Rs−1
i

sj
. (6)
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This is clearly positive and integrates to one. We claim thatg�
H,β(s3 | ω) has the

interpretation of the conditional Gibbs density given the configurationω. Indeed,∑
ω∈�B3

µ�
H,β(ω)g�

H,β(s3 | ω) =
1

Z�
H,β

∑
ω

∏
〈i,j〉∈ω

Rs−1
i

sj

=
1

Z�
H,β

∏
〈i,j〉∈B3

(Rs−1
i

sj
+ 1), (7)

which (cf. Eq. (3)) is exactly the Gibbsian probability density for the configurations3.
Furthermore, a brief examination of Eq. (6) – written as a product over clusters as in Eq.
(5) – clearly exhibits the conditional independence mentioned previously.

There are several ways to define percolation in the grey representation. The follow-
ing is the least stringent definition in the sense that if the system does not satisfy the
forthcoming criterion for percolation, it certainly cannot percolate by any other defini-
tion. Let3 ⊂ Zd with |3| < ∞ and 0∈ 3. Let T0,∂3 denote the event that the origin
is connected to the boundary by a path of occupied bonds and define

P3(β) = max
s∂3

µ3,s∂3
H,β (T0,∂3). (8)

If (3k) is any sequence of boxes satisfying3k+1 ⊃ 3k and3k ↗ Zd it is not hard to
see that

P∞(β) = lim
k→∞

P3k
(β) (9)

exists and is independent of the sequence (3k). We say that there is percolation if
P∞ > 0.

There are a few circumstances where percolation in the grey representation is known
to coincide with a phase transition in the spin-system. In particular, this is the case for
the Potts models [ACCN], the cubic models (generalized Ashkin–Teller models) – for a
certain region of parameters [CM] and, in some generality, systems with discontinuous
transitions [CM]. But this is certainly not always the case. For example, it is possible
to show that for the 4-state clock model onZ2, percolation in the grey representation
occurs well above the critical temperature [C].

On a less ambitious tack, it seems that the absence of percolation in the grey measure
should imply uniqueness of the limiting Gibbs measure. Along these lines, a consid-
erably weaker statement was established in [CM]: if there is no percolation, then all
Gibbs states are invariant under the action ofG. To date, a full theorem to the effect
that non-percolative behavior in a grey representation implies the uniqueness of the
corresponding Gibbs measure has required the additional ingredient of a monotonicity
property, e.g. the FKG property of the former. Although such monotonicity properties
are plausible under some general condition of “ferromagnetism” of the Hamiltonian, the
FKG property has only been established in a handful of cases. Notwithstanding the lack
of monotonicity, some progress is possible when the graphical measure is dominated
by a (non-percolating) measure thatdoeshave the FKG property. This is exactly the
strategy that was used for the case considered in [N] and is operating implicitly in the
derivation of [vdBM]. It is therefore worthwhile to consider comparison inequalities
between the grey measures and other graphical problems such as the FK random clus-
ter model. Via such comparisons, non-perturbative statements about high temperature
behavior are possible.
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A Comparison Inequality

For finite3 ⊂ Zd, p ∈ (0, 1) andq > 0, letνFK;�
q,p (−) denote the random cluster mea-

sures with boundary conditions (appropriate to a random cluster model) as specified in�
(Cf. the description in the statement of Proposition 1). Forh(s1, s2) of the form described
in the remarks and restrictions following Eq. (1), we defineE0 = mins1,s2 h(s1, s2), the
quantity

R0 = R0(β) = eβ|E0| − 1 ≡ max
t∈G

Rt(β) (10)

and

R = R(β) =
∫

dsRs(β). (11)

The following domination bound is elementary:

Proposition 1. For a finite lattice, consider the random cluster measuresνFK;�
q,p (−),

where� indicates a boundary condition in which various subsets of the boundary are
considered to be “preconnected” (i.e. they act as a single site) and the rest are left free.
(This includes free, wired and periodic.) ForH of the type that has been described, let
µ�

H,β(−) denote the grey graphical measures with the same boundary condition. Then

µ�
H,β(−) ≤

FKG

νFK;�
Q,P (−),

whereP = R0/(1 +R0) ≡ 1 − e−β|E0| andQ = R0/R.

