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This paper is dedicated to the memory of R. Dobrushin: A loss that cannot be replaced.

Abstract: For spin-systems with an internal symmetry, we provide sufficient conditions
for unicity of the Gibbs state and/or complete analyticity by comparison to random cluster
models.

Introductory Remarks

In the realm of statistical mechanics, under the subject headlighstemperature be-
havior, analyticityanduniquenesghe philosophical and mathematical contributions of

R. Dobrushin will remain intact as long as the subject still exists. The usual approach
to these questions consists of “expansion techniques” — high temperature expansions,
cluster expansions, etc. These expansions have the advantage that they may be applied to
virtually any (short-ranged) system, however, they suffer in that they are only functional
for extreme values of parameters. As was often stressed by Dobrushin, a peculiar fea-
ture of these expansions is that while the formulation and resolution of problems within
such a framework constitute definitive probabilistic statements, the intermediate steps
do not. Concrete actions towards the repair of this deficiency were taken]iwfiere

a not-cluster expansion was derived. Most of the usual high-temperature results can be
obtained by this method (but unfortunately with the same sorts of restrictions) and in
addition, certain new problems are suggested.

Carrying the probabilistic attitude to its extreme, we arrive at the other edge of the
spectrum: Graphical representations in statistical mechanics. Thetstafe repre-
sentations of the problem at hand, leading to stochastic-geometric problems that are
well defined for all values of parameters. Prominent examples include the random clus-
ter [FK] and random current [Ai] representations. The above examplesuaressful
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in the sense that phase transitions are characterized by a geometric phase transition in
the graphical representation ([ACCN] and [Ai], respectivélhe shortcomings of this
approach are all too apparent: Such representations have only been found for a very
few systems — each new result along these lines represents a separate challenge. The
above cited applies, respectively, to the Potts ferromagnets and to Ising-type (Griffiths—
Simon class) systems, period. The complete list (to date, to the authors’ knowledge)
consists of the 2-component Widom-Rowlinson model [CCK, GLM] the cubic (gener-
alized Ashkin—Teller) models and some models with first-order transitions [CM].

In this paper, we will pursue a hybrid approach: we will consider graphical repre-
sentations for a “wider than usual” class of systems but sacrifice the “successfulness”
clause usually associated with such representations. Let us address the specifics of these
two points:

(i) The systems that we study consist of interacting spins taking values in a compact (or
discrete) group. The group structure is respected by the Hamiltonian and by the single-
spin measure — Haar measure. In other words, for a given spin, all spin steaqyiane
equivalent. Thus, we are well away from a statement concerning “all possible spin-
systems.” However, we are by no means restricted to phase transitions that result from
a break down of symmetry. For ease of exposition, we will further restrict to translation
invariant nearest neighbor interactions ondhgimensional hypercubic lattices. By and
large, these latter restrictions are far less important. (Related results on non-translation
invariant systems, e.g. “disordered” systems, will appear in a future paper.)

(ii) In a successful representation, the usual signal of a phase transition in the underlying
spin-system ipercolationin the graphical problem. In one form or another, this is the
case in all the examples mentioned. Here we will find situations where percolation in
the graphical representation implies nothing in particular for the spin-system.

On the other hand, thebsenceof percolation in these representations is strongly
suggestive of high temperature behavior. Unfortunately, as of yet, these systems are too
poorly understood to demonstrate that absence of percolation is, in fact, a sufficient
criterion for uniqueness. Nevertheless, these representations can be compared with and
coupled to other graphical models, e.g. the independent percolation models. When the
comparison models fail to percolate, uniqueness and, under stronger conditions, com-
plete analyticity can be established.

Of course the use of “non-percolation” as a tool for establishing uniqueness or
complete analyticity is hardly new. These ideas are implicitly in play when the clus-
ter expansion is shown to converge and, e.g. in the original derivation of Dobrushin
[D1]. Furthermore, the works of [vdBM] and [N] both use (absence of) percolation in a
dominating measure to establish complete analyticity/uniqueness. However, as will be
discussed to some extent at the end, the results here represent an improvement over the
existing (general) sufficient conditions.

1 Arelated approach, designed for the study of lattice models that approximate field theories, are the random
walk expansions [BFSp, BFSo]. Although it may be that the full statistical mechanics model can be recovered
from this expansion, it is difficult to conceive of explicit expressions, e.g. for the probability of cylinder sets
in terms of the polymer weights. Nevertheless, it is presumably the case that some version of “percolation”
in these expansions corresponds to the multiple phase regime in the lattice system. E.g. in finite volume, the
dominant contribution to the two-point function, in finite volume, could come from terms where the polymer
fills a fraction of the available space. However, to the authors’ knowledge, such a statement has not appeared
in the literature.
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Derivation of the Expansion

In what follows, we will consider only nearest neighbor interaction&®énThe forth-
coming is easily generalizable to any system with pair interactions (i.e. any graph) and,
with some additional labor, to systems with multi-spin interactions including, e.g. lattice
gauge theories.

