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ABSTRACT: We present a large-deviations/thermodynamic approach to the classic problem of per-
colation on the complete graph. Specifically, we determine the large-deviation rate function for the
probability that the giant component occupies a fixed fraction of the graph while all other components
are “small.” One consequence is an immediate derivation of the “cavity” formula for the fraction of
vertices in the giant component. As a byproduct of our analysis we compute the large-deviation rate
functions for the probability of the event that the random graph is connected, the event that it contains
no cycles and the event that it contains only small components. © 2007 Wiley Periodicals, Inc. Random
Struct. Alg., 00, 000–000, 2007
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1. INTRODUCTION

For physical systems, mean-field theory often provides a qualitatively correct description
of “realistic behavior.” The corresponding analysis usually begins with the derivation of so-
called mean-field equations that are self-consistent relations involving the physical quantity
of primary interest and the various parameters of the model. This approach may be realized
and, to some extent, justified mathematically by considering the model on the complete
graph, where each constituent interacts with all others.
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2 BISKUP, CHAYES, AND SMITH

As an example, let us consider the Ising model on a complete graph Kn of n vertices. Here
we have a collection of ±1-valued random variables (σi)

n
i=1 which are distributed according

to the probability measure µn({σ }) = e−βHn(σ )/Zn,β , where

Hn(σ ) = −1

n

n∑
i,j=1

σiσj − h
n∑

i=1

σi (1.1)

and whereβ, h are parameters. The relevant physical quantity is the empirical magnetization,
mn(σ ) = n−1

∑n
i=1 σi. In terms of this quantity, Hn(σ ) = − 1

2 n[mn(σ )]2 − hmn(σ ) and so

En(σ1|σj : j �= 1) = tanh
[
β(mn(σ ) + h)

] + O(1/n). (1.2)

This permits the following “cavity argument:” Supposing that mn tends, as n → ∞, to a
value m� in probability, we have that m� = limn→∞ En(σ1) obeys

m� = tanh
[
β(m� + h)

]
. (1.3)

This is the mean-field equation for the (empirical) magnetization. Of course, the concen-
tration of the law of mn still needs to be justified; cf [18] for details.

In the context of percolation [21], the relevant mean-field model goes under the name
the Erdös-Renyi Random Graph. Here each edge of Kn is independently occupied with
probability α/n, where 0 ≤ α < ∞, and vacant with probability 1 − α/n. The relevant
“physical” quantity is the giant-component density ��, i.e., the limiting fraction of the
vertices that belong to the giant component of the graph. The corresponding mean-field
equation,

�� = 1 − e−α�� , (1.4)

is also readily derived from heuristic “cavity” considerations. As is well known, �� = 0 is
the only solution for α ≤ αc = 1, while for α > αc there is another, strictly positive solution.
This solution tends to zero as α ↓ αc; hence, we may speak of a continuous transition.

While Eqs. (1.3–1.4) are indeed straightforward to derive, matters at the level of mean-
field equations are not always satisfactory; the problem being the existence multiple
solutions. As it turns out, for the percolation model (as well as the k-core percolation)
the proper choice is always the maximal solution, but prescriptions of this sort generically
fail, e.g., for the Ising model (1.3) with h < 0 and, as often as not, whenever there is a
first-order transition. Thus, one is in need of an additional principle which determines which
of the solutions is relevant.

The existing mathematical approach to these difficulties—e.g., for percolation [20], see
also [2,11,23], or the k-core [32]—is to work with sufficient precision until the mean-field
conclusions are rigorously established. Another approach—which admits some prospects
of extendability beyond the complete graph [5, 6]—is to supplement the picture by the
introduction of the mean-field free-energy function. For the Ising model, this is a function
m �→ �β,h(m) such that

µn

(
mn(σ ) ≈ m

) = e−n�β,h(m)+o(n), n → ∞, (1.5)
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COMPLETE GRAPH PERCOLATION 3

i.e., m �→ �β,h(m) is the large-deviation rate function for the probability of observing the
event {mn(σ ) ≈ m}. This spells the end of the story from the perspective of probability
and/or theoretical physics: One seeks the minimum of the free energy function, setting its
derivative to zero yields the mean-field equations with the irrelevant solutions corresponding
to the local extrema which are not absolute minima; see again [18].