Proof. For boundary conditions of the type stated, the weights of the random cluster
measure have the expression

νFK;�
q,p (−) ∝ [

p

1 − p
]||ω||qc�(ω), (12)

wherec�(ω) counts the number of connected components according to the rules speci-
fied by the boundary conditions in�. As is well known, these are FKG measures. For
convenience, let us express these measures in “loop form”: Let`�(ω) denote the min-
imum number of bonds inω that must be removed until what remains is a tree. (As is
the case for the number of components, this depends on boundary conditions.) Using
c�(ω) = `�(ω) − ||ω|| + constant, we get

νFK;�
q,p (−) ∝ [

p

q(1 − p)
]||ω||q`�(ω). (13)

To establish our claim, we show that the weightsW�
H,β(ω) may be expressed in the form

W�
H,β(ω) ∝ [νFK;�

Q,P (ω)]F�(ω) ∝ [R
||ω||

(
R0

R
)`�(ω)]F�(ω), (14)

whereF� is a decreasing function.
Defining F�(ω) to be the ratio of the right-hand side of Eq. (5) to the quantity

R
||ω||

[R0/R]`�(ω), let ω ⊂ B3 andb ∈ B3 \ ω. ConsiderF�(ω) versusF�(ω ∨ b):
The bondb either joins two components ofω or closes a loop inω. We claim that in the
former case,W �

H,β(ω ∨ b) = RW�
H,β(ω) (and henceF�(ω ∨ b) = F�(ω)). To see this,

consider an integration over one component as in the right-hand side of Eq. (5):
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W̃�
H,β(C) ≡

∫ ∏
〈i,j〉∈C

Rs−1
i

sj
d|C|s, (15)

where here one of the “sites” may include a boundary component and ifC is a single
site, the integrand is taken to be unity. For any sitea ∈ C, if the integration is performed
so thatsa is integrated last, it is seen that the final integrand is a constant independent
of sa. Indeed, this follows directly from the invariance of Haar measure: For fixed value
of sa, let us compare this last integrand with its value atgsa, g ∈ G. Noting that the
sa dependence always comes in the forms−1

a sj , we perform the other integrations after
the change of variablessj → gsj , j 6= a. The result, after the first|C| − 1 integrations,
is thus manifestly independent ofg so indeed the final integrand is a constant. Now
consider two disjoint components,Cx andCy of the configurationω and suppose that
b joins anx ∈ Cx with a y ∈ Cy. It follows immediately thatW̃�

H,β(Cx ∪ Cy ∪ b) =

R W̃�
H,β(Cx)W̃�

H,β(Cy) because here, saving thesx andsy integrations for last, we get

W̃�
H,β(Cx)W̃�

H,β(Cy) ×
∫

dsxdsyRs−1
x sy

by the previous argument.
In the case whereb closes a loop inω, the derivation is simple: Ifb joinsx to y, as an

upper bound we replace the new factor ofRs−1
x sy

that appears in the integrand defining

the weight forω ∨ b with R0. This results inF�(ω ∨ b) ≤ F�(ω). �

Remark.Following the same derivation, it is easily shown that for virtually any boundary
condition� in the grey system, we get the above sort of dominations if we compare to the
random cluster measure with wired boundary conditions. In particular (and of particular
importance) are the�’s that come from a fixed spin configuration at the boundary. Here
the argument is identical if the “new bond” is not connected to the boundary. If the new
bond attaches a previously isolated cluster to the boundary, the derivation is the same
as when two isolated clusters are joined: the grey weight gets multiplied byR and, the
number of loops has not changed. Finally, if the new bond joins two clusters that are
already attached to the boundary, then, by the definition according to wired boundary
conditions, the number of loops increases by one, and, as in the previous loop case, the
new weight factor does not exceedR0.

Let us also observe that these dominations are identities for the Potts models and
therefore expected to be fairly sharp for models that are “close” to the Potts models:
systems with a significant energy gap and relatively few low-lying states that occur only
when the spins are nearly aligned. As an example, suppose the spins take values on the
unit circle and are parameterised byθ, 0 ≤ θ ≤ 2π and, using additive notation, a pair
interaction given byV (θi − θj). If V (θ) = −(1 + cosθ), this is the usualXY model, let
us consider the case whereV (θ) = −1 if |θ| < ε and is zero otherwise. Here we have
Q = 1/ε and,P = 1 − e−β . If ε � 1 then, using the well known results for the Potts
model (cf. the discussion before Theorem 3) we can show uniqueness – and exponential
decay of correlations down to temperaturesβ−1 satisfyingeβ ≥ const.(ε−1/d).

An FKG Decomposition

To implement our strategy, we need some standard terminology from percolation theory.
In what follows, we will focus on a fixedU ⊂ 3. Consider a minimal set of bonds that
separatesU from∂3. Such an object is often better envisioned on the dual lattice and will
be referred to as a separating surface. IfC is such a surface, we will denote the interior
graph – sites and bonds with both endpoints that are insideC – by I(C). Similarly, the
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exterior graph will be denoted byE(C). Since|3| < ∞, we may consider the entire
collectionC1, . . . , CN of such separating surfaces. We letCj ⊂ �B3

denote the event
that all the bonds inCj are vacant. Finally, for future reference, let us observe that the
surfaces{Cj} have a natural partial order by containment of interiors. LetCj ⊂ Cj

denote the event

Cj = {ω ∈ Cj | Cj is the outermost vacant surface separatingU from ∂3}. (16)

We remark on two standard features of theseCj : First, any configuration in whichU is
disconnected from∂3 belongs to a uniqueCj and second, the eventCj is determined
exclusively by the bonds inCj ∪ E(Cj).