Let G denote a compact group, lget G x G — R denote a left-invariant function
and consider the Hamiltonian described by the formal expression

1
H=5 Y b(sis): €Y

i,jez?

li—j]=1
Remarks and restrictionga) Here, the left-invariance ¢fis the mechanism for assur-
ing that the spin-states at a single site aggiori equivalent. (b) In the above formula,
each neighboring pair is counted twice. We will get rid of this convention — an§ the
by asserting thdt is symmetric (which is physically reasonable). For future convenience
— but of no physical significance — we will assume that damtdof the lattice has some
fixed orientation and, fofi — j| = 1 use(i, ) as notation for the bond pointing frofhto
j- (c) We will only consider (again on physical grounds) the cases wiisreontinuous,
or in the discrete cases, bounded. Without loss of generality, we will set the maximum
value to zero.

Throughout this work, we will often considgraphicalsubsets oZ¢; that is, collections
of sites and some of the edges (or bonds) connecting nearest neighbor pairs. Although
we will often be notationally cavalier regarding the distinction between the bonds and/or
the sites of a graph and/or the graph itself, in all instances, the meaning should be clear
from context.

Let A C Z% and let|A| denote the number of sites in. The boundarypA, is here
defined as the sites i’ \ A with a neighbor inA and we will useA to denoteA U 9A.
For|A| < oo, and fixed spin configuratiosy, € G921, the Hamiltonian is a well
defined function of spin configuration, € G'1, that can be inferred from Eq. (1) and
will be denoted byH (s, | sga). The partition function om\ at temperature A5 with
boundary conditiony, is given by

Zhmon = / e~ BMsnlsan) Al g, @)

whereds is normalized Haar measure. To avoid cumbersome expressions, we will use
© as notation for both the generic lattieeand the generic boundary conditiep, ;
indeed, we will further extend the notation and allamo stand for superpositions of
boundary conditions, periodic boundary conditions, etc. As usual, the integrand in Eq.
(2) defines the finite volume Gibbs measures@n!; we denote these measures (or
their densities) by, ;(—).

The derivation of the expansion follows closely the derivation of the random cluster
representation in [FK]; a less compressed version (for the discrete cases) of what is to
follow can be found in [CM]. Fot € G, let£(t) = b(e, t) (wheree is the identity) and
defineR; = R,(3) = 1€l — 1. The partition function admits the expression

Z%ﬁ = /dIAIS H(Rsflsj(@) +1), A3)
(i,3)
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where we assume that a single spin configuration provides the boundary condition on
OA or there are free boundary conditions an (Otherwise, a boundary spin integral
would be required.) LeB, denote the set of bonds of — including those connecting

A with OA. Letw C B, and forb € B4, definew, = 1 (or “occupied ”) ifb € w and 0

(or “vacant”) if b ¢ w. Expanding the product in Eq. (3), we may identify each term in
the expansion with ap C B, : wy is occupied if the R” term is selected and is vacant
otherwise. This defines a set of graphical weights:

Wi = [ds ] R @) (4)

(i,4) Ew

which will be our principal tool. We will denote the corresponding finite volume graph-
ical measures (measures i 1}%» = Qg ) by M%ﬂ(—) and we will refer to these as
thegreymeasures. ’

The configurationw divides the lattice into connected components — isolated sites
andclustergcomponents that contain bonds). We will denote the total number of clusters
by k(w) and, for future reference, the total number of componenigby. Obviously,
the isolated sites can be integrated away which allows us to express the weights as a
product over clusters:

k(w)

Wi =1 / d%ls T Ry, (8). ©)

Z] GKg

whereK is the/™ cluster ofw and|K,| denotes the number of sites within this cluster.
Already Eq. (5) hints at a conditional independence for the behavior of spins residing
in disjoint clusters; this matter will be discussed in greater depth after the following
paragraph.

At this point it is worth pausing to make contact with the familiar random cluster
representation for the Potts model. Herec {1,...q}, the group structure is of no
particular significance (we may takg& = Z,) and Rs(3) = ¢’ — 1if s = e and is
zero otherwise (which serves to define the Potts Hamiltonian). We will consider, for
simplicity, the case of free boundary conditionsrExamining Eq. (5) for this case, it
is seen that the “integral” over any cluster vanishes unless all spins of the cluster are in the

same state. In thg¢ cases where this happens, the result is a factﬁ!é?z“(ﬁ), where
|| A|| denotes the number of bonds in the 4eMultiplying in the normalization constant

of 1/¢ for the single-spin measure at each site we obtain the factg®of ! (3)q 1%
forthe clusters,. Now, multiplying the total weight for any configuration by anirrelevant
factor of /%I, and using [components] = [clusters] + [isolated sites], the weight of the

configurationw is given bch(“’)Rlel‘“‘ | (6). This is equivalent to the usual random cluster
weights (with free boundary conditions), il&,”// oc p!l«ll(1—p)llIAI=l1w1lge) with
Re(B) = p/(1 - p).

Although information about the spin-system is clearly lost in going to the grey
representation, this can, in principal, be recovered or “built back’«lLetQy, denote
a bond configuration anel, a spin configuration and assume, for simplicity, that the
boundary condition has been provided by a single spin configuration. Consider the
function

o w R 6
gH,B(5A| )= W??ﬁ() H (6)
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This is clearly positive and integrates to one. We claim U%%(SA | w) has the
interpretation of the conditional Gibbs density given the configuratioimdeed,

LS R

w (i,j)ew

I @y, +0. @)

B {i,5)EB,

z NH @(W)QH g(SA | w) =

wGQBA

70
Zyp
1
79
Z1y

which (cf. Eqg. (3)) is exactly the Gibbsian probability density for the configuratjaon
Furthermore, a brief examination of Eq. (6) —written as a product over clusters as in Eq.
(5) — clearly exhibits the conditional independence mentioned previously.