The free-energy approach to mean-field problems has met with success in Ising sys-
tems and, to some extent, it has been applied to the Potts and random-cluster mod-
els [12, 16, 19, 28]. However, no attempt seems to have been made to extend this
technology to “purely geometrical” problems on the complete graph, specifically, ordi-
nary percolation or k-core percolation. The purpose of this note is to derive the large-
deviation rate function for the event that the random graph contains a fraction � of
vertices in “large” components. As we will see, the function has a unique minimum
for all α, which coincides with the “correct” solution of (1.4). We do not necessarily
claim that the resultant justification of this equation is easier than that which already
exists in the literature. However, the picture presented here provides some additional
insights into the model, while the overall approach indeed admits the possibility of
generalizations.

2. MAIN RESULTS

Consider the set of vertices V = {1, . . . , n} and let (ωkl)1≤k<l≤n be a collection of i.i.d. ran-
dom variables taking value one with probability p and zero with probability 1 − p.
Let E = E (ω) be the (random) set {(k, l) : 1 ≤ k < l ≤ n, ωkl = 1}. In accord with
the standard notation, cf [2, 11], we will use G (n, p) to denote the undirected graph with
vertices V and edges E . Of particular interest are the cases where p decays to zero propor-
tionally to 1/n. Since these are the only problems we will consider, let us set, for once and
all, p = α/n for some fixed α ∈ [0, ∞). We will denote the requisite probability measure
by Pn,α .

In order to state our main theorems, we need to introduce some notation. First, consider
the standard entropy function

S(�) = � log � + (1 − �) log(1 − �) (2.1)

and let
π1(α) = 1 − e−α . (2.2)

In addition, consider the function

	(α) =
(

log α − 1

2

[
α − 1

α

])
∧ 0 (2.3)

and note that 	(α) < 0 if and only if α > 1. Finally, let us also define

�(�, α) = S(�) − � log π1(α�)

− (1 − �) log
[
1 − π1(α�)

] − (1 − �)	
(
α(1 − �)

)
. (2.4)

Then we have
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4 BISKUP, CHAYES, AND SMITH

Fig. 1. The graph of the free energy function � �→ �(�, α) for four distinct values of α. For α ≤ 1,
the function is minimized by � = 0, while for α > 1 the unique minimum occurs at � > 0. In
any case, the minimizer is the maximal positive solution for �� from (1.4). The dashed portion of
the graphs for α = 1.6 and 2.4 marks the part where the background contribution, 	(α(1 − �)), to
�(�, α) in (2.4) is strictly positive. This rules out the zero solution to (1.4) for all α > 1.

Theorem 2.1. Consider G (n, α/n) and let Vr be the set of vertices that are in connected
components of size larger than r. Then for every � ∈ [0, 1],

lim
ε↓0

lim
n→∞ Pn,α

(|Vεn| = 
�n�)1/n = e−�(�,α). (2.5)

An inspection of Lemma 6.2 reveals that, conditional on {|Vεn| = 
�n�}, with ε > 0,
there will be only one large component with probability tending to one as n → ∞.

Figure 1 shows the graph of � for various values of α which is archetypal of free-energy
functions in complete graph setting. The figure indicates a unique global minimum; direct,
albeit arduous differentiation of (2.4) yields the fact that all local extrema satisfy the mean-
field equation (1.4). The extremum at � = 0 is ruled out for α > 1 by noting that, under
these conditions, the last term in (2.4) is strictly positive.

The corresponding conclusion also may be extracted from the following probabilistic
argument: Let m = 
�n� and note that e−nS(�) is then the exponential growth-rate of

(n
m

)
.

This allows us to write

e−n�(�,α) = eo(n)

(
n

m

)[
π1(α�)

]m[
1 − π1(α�)

]n−m
e(n−m)	(α(1−�)). (2.6)

Neglecting the 	-term (which provides a lower bound on �), one sees a quantity reminiscent
of binomial distribution. Well-known results on the latter inform us that the right-hand side
is exponentially small unless

π1(α�) ≈ m

n
, (2.7)
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i.e., unless � satisfies the mean-field equation (1.4). If 	 is set to zero, there are degenerate
minima for α > 1; however, the 	-function will lift the degeneracy and, in fact, create a
local maximum at � = 0 once α > 1. Meanwhile, in the region of the maximal solution, 	

has vanished and the aforementioned approximation is exact.

Remarks 2.2. (1) A closely-related, but different problem to the one treated earlier has
previously been studied using large-deviation techniques. Indeed, in [30], O’Connell derived
the large-deviation rate function for the event that the largest connected component is of
size about κn. Note, however, that this does not restrict the total volume occupied by these
component. For κ close to �� from (1.4)—explicitly, as long as the complement of the large
component has effective α less than 1—O’Connell’s rate function coincides with ours.
But once κ is sufficiently small, this conditioning will lead to the creation of several large
components whose total volume is such that their complement is effectively subcritical.
Consequently, O’Connell never needs to address the central issue of our proof; namely, the
decay rate of the probability that supercritical percolation has no giant components. (This
is what gives rise to the term 	 in (2.4) and the dashed portion of the graph in Fig. 1.) In
fact, this rate function is basically a concatenation of many scaled copies of the undashed
portion of the graph in Fig. 1.