Since, forH of the type described, the weight factorW�
H,β is given by a product

over clusters, it follows that restriction of the conditional graphical measure to the set
U , µ�

H,β(− | Cj) |U , is identical to (the restriction of) the measure onI(Cj) with free
boundary conditions onCj :

µ�
H,β(− | Cj) |U= µ

I(Cj ),f
H,β (−) |U . (17)

Indeed, the above holds for the restrictions toI(Cj). Furthermore, considering the Gibb-
sian (built back) viewpoint, it is clear that under the conditionCj , the spins on the inside
of Cj have the same distribution as the spin-system with free boundary conditions on
Cj . Explicitly,

g�
H,β(− | Cj) |I(Cj )= g

I(Cj ),f
H,β (−), (18)

whereg�
H,β(− | Cj) ≡

∑
ω µ�

H,β(ω | Cj)g�
H,β(− | ω).

Next, let us define a version of FKG dominance that is slightly stronger than usual.
Suppose thatν andµ are probability measures on some finite�Σ = {0, 1}Σ and thatν
FKG-dominatesµ in the usual sense and in addition, for any0 ⊂ Σ and any configuration
η0 on0, then for allω0 ≺ η0, we haveµ(− | ω0) ≤

FKG

ν(− | η0). Then we will call such a

relationshipextendedFKG dominance and express this relationship by the symbol≤
FKG

e.

We remark in passing that in the above definition and in the decomposition that will
follow below, there is no requirement that either measure have the FKG property in its
own right.

Of importance in the present context is the fact that for systems of the type described,
if � is any boundary condition in the spin system, the corresponding grey measure
satisfies

νFK;3,w
Q,P (−) ≤

FKG

e µ�
H,β(−), (19)

whereP andQ are as described in Proposition 1. First, ifω0 ∈ �0, we claim that
νFK;3,w

Q,P (− | ω0) ≤
FKG

µ�
H,β(− | ω0). Indeed, the vacant bonds ofω0 are accounted for

by considering a graph with these edges deleted. The occupied clusters ofω0 that are
detached from the boundary constitute (part of) a boundary condition on3 \ 0 of the
type described in Proposition 1, while the bonds inω0 that attached to∂3 are equivalent
to a superposition of spin-state boundary conditions on this portion of∂(3 \ 0). But
then, if η0 � ω0, we automatically haveνFK;3,w

Q,P (− | η0) ≤
FKG

νFK;3,w
Q,P (− | ω0) (and

henceνFK;3,w
Q,P (− | η0) ≤

FKG

µ�
H,β(− | ω0)) by the strong FKG property of the random

cluster measures withQ ≥ 1 .
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Wheneverν andµ are measures on an�Σ with ν ≤
FKGe

µ, we claim thatµ ad-

mits a family of decompositions that are analogous to decompositions into conditional
measures for cylinder events. However here the measureν influences the nature of the
“conditional measures” and completely determines the coefficients of the decomposi-
tion. We will illustrate with the simplest example: Let0 ⊂ Σ. Then we claim thatµ
may be expressed as

µ(−) =
∑

η0∈�0

ν(η0)µη0
(−), (20)

where eachµη0
(−) is a probability measure which itself is a convex sum of measures

obtained by conditioning on configurationsω0 that are belowη0:

µη0
(−) =

∑
ω0:ω0≺η0

λη0
(ω0)µ(− | ω0) (21)

with 0 ≤ λη0
(ω0) ≤ 1 and

∑
ω0

λη0
(ω0) = 1. Similar decompositions occur for a wider

variety of partitioning events. In the general case, the conditioning events are not always
situated on the same set; indeed0 may be random but should be constructed via a growth
algorithm. Of immediate importance is when0 coincides withCj ∪ E(Cj) whenever
the eventCj occurs in theη-configuration.

One can formulate these decomposition in terms of “couplings” as follows: The pair
(ω0, η0) are constrained in such a way thatω0 always lies belowη0 and the conditional
distribution ofω3 depends only onω0. The measuresµη0

andλη0
can then be interpreted

as the conditional distributions givenη0. Expressed in this language, the decomposition
is not dissimilar to the couplings used in [vdBM] and in [N].