There are several ways to define percolation in the grey representation. The follow-
ing is the least stringent definition in the sense that if the system does not satisfy the
forthcoming criterion for percolation, it certainly cannot percolate by any other defini-
tion. LetA C Z% with |A| < oo and 0€ A. Let To,0n denote the event that the origin
is connected to the boundary by a path of occupied bonds and define

Pr(B) = m%XH;\{,sgaA (To.on)- 8)
59

If (A) is any sequence of boxes satisfying.; O A andA; ~ ZZ it is not hard to
see that

P(B) = lim Py, (5) ©

exists and is independent of the sequentg)( We say that there is percolation if
P, > 0.

There are a few circumstances where percolation in the grey representation is known
to coincide with a phase transition in the spin-system. In particular, this is the case for
the Potts models [ACCN], the cubic models (generalized Ashkin—Teller models) — for a
certain region of parameters [CM] and, in some generality, systems with discontinuous
transitions [CM]. But this is certainly not always the case. For example, it is possible
to show that for the 4-state clock model @A, percolation in the grey representation
occurs well above the critical temperature [C].

On aless ambitious tack, it seems that the absence of percolation in the grey measure
should imply uniqueness of the limiting Gibbs measure. Along these lines, a consid-
erably weaker statement was established in [CM]: if there is no percolation, then all
Gibbs states are invariant under the actiorGofTo date, a full theorem to the effect
that non-percolative behavior in a grey representation implies the uniqueness of the
corresponding Gibbs measure has required the additional ingredient of a monotonicity
property, e.g. the FKG property of the former. Although such monotonicity properties
are plausible under some general condition of “ferromagnetism” of the Hamiltonian, the
FKG property has only been established in a handful of cases. Notwithstanding the lack
of monotonicity, some progress is possible when the graphical measure is dominated
by a (non-percolating) measure thdieshave the FKG property. This is exactly the
strategy that was used for the case considered in [N] and is operating implicitly in the
derivation of [vdBM]. It is therefore worthwhile to consider comparison inequalities
between the grey measures and other graphical problems such as the FK random clus-
ter model. Via such comparisons, non-perturbative statements about high temperature
behavior are possible.
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A Comparison Inequality

For finite A C Z4, p € (0,1) andg > 0, letv/[*®(—) denote the random cluster mea-
sures with boundary conditions (appropriate to a random cluster model) as specified in
(Cf. the description in the statement of Proposition 1).ffer, s») of the form described

in the remarks and restrictions following Eqg. (1), we defige= min,, , h(s1, s2), the
guantity

Ro = Ro(B) = ”%l — 1 = maxR,(f) (10)
teG
and
R=R() = / dsR.(9). (11)

The following domination bound is elementary:

Proposition 1. For a finite lattice, consider the random cluster measurés ©(-),
where® indicates a boundary condition in which various subsets of the boundary are
considered to be “preconnected” (i.e. they act as a single site) and the rest are left free.
(This includes free, wired and periodic.) Fat of the type that has been described, let
M%,g(—) denote the grey graphical measures with the same boundary condition. Then

MHQ()<VS “(-),

whereP = Ry/(1+Ro) = 1 — e A%l andQ = Ry/R.

Proof. For boundary conditions of the type stated, the weights of the random cluster
measure have the expression

VEEO (L) o [%p]uwuqco(w), (12)

wherecg (w) counts the number of connected components according to the rules speci-
fied by the boundary conditions in. As is well known, these are FKG measures. For
convenience, let us express these measures in “loop form’.(ef) denote the min-

imum number of bonds i that must be removed until what remains is a tree. (As is
the case for the number of components, this depends on boundary conditions.) Using
coW) =£o(w) — ||w|| + constant, we get

Vap (=) o< [

_ P qlwll few)
q(lfp)] o (13)

To establish our claim, we show that the Weigﬂtgﬁ(w) may be expressed in the form

By (), (14)

wl|
Wi o) o W5 5= @I FO () o< [R'(
whereF© is a decreasing function.

Defining F©(w) to be the ratio of the right-hand side of Eq. (5) to the quantity
FHWH[RO/R]‘Z@(“), letw C B, andb € B, \ w. ConsiderF®(w) versusF®(w V b):
The bond either joins two components afor closes a loop i. We claim that in the
former caselV;; 4(w V b) = RW;] 4(w) (@nd hence”® (w v b) = F®(w)). To see this,
consider an integration over one component as in the right-hand side of Eq. (5):
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VT/}jﬁ(C)z/ 11 Rsiflsjdm's, (15)
(

i,j)€C

where here one of the “sites” may include a boundary component andsifa single
site, the integrand is taken to be unity. For any gite C, if the integration is performed
so thats, is integrated last, it is seen that the final integrand is a constant independent
of s,. Indeed, this follows directly from the invariance of Haar measure: For fixed value
of s,, let us compare this last integrand with its valugyat, ¢ € G. Noting that the
s, dependence always comes in the forpts;, we perform the other integrations after
the change of variables — gs;, j 7 a. The result, after the fir$C| — 1 integrations,
is thus manifestly independent gfso indeed the final integrand is a constant. Now
consider two disjoint componentS,, andC,, of the configurations and suppose that
b joins anz € C, with ay € C,. It follows immediately thaﬁ/g7ﬁ(03; uC,uUb) =
Ei Wgﬁ(C’{)Wgﬁ(Cy) because here, saving thgands,, integrations for last, we get
Wi 5(C)W5, 5(Cy) x [ dszdsyR 1, by the previous argument.