(2) While the 	-term in (2.4) has a nontrivial effect on the large-deviation questions
studied here, it does not play any role for events whose probability is of order unity (or is
subexponential in n). This is because 	 “kicks in” only for � away from the minimizing
value. This is not the case for the k-core where the corresponding large-deviation analy-
sis (M. Biskup, L. Chayes, and S. A. Smith, unpublished) suggests that the analogous term
kicks in right at the minimizer and may even affect the fluctuation scales. One way to
bring 	 out of the “realm of exponentially-improbable” for percolation would be to give
each configuration a weight suppressing large component. However, we will not pursue
these matters in the present note.

(3) Our control of the rate function is not sharp enough to provide a detailed descrip-
tion of the critical region, i.e., the situations when α = 1 + O(n−1/3). The correspond-
ing analysis of the scaling phenomena inside the “critical window” has been performed
in [10, 13, 27, 29, 31]. On the other hand, for α > 1 one should be able to sharpen the
control of the rate function near its minimum to derive a CLT for the fluctuations of the size
of the giant component.

Several ingredients enter our proof of Theorem 2.1 which are of independent interest.
We state these as separate theorems. The first one concerns the exponential decay rate for
the probability that the random-graph is (completely) connected:

Theorem 2.3. Let K denote the event that G (n, α/n) is connected. Then

Pn,α(K) = (1 − e−α)n eO(log n), n → ∞, (2.8)

where O(log n) is bounded by a constant times log n uniformly on compact sets of α ∈
[0, ∞).

We remark that Theorem 2.3 holds with eO(log n) replaced by C(α) + o(1), see [4] for
a proof. However, the requisite steps seem far in excess of the derivation in Section 3.
Furthermore, various pieces of Theorem 2.3 have been discovered, apparently multiple
times, in [3, 25, 26, 34, 35]; cf also the discussion following Lemma 3.3.

Random Structures and Algorithms DOI 10.1002/rsa



6 BISKUP, CHAYES, AND SMITH

Next we present a result concerning the event that G (n, α/n) contains no cycles. Such
problems have been extensively studied under the conditions where this probability is O(1),
see e.g. [11]. Our theorem concerns the large-deviation properties of this event:

Theorem 2.4. Let L be the event that G (n, α/n) contains no cycles. Then

lim
n→∞ Pn,α(L)1/n =

{
α exp

(− α

2 + 1
2α

)
, if α > 1,

1, otherwise.
(2.9)

Strictly speaking, this result is not needed for the proof of our main theorem; it is actually
used to derive the exponential decay for the probability of the event that G (n, α/n) contains
only “small” components. Surprisingly, the decay rates for these two events are exactly the
same:

Theorem 2.5. Let L be the event that G (n, α/n) contains no cycles and let Br be the event
that there are no components larger than r. Then

lim
r→∞ lim inf

n→∞ Pn,α(Br)
1/n = lim

ε↓0
lim sup

n→∞
Pn,α(Bεn)

1/n = lim
n→∞ Pn,α(L)1/n. (2.10)

Update: In the present paper we prove Theorem 2.4 using enumeration and generating-
function techniques. Recently, a probabilistic approach has been developed by which
we obtain an expansion of Pn,α(Ln) to quantities of order unity. One advantage of the
new approach is that it also permits the analysis of the conditional measure Pn,α(·|Ln);
see (M. Biskup, L. Chayes, and S. A. Smith, unpublished).

To finish the discussion of our results, let us give some reason for the word “thermo-
dynamic” in the title. The motivation comes from an analogy with droplet formation in
systems at phase transition. Such situations have been studied extensively in the context of
percolation [1, 14] and Ising (and Potts) model [7, 8, 15, 17, 22] under the banner of “Wulff
construction,” see [9] for a review of these matters.

One of the principal questions underlying Wulff construction is as follows: Compute
the probability—and the characteristics of typical configurations carrying the event—that
a given fraction of the system is in one thermodynamic state (e.g., liquid) while the rest is
in another state (e.g., gas). It turns out that the typical configurations are such that the two
phases separate; a droplet of one phase “floats” in the other phase. The requisite probability
is then given by a large-deviation expression whose rate function is composed of three parts:
the “surface” energy and entropy of the droplet, the rate function for the probability that the
droplet is all in one phase, and the rate function for the probability that the complement of
the droplet is in the other phase.