A precise statement of the generalization and a proof of the existence of such de-
compositions will be provided in the Appendix. On this basis, we have the following:

Proposition 2. Let 3 ⊂ Zd, |3| < ∞, U ⊂ 3, and let H be a Hamiltonian of
the type described in Eq. (1) and the remarks that follow. Letµ�

H,β(−) denote a grey
measure with� denoting boundary conditions coming from a single spin configuration
or combinations thereof and letνFK;3,w

Q,P (−) denote the random cluster measure with
wired boundary conditions on∂3 and with parametersQ = Q(H, β) andP = P (H, β)
as described in Proposition 1. Thenµ�

H,β(−) admits the decomposition

µ�
H,β(−) =

N∑
j=0

νFK;3,w
Q,P (Cj)µ�

Cj ;H,β(−),

where forj = 1 . . . N ,

µ�
Cj ;H,β(−) |I(Cj ) = µ

I(Cj ),f
H,β (−),

and the measureµ�
C0;H,β(−) (with C0 denoting the configurations where there is a con-

nection betweenU and∂3) is a certain combination ofµ’s that have been conditioned
on cylinder events defined outside ofU .

Proof. This is an immediate consequence of Corollary II to Proposition A.1. (Cf. also
the discussion following the proof of Corollary II). �
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Principal Results

Our principal results will follow after a few definitions and remarks pertaining to the
random cluster models: Consider the random cluster models onZd with parameters
q ≥ 1 andp ∈ (0, 1). DefineP∞(q, p) as in Eq. (9) – here the optimizing boundary
condition is known to be the wired boundary condition. Letpc(q) denote the percolation
threshold:

pc(q) = inf{p | P∞(q, p) > 0}. (22)

For the sequence of hypercubes3L of sideL centered at the origin, letwc(q) be defined
as the supremum of the set ofp’s for which the estimateP3L

(q, p) ≤ D1e
−D2L holds

uniformly in L for someD1 < ∞ andD2 > 0.

Remark.Obviouslypc(q) ≥ wc(q). An additional notion of a transition point may be
defined: Assume for simplicity thatq ≥ 1 and letτn(p, q) denote the probability, in
the limiting wired measure, that the origin and the point (n, 0, . . . , 0) are in the same
connected cluster. Standard subadditive arguments show that

− 1
ξ

= lim
n→∞

logτn

n
(23)

exists. The pointπc(q) is defined byπc(q) = sup{p | ξ(q, p) < ∞}. By straightforward
arguments,pc(q) ≥ πc(q) ≥ wc(q). It is widely believed that for allq and in all dimen-
sions,pc(q) = πc(q) = wc(q) and that ind = 2, the unique transition point is located
at the self dual pointpD(q) =

√
q/(1 +

√
q) (which,a priori, lies in [πc(q), pc(q)]). For

q = 1, these issues have all been settled starting with [K] and ending with [AB, MMS].
For q = 2 (starting with [O] and ending with [ABF]) these problems have also been
solved. Forq � 1, a variety of techniques can be brought into play: Expansion tech-
niques [LMMsRS] (for generalq) or reflection positivity [KS, CM] (for integerq) can
be used to show thatpc(q) = πc(q) and that ind = 2, these coincide withpD(q).
The stronger resultpc(q) = wc(q) is established (for largeq and general dimension) in
[vEFSS]. Using different methods, exclusive to two dimensions, forq & 25.9 the result
pc(q) = wc(q) = pD(q) is proved in [Al1 and G]. Ford = 2 and integers (of relevance)
between 3 and 25, it can be shown thatwc(q) ≥ pD(q − 1) [Al2]. For d ≥ 3 and mod-
erately largeq, it is known thatwc(q) ≥ [(q − 1) − (q − 1)

d−1
d ]/[q − 2] [Al 2] which

agrees, to lowest non-trivial order, with the largeq expansion forpc(q) in [LMMsRS].

Theorem 3. Consider a spin-system with HamiltonianH at inverse temperatureβ as
described in Eq. (1) and in the paragraph that follows and letQ and P denote the
quantities defined in Proposition 1. Then ifP < pc(Q), there is a unique limiting
measure for the spin-system and ifP < wc(Q), the spin-system has weak mixing.

Proof. Let 3 ⊂ Zd, U ⊂ 3 and consider the spin system with two boundary condi-
tions on∂3 denoted by� and⊗. Let VarU (g⊗

H,β , g�
H,β) denote the variational distance

between the two measures:

VarU (g⊗
H,β , g�

H,β) =
1
2

∫
d|U |s|g⊗

H,β(sU ) − g�
H,β(sU )|. (24)

Finally, let TU,∂3 ⊂ �B3
denote the event that there is a connection betweenU and

∂3. (Note thatTU,∂3 = C0.) We claim that VarU (g⊗
H,β , g�

H,β) is bounded above by

2νFK;3,w
Q,P (TU,∂3).
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Let us start things off with the following elementary consequence of the decompo-
sition described in Proposition 2: For eachω ∈ �B3

, let JU (ω) denote those bonds in
the connected component ofU . If ζ ⊂ B3 is a set of bonds that are connected toU (and
therefore a candidate to beJU ) we claim that

µ⊗
H,β(JU = ζ)−µ�

H,β(JU = ζ) = νFK;3,w
Q,P (TU,∂3)[µ⊗

C0;H,β(JU = ζ)−µ�
C0;H,β(JU = ζ)].