In the case wherkcloses a loop i, the derivation is simple: i joinsz toy, as an
upper bound we replace the new faCtOIR?gElsy that appears in the integrand defining

the weight forw Vv b with Rg. This results inFQ(w Vb) < FO(w). |

Remark. Following the same derivation, itis easily shown that for virtually any boundary
condition® in the grey system, we get the above sort of dominations if we compare to the
random cluster measure with wired boundary conditions. In particular (and of particular
importance) are the’s that come from a fixed spin configuration at the boundary. Here
the argument is identical if the “new bond” is not connected to the boundary. If the new
bond attaches a previously isolated cluster to the boundary, the derivation is the same
as when two isolated clusters are joined: the grey weight gets multipli¢tidnyd, the
number of loops has not changed. Finally, if the new bond joins two clusters that are
already attached to the boundary, then, by the definition according to wired boundary
conditions, the number of loops increases by one, and, as in the previous loop case, the
new weight factor does not exce&y.

Let us also observe that these dominations are identities for the Potts models and
therefore expected to be fairly sharp for models that are “close” to the Potts models:
systems with a significant energy gap and relatively few low-lying states that occur only
when the spins are nearly aligned. As an example, suppose the spins take values on the
unit circle and are parameterised #y0 < 6 < 2r and, using additive notation, a pair
interaction given by (6; — 6;). If V(0) = —(1 + cosd), this is the usuaK'Y model, let
us consider the case whev&d) = —1 if |0| < e and is zero otherwise. Here we have
Q =1/eand,P =1— e P If ¢ < 1 then, using the well known results for the Potts
model (cf. the discussion before Theorem 3) we can show uniqueness — and exponential
decay of correlations down to temperatufes- satisfyinge® > const.¢~/%).

An FKG Decomposition

To implement our strategy, we need some standard terminology from percolation theory.
In what follows, we will focus on a fixed C A. Consider a minimal set of bonds that
separate& fromdA. Such an objectis often better envisioned on the dual lattice and will
be referred to as a separating surfacé. s such a surface, we will denote the interior
graph — sites and bonds with both endpoints that are irGiddoy I(C). Similarly, the
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exterior graph will be denoted b¥(C). Since|A| < oo, we may consider the entire
collectionC1, ..., Cy of such separating surfaces. We@t C Qg, denote the event
that all the bonds ir’; are vacant. Finally, for future reference, let us observe that the
surfaces{C;} have a natural partial order by containment of interiors. CetC C;
denote the event

C, = {w € C, | C; is the outermost vacant surface separafinjom 0A}. (16)

We remark on two standard features of th€seFirst, any configuration in whicl/ is
disconnected fror@A belongs to a uniqu€; and second, the eveft; is determined
exclusively by the bonds i6'; U E(C}).

Since, forH of the type described, the weight facwﬁ_ﬂ is given by a product
over clusters, it follows that restriction of the conditional graphical measure to the set
U, H%’B(, | C,) |u, is identical to (the restriction of) the measure {@;) with free
boundary conditions o@';:

1(Ccy),
15, (1 C) lo= i () o - (17)

Indeed, the above holds for the restriction$¢6’;). Furthermore, considering the Gibb-
sian (built back) viewpoint, it is clear that under the condityn the spins on the inside

of C; have the same distribution as the spin-system with free boundary conditions on
C;. Explicitly,

1(Cy),
95 5= 1 C) l1en= 9m " (), (18)

wheregs, 5(— | C;) =X, 15, 5w | C)g5, (= | w).

Next, let us define a version of FKG dominance that is slightly stronger than usual.
Suppose that andy are probability measures on some firfitg: = {0, 1}* and that
FKG-dominateg inthe usual sense and in addition, for dhy. X' and any configuration
nr onT, then for allwr < nr, we haveu(— | wr) < v(— | nr). Then we will call such a

relationshipextended~KG dominance and exeréGss this relationship by the syrbol

We remark in passing that in the above definition and in the decompositioﬁmthat will
follow below, there is no requirement that either measure have the FKG property in its
own right.

Ofimportance in the present context is the fact that for systems of the type described,
if © is any boundary condition in the spin system, the corresponding grey measure
satisfies

v () < e iy 5(0), (19)

where P and ) are as described in Proposition 1. Firstwif € Qr, we claim that

vop ™ (= | wr) FSKGM%B(_ | wr). Indeed, the vacant bonds ©f are accounted for

by considering a graph with these edges deleted. The occupied clustardhatt are
detached from the boundary constitute (part of) a boundary condition 0 of the
type described in Proposition 1, while the bondsijrthat attached tO A are equivalent
to a superposition of spin-state boundary conditions on this porti@gi{ &f\ T'). But
then, ifnr = wr, we automatically have, ;" (— | nr) < v5/5*" (= | wr) (and
hencevy, 5" (— | nr) < ji5,5(— | wr)) by the strong FKG property of the random

cluster measures witf) > 1.
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Wheneverv and i are measures on @y with v < pu, we claim thatu ad-
FKGe

mits a family of decompositions that are analogous to decompositions into conditional
measures for cylinder events. However here the measimiuences the nature of the
“conditional measures” and completely determines the coefficients of the decomposi-
tion. We will illustrate with the simplest example: LEtC Y. Then we claim that

may be expressed as

=)= Y v (), (20)

nreLr

where eachu,,.(—) is a probability measure which itself is a convex sum of measures
obtained by conditioning on configurations that are belowr:

e (5)= > Aplwr)p(— | wr) 1)

wriwr=<nr

with0 < A, (wr) < 1andy’ Ay (wr) = 1. Similar decompositions occur for a wider
variety of partitioning events. In the general case, the conditioning events are not always
situated on the same set; inddedhay be random but should be constructed via a growth
algorithm. Of immediate importance is whéncoincides withC'; U E(C;) whenever

the eventC; occurs in the)-configuration.

One can formulate these decomposition in terms of “couplings” as follows: The pair
(wr, nr) are constrained in such a way that always lies belowr and the conditional
distribution ofw, depends only onr. The measures,. and\,,. canthen be interpreted
as the conditional distributions givej. Expressed in this language, the decomposition
is not dissimilar to the couplings used in [vdBM] and in [N].

A precise statement of the generalization and a proof of the existence of such de-
compositions will be provided in the Appendix. On this basis, we have the following:

Proposition 2. Let A C Z4, |A] < oo, U C A, and let’H be a Hamiltonian of
the type described in Eq. (1) and the remarks that foIIow.A%%(—) denote a grey
measure withp denoting boundary conditions coming from a single spin configuration
or combinations thereof and Ieéff;A’w(—) denote the random cluster measure with
wired boundary conditions oflA and with parameter§) = Q(H, 5) andP = P(H, ()

as described in Proposition 1. Thqm%ﬂ(—) admits the decomposition

N
— FKA,
15,5(2) = DS CHNE, e 5 (),
=0

where forj =1... N,
— Gy, f
12 05() L1y = e 3 (),
and the measurﬂfgo;ﬁﬁ(—) (with Cq denoting the configurations where there is a con-

nection betweefy anddA) is a certain combination gf’s that have been conditioned
on cylinder events defined outsidelaf

Proof. This is an immediate consequence of Corollary Il to Proposition A.1. (Cf. also
the discussion following the proof of Corollary 1I). O
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Principal Results

Our principal results will follow after a few definitions and remarks pertaining to the
random cluster models: Consider the random cluster mode&?onith parameters

g > 1 andp € (0,1). Define P,.(q,p) as in Eq. (9) — here the optimizing boundary
condition is known to be the wired boundary condition. bdt;) denote the percolation

threshold:
pe(q) = inf{p | Po(q,p) > 0}. (22)

For the sequence of hypercubkg of sideL centered at the origin, let.(q) be defined
as the supremum of the set @6 for which the estimaté®s , (¢, p) < Die~P2L holds
uniformly in L for someD; < oo andD, > 0.

Remark.Obviouslyp.(q) > w.(g). An additional notion of a transition point may be
defined: Assume for simplicity that > 1 and letr,(p, g) denote the probability, in
the limiting wired measure, that the origin and the poimt(;, . .., 0) are in the same
connected cluster. Standard subadditive arguments show that
1 . logm,

im 097

(23)

n— 00 n

exists. The pointr.(¢) is defined byr.(¢) = sup{p | £(¢,p) < oo}. By straightforward
argumentsp.(q) > m.(¢) > w.(q). It is widely believed that for al§ and in all dimen-
sions,p.(q) = m.(q) = w.(¢) and that ind = 2, the unique transition point is located
at the self dual poingp(q) = /q/(1 +/q) (which,a priori, lies in [r.(g), p.(q)]). For

q =1, these issues have all been settled starting with [K] and ending with [AB, MMS].
For ¢ = 2 (starting with [O] and ending with [ABF]) these problems have also been
solved. Forg > 1, a variety of techniques can be brought into play: Expansion tech-
niques [LMMsRS] (for genera}) or reflection positivity [KS, CM] (for integey) can

be used to show thai.(q) = 7.(¢) and that ind = 2, these coincide witlpp(q).

The stronger resufi.(q) = w.(q) is established (for large and general dimension) in
[VEFSS]. Using different methods, exclusive to two dimensionsg f8r25.9 the result
pe(q) = w(q) = pp(q) is proved in [AL and G]. Ford = 2 and integers (of relevance)
between 3 and 25, it can be shown thatq) > pp(¢ — 1) [Al,]. Ford > 3 and mod-
erately largey, it is known thatw.(q) > [(¢ — 1) — (¢ — 1)%]/[(; — 2] [Al 2] which
agrees, to lowest non-trivial order, with the lakgexpansion fop.(q) in [LMMsRS].

Theorem 3. Consider a spin-system with Hamiltoni&hat inverse temperaturg as

described in Eq. (1) and in the paragraph that follows anddetand P denote the
guantities defined in Proposition 1. ThenAf < p.(Q), there is a unique limiting
measure for the spin-system andPif< w.(Q), the spin-system has weak mixing.