(25)
Indeed, forj = 1, . . . , N , if ζ pokes throughCj , then bothµ⊗

Cj ;H,β(JU = ζ) and

µ�
Cj ;H,β(JU = ζ) are zero because these measures insist that all the bonds ofCj are

vacant. On the other hand, ifCj ∩ ζ = ∅, the eventJU = ζ is determined inI(Cj)
where these measures agree. Thus, the only surviving term in the difference of the two
decompositions from Proposition 2 is the zeroth which is the right-hand side of Eq. (25).

In what follows, we will label a genericζ with a subscriptedG (for good) if no
bond ofζ touches∂3 and with a subscriptedB otherwise. Recall, forω ∈ �B3

, the
objectsg�

H,β(s3 | ω) or the similarly definedg�
H,β(sU | ω) obtained by integrating out

the spins in3 \U . It is clear thatg�
H,β(sU | ω) depends only onJU (ω) so we may write

g�
H,β(sU | JU (ω)) for these conditional densities. However, ifJU (ω) = ζG for some

“good” ζG then the density is independent of� and we will writegH,β(sU | ζG). We
thus have

g�
H,β(sU ) =

∑
ω

µ�
H,β(ω)g�

H,β(sU | ω)

=
∑

ζ

µ�
H,β(JU (ω) = ζ)g�

H,β(sU | ζ)

=
∑
ζG

µ�
H,β(JU (ω) = ζG)gH,β(sU | ζG) +

∑
ζB

µ�
H,β(JU (ω) = ζB)g�

H,β(sU | ζB). (26)

Obviously there is a similar expression for the⊗ boundary condition.
The variational distance may now be estimated:

2VarU (g⊗
H,β , g�

H,β) ≤
∫

d|U |s
∑
ζG

gH,β(sU | ζG)|µ�
H,β(JU (ω) = ζG)−

−µ⊗
H,β(JU (ω) = ζG)| +

∫
d|U |s

∑
ζB

µ�
H,β(JU (ω) = ζB)g�

H,β(sU | ζB) +

+
∑
ζB

µ⊗
H,β(JU (ω) = ζB)g⊗

H,β(sU | ζB). (27)

In both terms, we may now simply integrate the spins away – these areprobability
densities. The remains of the first term can be estimated using Eq. (25):∑

ζG

|µ�
H,β(JU (ω) = ζG) − µ⊗

H,β(JU (ω) = ζG)| ≤

≤ νFK;3,w
Q,P (TU,∂3)

∑
ζ

[µ�
C0;H,β(JU (ω) = ζ) + µ⊗

C0;H,β(JU (ω) = ζ)] =

= 2νFK;3,w
Q,P (TU,∂3). (28)
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Meanwhile, the second term is justµ�
H,β(TU,∂3) + µ⊗

H,β(TU,∂3) which by the (basic)

domination is also bounded by 2νFK;3,w
Q,P (TU,∂3). We have established the claim that

followed Eq. (24).
The theorem is now easily proved: ifP < pc(Q) then for fixedU , νFK;3,w

Q,P (TU,∂3)
vanishes as3 ↗ Zd while if P < wc(Q), it is easily shown that there are positive
constantsD3 andD4 that are independent ofU and3, such that

νFK;3,w
Q,P (TU,∂3) ≤ D3

∑
x∈∂U
y∈∂3

e−D4|x−y| (29)

which implies weak mixing. �
Corollary. In two dimensions, for the above systems with a discrete spin-space, the
condition P < wc(Q), implies that the interactionβH has the restricted complete
analyticity property.

Proof. This is an application of [MOS] where it was established that for two dimensional
discrete spin-systems, weak mixing implies “strong mixing for squares”≡ restricted
complete analyticity. �
Ford > 2, the following is of interest:

Theorem 4. For discrete spin-systems of the type described in the statement of Theo-
rem 3, ifP < pc(1), the interactionβH is completely analytic.