Proof. Let A C Z%, U C A and consider the spin system with two boundary condi-
tions ondA denoted by> and®. Let VarU(g% 5 g% [3) denote the variational distance
between the two measures:

1

Vat (55,5095, = 5 [ 415195 (o) — o5 o). @4)

Finally, let 77 94 C Qg, denote the event that there is a connection betwéemd
dA. (Note thatTy o = Co.) We claim that Vaw (g5, 5, 95, 5) is bounded above by

FK;ANu
2055 (Tu0n)-
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Let us start things off with the following elementary consequence of the decompo-
sition described in Proposition 2: For eache Qg, , let Jy(w) denote those bonds in
the connected component©f If { C B, is a set of bonds that are connectedt¢and
therefore a candidate to bi) we claim that

15 5= Q= 1§, 5(Ju = Q) = vy BN (Tu o) g 40 5(Ju = O — 1E 30 5(Ju = O)-

(25)
Indeed, forj = 1,..., N, if ¢ pokes throughC;, then bothug ., 5(Ju = ¢) and
/ng;Hﬁ(JU = () are zero because these measures insist that all the borddsave

vacant. On the other hand, @; N ¢ = 0, the event/y = ( is determined in/(C;)

where these measures agree. Thus, the only surviving term in the difference of the two

decompositions from Proposition 2 is the zeroth which is the right-hand side of Eq. (25).
In what follows, we will label a generi¢ with a subscripted> (for good) if no

bond of¢ touchesdA and with a subscripted otherwise. Recall, fow € Qg, , the

objecth%7ﬂ(sA | w) or the similarly defineql;%ﬂ(sU | w) obtained by integrating out
the spinsinA \ U. Itis clear tha'g%ﬂ(sU | w) depends only od (w) so we may write
g%ﬁ(sU | Ju(w)) for these conditional densities. However,Jif (w) = (s for some

“good” (¢ then the density is independent®fand we will write g g(sv | (). We
thus have

951.500) = > 15, 55, 5(su | w)
w

=31 (W) = Qg8 550 | €)
¢

=) sy 5 (Juw) = Ca)grssu | Ca) + Y sy 5(Juw) = C)g5, s(su | Ca)- (26)
[€€] (B

Obviously there is a similar expression for theboundary condition.
The variational distance may now be estimated:

2Vary (95, 31 95, 5) < /dlUlSZQH,ﬁ(SU | ¢a)lisy (T (W) = Ca)—
Ca

—15) 5(Ju (W) = (o)l +/d|U‘SZu%’B(JU(w) = (B)g5, 5(su | (o) +
(B

+Y 15 5o (w) = C)gs s | Cp)- (27)
§:]

In both terms, we may now simply integrate the spins away — thesprabability
densities. The remains of the first term can be estimated using Eq. (25):

SIS, 4o @) = ) — 1 5(Jo(w) = Ce)l <
€€]
< vl Toon) Y[ s (0(0) = O+ i p(Tu ) = O1 =
¢
= 2”5,}1{3;[\’“) (Tu,on)- (28)
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Meanwhile, the second term is ju,s@ (Tu.an) *+ :“H s(Zu,04) Which by the (basic)

domination is also bounded by’ (71,91). We have established the claim that
followed Eq. (24).

The theorem is now easily proved:Af < p.(Q) then for fixedU, v 5" (Tv,01)

vanishes as\  Z< while if P < w.(Q), it is easily shown that there are positive
constantd); and D, that are independent &f and A, such that

v (Tu0n) < Dg e eyl (29)
xedU
yedA
which implies weak mixing. O

Corollary. In two dimensions, for the above systems with a discrete spin-space, the
condition P < w.(Q), implies that the interactiorfH has the restricted complete
analyticity property.

Proof. Thisis an application of[MOS]where it was established that for two dimensional
discrete spin-systems, weak mixing implies “strong mixing for squareséstricted
complete analyticity. O

Ford > 2, the following is of interest:

Theorem 4. For discrete spin-systems of the type described in the statement of Theo-
rem 3, if P < p.(1), the interactionGH is completely analytic.

Proof. We will use condition Illc of [DS] which for present purposes may be read as
follows: Let A andU denote sets as described earlier andijgtands,, denote two
boundary conditions that differ only at a single sjte 9A. Then complete analyticity
follows if for all y and for any sucls, ands},,

A,s _ —
VarU(gHSa/\’gHvsﬁdA) < Ds Z e~ Delz—yl (30)
zeoU

with Ds and Dg positive and independent &f, A and the boundary conditiong, and
Sy,

8AThe strategy is identical to that used in the proof of Theorem 3 except that here our
partitioning eventsA, ..., Ay feature the surfaced,, ..., Ay that separaté& from
y. Indeed, lefA ; denote the event that all the bondsdnare vacant and Igt(A ;) denote
the region that can be reached by a path ingiddat starts froni/ and does not use
any bond in4;. ThenuA Sf’A(— | Aj)i1(a,) is identical to the grey measure with the
boundary condltlon prowded by the configuratias, restricted todI(A4;) N dA and
free boundary conditions a#;. Itis evident that this is the same as the restriction of the
similar conditional measure witky, replaced by}, . With this observation in mind,
the derivation is now identical to the one in the previous theorem with the result

Vary (770" , gy, fM) < 205 M (Tu,), (31)

where 7y, is defined similarly to the previoug’s. By the well known domination
inequalities, we may replacgby 1 in which case the stipulation “wired” is meaningless.
Finally we havef 1 (Tu,,) < 3, cp v p(Tey) < el*791/8P), whereg, the correlation
length, is positive forP < p.(1). Thus, withDs = 2 andDg = 1/¢£(P), complete
analyticity is established. [
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Brief Comparison to Other Methods