Proof. We will use condition IIIc of [DS] which for present purposes may be read as
follows: Let 3 andU denote sets as described earlier and lets∂3 ands′

∂3 denote two
boundary conditions that differ only at a single sitey ∈ ∂3. Then complete analyticity
follows if for all y and for any suchs∂3 ands′

∂3,

VarU (g3,s∂3
H,β , g

3,s′
∂3

H,β ) ≤ D5

∑
x∈∂U

e−D6|x−y| (30)

with D5 andD6 positive and independent ofU , 3 and the boundary conditionss∂3 and
s′

∂3.
The strategy is identical to that used in the proof of Theorem 3 except that here our

partitioning events,A1, . . . , AN feature the surfacesA1, . . . , AN that separateU from
y. Indeed, letAj denote the event that all the bonds inAj are vacant and letI(Aj) denote
the region that can be reached by a path inside3 that starts fromU and does not use
any bond inAj . Thenµ3,s∂3

H,β (− | Aj)|I(Aj ) is identical to the grey measure with the
boundary condition provided by the configurations∂3 restricted to∂I(Aj) ∩ ∂3 and
free boundary conditions onAj . It is evident that this is the same as the restriction of the
similar conditional measure withs∂3 replaced bys′

∂3. With this observation in mind,
the derivation is now identical to the one in the previous theorem with the result

VarU (g3,s∂3
H,β , g

3,s′
∂3

H,β ) ≤ 2νFK;3,w
Q,P (TU,y), (31)

whereTU,y is defined similarly to the previousT ’s. By the well known domination
inequalities, we may replaceQ by 1 in which case the stipulation “wired” is meaningless.
Finally we haveν3

1,P (TU,y) ≤
∑

x∈U ν3
1,P (Tx,y) ≤ e|x−y|/ξ(P ), whereξ, the correlation

length, is positive forP < pc(1). Thus, withD5 = 2 andD6 = 1/ξ(P ), complete
analyticity is established. �
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Brief Comparison to Other Methods

Actual (general) conditions under which expansions converge are often “nearly exis-
tential” in their statement and then easily proved at high temperature or low activity.
One exception is [D2] where a long string of equations leading back to Eq. (2.8) allows
us to calculateP < c/2d =⇒ CA (complete analyticity) wherec ≈ .082. Of course
orthodox enthusiasts will argue that this condition is not optimal. In [KP], one of the
better bounds is obtained. Here it is required thate−τ < k/2d with k ≈ .206, where
e−τ |γ| provides a bound on the weight of the “contour functional” for contoursγ of
length|γ|. In simple cases, it can be shown thate−τ ∼ R0 ∼ P (if P � 1) hence this
is similar to the above mentioned with the constant improved by a factor of 2–3. By
contrast, substituting the mean-field boundpc(1) > λ−1(d) > 1/(2d − 1) with λ(d) the
connectivity constant of the lattice, we obtainP < 1/(2d − 1) =⇒ CA. This represents
a substantial improvement ifd � 1 and, even more so in moderate dimensions because
λ and/orpc(1) have improved estimates.

The second general method involves the calculation of variational norms. The most
prominent example is the original result of [D1] which, in the present context, reads
ρD < 1/2d =⇒ CA. (See [DS].) HereρD is the maximum variational distance between
two single site measures whose neighbors differ at a single site. The more recent results of
[vdBM] providesρBM < sc(d), wheresc(d) is the site percolation threshold andρBM is
similar toρD, but here the boundary conditions are allowed to be different at any or all the
neighboring sites. ThusρD ≤ ρBM . For highly frustrated systems, it is argued [vdBM]
thatρD ≈ ρBM and hence the advantage ofsc (wheresc(d) ≥ 1/(2d−1)) versus 1/2d.
However, for ferromagnetic-type systems, the impact of the full neighborhood is felt
andρBM is significantly larger thanρD. (If β � 1 it is larger by a factor of 2d.) Thus
the Dobrushin condition is usually better with the main advantage of [vdBM] coming in
d = 2 (wheresc = .59 may be accepted on faith). Here, if we make certain uncontrolled
approximations, we self consistently arrive atρD ≈ HP with H a number in the range
of 2-5. However, it is difficult to really tell: These variational norms are again easy to
estimate as “small” for extreme values of parameters but, in practical situations, they
are very difficult to work with, especially for the derivation of general conditions.

In this work, the two-dimensional systems divide into two cases:Q � 1 andQ of the
order of one. In the latter case, it often happens thatQ ≥ 2 and we may compare directly
to the Ising case which gives RCA (restricted complete analyticity) forP <

√
2/(1+

√
2).

On the other hand, for largeQ (thanks to [vEFSS]) our condition for uniqueness is the
same as that of RCA which readsRR0 < 1 =⇒ RCA. Thus, in the example following the
proof of Proposition 1 (discretized for convenience) the Corollary to Theorem 3 implies
RCA down to temperatures satisfyingeβ < 1 + (2n

ε )1/2 (which is correct to within
constants [C]). An unadorned cluster expansion will not pick up theε dependence and an
actual variational calculation may even produce the wrong direction of theε dependence
(as in [CKS] for another largeq model). Now it may be possible that a better variational
calculation picks up the correct trend withε. But for largeq and no extra symmetry
(as in the Potts models) the number of calculations really required is unmanageable. At
this moment of writing, we believe that the most tangible asset of these methods is the
intrinsic simplicity of the required calculations.
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Appendix

Here we establish the decomposition formulas discussed in the text. Let us start off with
the one bond case for measures with the usual sort of FKG domination:

Proposition A.1. Consider measuresν(−) and µ(−) defined on some finite{0, 1}Σ

that satisfyν ≤
FKG

µ. Assume, without loss of generality, that∀b ∈ Σ, ν(b = 1) 6= 0. Then

for anyb ∈ Σ, we may write

µ(−) =
∑

ηb=0,1

ν(ηb)µηb
(−),

whereµηb=0(−) = µ(− | ωb = 0)andµηb=1(−) is a convex combination ofµ(− | ωb = 1)
andµ(− | ωb = 0).

Proof. We write, tentatively,

µ(−) = ν(ηb = 0)µ(− | ωb = 0) +

+ν(ηb = 1)[λµ(− | ωb = 1) + (1− λ)µ(− | ωb = 0)] (A.1)

and attempt to solve forλ. This is accomplished by directly expandingµ in terms of its
conditional measures and equating coefficients. The result is

λ =
µ(ωb = 1)
ν(ωb = 1)

; (A.2)

this provides a sensible solution sinceν ≤
FKG

µ impliesλ ≤ 1. �

Remark.If it happens thatν(b = 1) = 0 the above decomposition is still valid (and
trivial) if the formulas are properly interpreted – indeed, all the ill-defined measures in the
decomposition appear with zero coefficient. Hereafter, we will assume this interpretation
and omit the provisos analogous toν(b = 1) 6= 0.

An immediate corollary is the “fixed0” decomposition described in the text:

Corollary I. Let Σ, µ, ν denote the quantities described above but now let us assume
thatν(−) ≤

FKGe
µ(−). Then for any0 ⊂ Σ, we may write

µ(−) =
∑
η0

ν(η0)µη0
(−),

where the sum runs over allη0 ∈ {0, 1}0 and where theµη0
(−) are convex combinations

of theµ measure conditioned on configurationsω0 ∈ {0, 1}0 that lie belowη0:

µη0
(−) =

∑
ω0: ω0≺η0

λη0
(ω0)µ(− | ω0),

0 ≤ λη0
≤ 1 and

∑
ω0

λη0
(ω0) = 1.
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Proof. Suppose that such a measure can be constructed for any0 ⊂ Σ with k elements,
let 0 denote one such example and let0′ = 0 ∪ b with b ∈ Σ \ 0. We write the full
expansion forµ(−) with the further expansion ofµ(− | ω0) into the two possibilities
for ωb:

µ(−) =
∑
η0

ν(η0)
∑

ω0≺η0

λη0
(ω0)[µ(ωb = 1 | ω0)µ(− | ω0, ωb = 1) +

+µ(ωb = 0 | ω0)µ(− | ω0, ωb = 0)]. (A.3)

Now we wish to write

µ(−) =
∑
η0

[ν(η0, ηb = 1)
∑

ω0≺η0

λη0,ηb=1(ω0, ωb = 1)µ(− | ω0, ωb = 1) +

+ν(η0, ηb = 1)
∑

ω0≺η0

λη0,ηb=1(ω0, ωb = 0)µ(− | ω0, ωb = 0) +

+ν(η0, ηb = 0)
∑

ω0≺η0

λη0,ηb=0(ω0, ωb = 0)µ(− | ω0, ωb = 0)].

As we will demonstrate, this can be (non-uniquely) accomplished by simply equating
coefficients. First off, we are forced with

λη0,ηb=1(ω0, ωb = 1) =
µ(ωb = 1 | ω0)
µ(ηb = 1 | η0)

λη0
(ω0) (A.4a)

which lies in [0, 1] by the inductive assumption (forλη0
(ω0)) and the extended FKG

dominance. As for the remainder, there is still a great deal of leeway. A natural choice is

λη0,ηb=0(ω0, ωb = 0) = λη0
(ω0), (A.4b)

which leaves us with

λη0,ηb=1(ω0, ωb = 0) = [1− µ(ωb = 1 | ω0)
µ(ηb = 1 | η0)

]λη0
(ω0). (A.4c)

This provides the desired decomposition. �

Remark.It is reemphasized that the above constructedµη0
(−) is by no means the only

possibility. Indeed, the order in which the bonds of0 are “processed” appears to effect
the details of the outcome. We also remark that all of the above results (and those which
follow) can be derived from the technically weaker condition than extended dominance.
Indeed, all that is needed is the corresponding inequality for single site occupations.
However, it is hard to imagine a system that satisfies the weaker condition without
enjoying the stronger property.