Actual (general) conditions under which expansions converge are often “nearly exis-
tential” in their statement and then easily proved at high temperature or low activity.
One exception is [B] where a long string of equations leading back to Eq. (2.8) allows
us to calculateP? < ¢/2d = CA (complete analyticity) where ~ .082. Of course
orthodox enthusiasts will argue that this condition is not optimal. In [KP], one of the
better bounds is obtained. Here it is required #att < k/2d with k ~ .206, where
e~ provides a bound on the weight of the “contour functional” for contoursf
length|y|. In simple cases, it can be shown thaf ~ Ry ~ P (if P < 1) hence this
is similar to the above mentioned with the constant improved by a factor of 2-3. By
contrast, substituting the mean-field boyn@l) > \~1(d) > 1/(2d — 1) with \(d) the
connectivity constant of the lattice, we obtdih< 1/(2d — 1) = CA. This represents
a substantial improvementdf>> 1 and, even more so in moderate dimensions because
A and/orp.(1) have improved estimates.

The second general method involves the calculation of variational norms. The most
prominent example is the original result of Dwhich, in the present context, reads
pp < 1/2d = CA. (See [DS].) Hergp, is the maximum variational distance between
two single site measures whose neighbors differ at a single site. The more recent results of
[vdBM] providesppas < s.(d), wheres.(d) is the site percolation threshold apd,, is
similartopp, but here the boundary conditions are allowed to be different at any or all the
neighboring sites. Thusp < ppas. For highly frustrated systems, it is argued [vdBM]
thatpp ~ ppas and hence the advantagespfiwheres.(d) > 1/(2d — 1)) versus 12d.
However, for ferromagnetic-type systems, the impact of the full neighborhood is felt
andpp,y is significantly larger thapp. (If 5 < 1itis larger by a factor of 2d.) Thus
the Dobrushin condition is usually better with the main advantage of [vdBM] coming in
d = 2 (wheres, = .59 may be accepted on faith). Here, if we make certain uncontrolled
approximations, we self consistently arrivepat ~ H P with H a number in the range
of 2-5. However, it is difficult to really tell: These variational norms are again easy to
estimate as “small” for extreme values of parameters but, in practical situations, they
are very difficult to work with, especially for the derivation of general conditions.

In this work, the two-dimensional systems divide into two cagess 1 and@ of the
order of one. In the latter case, it often happensdhat 2 and we may compare directly
to the Ising case which gives RCA (restricted complete analyticitylpfer v/2/(1+v/2).
On the other hand, for larg@ (thanks to [VEFSS]) our condition for uniqueness is the
same as that of RCA which reafts?y < 1 == RCA. Thus, in the example following the
proof of Proposition 1 (discretized for convenience) the Corollary to Theorem 3 implies
RCA down to temperatures satisfying < 1 + (2)%2 (which is correct to within
constants [C]). An unadorned cluster expansion will not pick up ttependence and an
actual variational calculation may even produce the wrong direction efdtependence
(as in [CKS] for another large model). Now it may be possible that a better variational
calculation picks up the correct trend withBut for largeq and no extra symmetry
(as in the Potts models) the number of calculations really required is unmanageable. At
this moment of writing, we believe that the most tangible asset of these methods is the
intrinsic simplicity of the required calculations.
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Appendix

Here we establish the decomposition formulas discussed in the text. Let us start off with
the one bond case for measures with the usual sort of FKG domination:

Proposition A.1. Consider measures(—) and pu(—) defined on some finitg0, 1}~
that satisfyr < p. Assume, without loss of generality, théte 3, v(b = 1) Z 0. Then

G
for anyb € Ewae may write

=)= v, (),

7,=0,1

wherey,, -o(—) = p(— | wp = 0)andpu,,=1(—) is a convex combination gf{— | w; = 1)
andu(— | wy = 0).

Proof. We write, tentatively,

(=) = v(np = O)u(— | wp = 0) +
(= D= [wp = 1)+ (1= Npu(=[wp=0)] (A1)

and attempt to solve fox. This is accomplished by directly expandingn terms of its
conditional measures and equating coefficients. The result is

wlwp = 1)
= . A2
v(w, = 1) (A-2)
this provides a sensible solution sineeC p impliesA < 1. O

FKG

Remark.If it happens that/(b = 1) = 0 the above decomposition is still valid (and
trivial) if the formulas are properly interpreted —indeed, all the ill-defined measuresin the
decomposition appear with zero coefficient. Hereafter, we will assume this interpretation
and omit the provisos analogousu@ = 1) # 0.

An immediate corollary is the “fixe™” decomposition described in the text:

Corollary I. Let X, i, v denote the quantities described above but now let us assume
thatv(—) < wu(—). Thenforany™ C X, we may write
FKGe

w(=) =3 v (),
nr

where the sumruns over aj € {0, 1}" and where the.,,.(—) are convex combinations
of the; measure conditioned on configurations € {0, 1} that lie belowny:

(=)= D Applwr)p(— | wr),

wr: wr=<nr

0< Ay <landd, Ayu(wr) =1



A Criterion for Unigueness 461

Proof. Suppose that such a measure can be constructed for any’ with k& elements,
let I" denote one such example andIét=T U b with b € X'\ I". We write the full
expansion for(—) with the further expansion qf(— | wr) into the two possibilities
for wy:

=)= vlr) D Agelwn)lilws = 1] wr)p(= | wr,wp = 1) +

nr wr=nr
+u(wy = 0 [ wr)u(— | wr,wp = 0)]. (A.3)