The generalizations to situations of the sort needed for this work follow from the
consideration of partitioning events that can be defined via agrowth algorithm. Let us
start with an informal description: The algorithm starts with some (predetermined) bond
b0. The bond is “checked” to see ifηb0 is occupied or vacant. Depending on the outcome,
the algorithm picks a new bondb1(ηb0). This new bond is checked and, depending on
ηb0 andηb1, a new bondb2 is determined and so forth. The procedure continues until
a stoppingcondition is fulfilled (which depending on the algorithm could even happen
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on the first step). The algorithm is defined so that any possible choice of outcomes will
eventually lead to a stopping condition – this partitions the configuration space.

Let us illustrate this procedure with the “fixed set” rule as featured in the above
corollary. The bonds of0 are deterministically ordered,b0, b1, . . . , bN and the algorithm
dictates that afterbk−1 has been checked, go to the bondbk, k = 1, 2, . . . N ; after the
bondbN has been checked, stop.

The formal definition in the general case is as follows:

Definition. Let �Σ = {0, 1}Σ be a finite space and consider a growth algorithm8 =
(81, . . . 8M ; b0) defined as follows: The8k are functions with values inΣ ∪ [stop]and
the domains are particular configurations on particular subsets,0 of Σ. In general, if
η0 is in the domain of8k and8k(η0) 6= [stop], then8k(η0) ∈ Σ \ 0. Thus all possible
“alive” sets at thekth stage are of sizek +1. LetΞk = {(0α, η0α )} denote the collection
of all possible alive sets and configurations at thekth stage. These may be generated as
follows:Ξ0 = {(b0, ηb0)},

Ξk+1 = {(0, η0) | 0 = 0′ ∪ 8k+1(η0′ ); 8k+1(η0′ ) 6= [stop]

η0 = (η0′ , η8k+1(η0′ )); (0′, η0′ ) ∈ Ξk}. (A.5)

It is required that8k+1 be defined on allη0 with (0, η0) ∈ Ξk. Finally, if relevant,
whenk = ||0|| − 1 so the first component of eachΞ||0||−1 is all of Σ, it is required that
8||0||−1(ηΣ) ≡ [stop].

It is evident that such an algorithm partitions�Σ into disjoint events:�Σ = ∪yKy

with Ky ∩ Ky′ = ∅ if y 6= y′. The Ky are defined as cylinder events:Ky =
{η0α ; (0α, η0α ) ∈ Ξk for somek, 8k+1(η0α ) = [stop]}. With this in mind, the gen-
eralization used in the text is another corollary.

Corollary II. Let Σ, µ, ν be defined as in Corollary I and let8 denote a growth
algorithm as defined above. Thenµ can be decomposed:

µ(−) =
∑
α

ν(η0α
)µη0α

(−),

whereη0α denote the partitioning cylinder events of the algorithm and where

µη0α
(−) =

∑
ω0α

≺η0α

λη0α
µ(− | ω0α ),

with theλη0α
denoting convex coefficients.

Proof. Fix n and suppose that the corollary is true for any algorithm that always stops by
thenth stage. (That is the cardinality of every “alive” set is at mostn) This holds ifn = 1
by Proposition A.1 and now the method of Corollary I readily establishes Corollary II
by induction onn. �

Example.For the situation discussed in Proposition 2, the growth algorithm is straight-
forward: The bonds of3 are deterministically ordered andb0 is defined to be the lowest
bond that is touching the boundary of3. The connected (occupied) cluster ofb0 is ex-
plored using the ordering to determine the sequence of bonds checked until this cluster
hits the boundary ofU or is fully explored (i.e. cutoff by vacant bonds). In the former
case, we get a [stop] and in the latter case, we uncover the lowestunexploredbond touch-
ing the boundary of3 and repeat. If this procedure exhausts all the bounds touching
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the boundary of3 and never gets toU , then there is evidently no occupied connection
between∂3 and∂U and we get a [stop] when the cluster of the last bond touching∂3

has been fully explored. In the latter cases, the exposed configuration defines the outer-
most separating surfaceCj , j = 1, . . . , N . For conceptual convenience, we may take all
theη0’s that produce the same eventCj and combine the resultingµη0

’s into µCj
(−),

j = 1, . . . , N . What remains – where the connected component of∂3 succeeded in
reachingU , defines the eventC0 and the measureµC0(−). In a similar fashion, one can
define a growth algorithm for the decomposition used in Theorem 4.
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