Now we wish to write

=)= vl =1) D Agmalwr, wo = D= | wrywp = 1) +

nr wr=<nr
(e, =1) Y Agp=a(wr, wp = 0)u(— | wr,wp, = 0) +
wr=nr
+(nr, = 0) Y A m=o(wr, wp = O)pu(— | wr,wp = O)].
wr=nr

As we will demonstrate, this can be (non-uniquely) accomplished by simply equating
coefficients. First off, we are forced with

plwy = 1] wr)

#(nb =1 ‘ nr) )‘771" (WF) (A4a)

)\nrmh:l(wrbwb = 1) =
which lies in [Q 1] by the inductive assumption (fox,.(wr)) and the extended FKG
dominance. As for the remainder, there is still a great deal of leeway. A natural choice is

Anpe,mp=o(wr, wy = 0) = A (wr), (A.4b)
which leaves us with

0)=[1- p(wy = 1| wr)

w(ne =11 nr) 1y (wr). (A.4c)

Appmy=a(wrs wp =

This provides the desired decomposition. [

Remark.It is reemphasized that the above construgtgd —) is by no means the only
possibility. Indeed, the order in which the bonddodre “processed” appears to effect

the details of the outcome. We also remark that all of the above results (and those which
follow) can be derived from the technically weaker condition than extended dominance.
Indeed, all that is needed is the corresponding inequality for single site occupations.
However, it is hard to imagine a system that satisfies the weaker condition without
enjoying the stronger property.

The generalizations to situations of the sort needed for this work follow from the
consideration of partitioning events that can be defined gewth algorithm Let us
start with an informal description: The algorithm starts with some (predetermined) bond
bo. The bond is “checked” to seerjf,, is occupied or vacant. Depending on the outcome,
the algorithm picks a new borid (7). This new bond is checked and, depending on
My, aNdn,,, @ Nnew bond, is determined and so forth. The procedure continues until
a stoppingcondition is fulfilled (which depending on the algorithm could even happen
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on the first step). The algorithm is defined so that any possible choice of outcomes will
eventually lead to a stopping condition — this partitions the configuration space.

Let us illustrate this procedure with the “fixed set” rule as featured in the above
corollary. The bonds df are deterministically orderety, b1, . . . , by and the algorithm
dictates that afteb;_; has been checked, go to the bdndk = 1,2,... N; after the
bondby has been checked, stop.

The formal definition in the general case is as follows:

Definition. LetQy = {0,1}* be a finite space and consider a growth algoritdm=
(D1, ... Dyy; bo) defined as follows: Thé,, are functions with values i&' U [stop]and

the domains are particular configurations on particular subsgtsf 3. In general, if

nr is in the domain ofb;, and @ (nr) # [stop], then®(nr) € X'\ . Thus all possible
“alive” sets at thek™ stage are of sizé+1. Let=), = {(T«,nr,)} denote the collection
of all possible alive sets and configurations at tfestage. These may be generated as
follows: =g = {(bo, 7b,) }

S ={(,nr) | T =T U ®paa(nr); @rer(nr) # [Stop]
e = (0, Negatrn)s (T, 1) € Sk} (A.5)

It is required that®,.; be defined on alhr with (T, nr) € =Z%. Finally, if relevant,
whenk = [|T'|| — 1 so the first component of eaéh |1 is all of X, it is required that

@y —1(nx) = [stop]

It is evident that such an algorithm partitiofs; into disjoint eventsQ sy, = U, K,
with K, N K,, = 0 if y # ¢'. The K, are defined as cylinder event&, =
{nr,; (Ca,nr,) € =y for somek, ®y.1(nr,) = [stop]}. With this in mind, the gen-
eralization used in the text is another corollary.

Corollary Il. Let X, u, v be defined as in Corollary | and leb denote a growth
algorithm as defined above. Thgrcan be decomposed:

(=)= v e, (),
wherenr_ denote the partitioning cylinder events of the algorithm and where

poe, (<) =Y g (= | wr,),

Wry =Ml
with the\,,. denoting convex coefficients.

Proof. Fix n and suppose that the corollary is true for any algorithm that always stops by
then™ stage. (That is the cardinality of every “alive” set is at mosThis holds ifn = 1

by Proposition A.1 and now the method of Corollary | readily establishes Corollary Il
by induction omn. |

Example. For the situation discussed in Proposition 2, the growth algorithm is straight-
forward: The bonds ol are deterministically ordered ahglis defined to be the lowest
bond that is touching the boundary &f The connected (occupied) clusterbgfis ex-

plored using the ordering to determine the sequence of bonds checked until this cluster
hits the boundary of/ or is fully explored (i.e. cutoff by vacant bonds). In the former
case, we get a[stop] and in the latter case, we uncover the lawesplorecond touch-

ing the boundary ofA and repeat. If this procedure exhausts all the bounds touching
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the boundary ofA and never gets tt/, then there is evidently no occupied connection
betweerv A andoU and we get a [stop] when the cluster of the last bond touching

has been fully explored. In the latter cases, the exposed configuration defines the outer-
most separating surfacg;, j = , N. For conceptual convenience, we may take all
thenr’'s that produce the same ev@} and combine the resulting,.’s into yc,(—),

j =1...,N. What remains — where the connected componeral/bfsucceeded in
reachmgU, defines the everiiy and the measurec,(—). In a similar fashion, one can
define a growth algorithm for the decomposition used in Theorem 4.
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