In the case under study, the droplet is exactly the giant component and its weight is just
the probability that all vertices in the droplet are connected to each other. The surface energy
is (the log of) the probability that no vertex inside is connected to any vertex outside; the
entropy is (the log of) the number of ways to choose the corresponding number of sites. The
weight of the phase outside simply amounts to the probability that all remaining components
are of submacroscopic scale. When the leading-order exponential decay rate of all of these
contributions is extracted using Theorems 2.3–2.5, we get a quantity that only depends on
the fraction of vertices taken by the droplet. The resulting expression is the one on the
right-hand side of (2.6).

Random Structures and Algorithms DOI 10.1002/rsa
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3. EVERYBODY CONNECTED

The goal of this section is to prove Theorem 2.3. Our proof is based on showing that the
probability in (2.8) is exactly the same probability in a related, directed graph problem.

For a collection of vertices Vn = {1, . . . , n} and a set of edge probabilities (pkl)1≤k<l≤n,
let G be the inhomogeneous undirected random graph over Vn. Similarly, let �G denote the
inhomogeneous directed complete random graph with the restriction that the two possible
(directed) edges between k and l occur independently, each with probability pkl. To keep
our notation distinct from the special case pkl = α/n treated throughout this paper, we will
write P instead of Pn,α .

Definition 3.1. A labeled directed graph G = (V , E ) is said to be grounded at vertex
v ∈ V if for every w ∈ V there exists a (directed) path from w to v in E .

The identification of the two problems is now stated as follows:

Lemma 3.2. Let K be the event that G is connected and let G be the event that �G is
grounded at vertex “1.” Then P(K) = P(G).

Proof. We use induction on the total number of edges incident with vertex “n.” Indeed,
if pkn = 0 for all k = 1, . . . , n − 1, then P(K) = P(G) because both probabilities are zero.
Now let us suppose that P(K) = P(G) when p�n = 0 for all � = k, . . . , n − 1 and let us
prove that it also for pkn > 0. It clearly suffices to show that the partial derivatives of P(K)

and P(G) with respect to pkn are equal for all pkn ∈ [0, 1].
Notice first that both K and G are increasing events. Invoking Russo’s formula, see [33]

or [21, Theorem 2.25], we obtain

∂

∂pkn
P(G) = P

(
(n, k) is pivotal for G

)
, (3.1)

where the event {(n, k) is pivotal for G} means that if (n, k) is occupied, the event G occurs
and if not, it does not. (Note that (n, k) denotes the edge going from “n” to “k.”) The
conditions under which this event occurs are straightforward: The set Vn = {1, . . . , n} splits
into two disjoint components, one rooted at “1” and the other at n, such that no vertex in
the component associated with vertex n has an oriented edge to the other component and k
has an oriented path to 1. Similarly, we have

∂

∂pkn
P(K) = P

(
(n, k) is pivotal for K

)
. (3.2)

Here {(n, k) is pivotal for K} simply means that, if the edge (n, k) is absent, Vn consists of
two connected components, one containing 1 and the other containing n.

To see the equality of partial derivatives, we split both “pivotal” events according to the
component containing the vertex n. If W is a set of vertices such that n ∈ W and 1 �∈ W ,
let Gn,W and G1,W be the restrictions of G to W , and Vn \W , respectively. Similarly, let �Gn,W

and �G1,W be the corresponding “components” of the oriented graph. Let Kn,W and K1,W be
the events that Gn,W and G1,W are connected and let Gn,W and G1,W be the events that �Gn,W

Random Structures and Algorithms DOI 10.1002/rsa



8 BISKUP, CHAYES, AND SMITH

is grounded at n and that �G1,W is grounded at 1, respectively. Since these pairs of events are
independent, we have

P
(
(n, k) is pivotal for G

) =
∑

W : n∈W
1,k �∈W

P(G1,W )P(Gn,W )P(CW )
∣∣
pkn=0

, (3.3)

where CW is the event that no vertex in W has a (directed) edge to Vn \W . But the induction
assumption tells us that P(G1,W ) = P(K1,W ) and P(Gn,W ) = P(Kn,W ), and the symmetry
of edge probabilities for the directed graph tells us that P(CW ) is the probability that Gn,W

and G1,W are not connected by an edge in G . Substituting these into (3.3), we get the
right-hand side of (3.2). This completes the induction step.

From now on, let K and G pertain to the specific random graphs G (n, α/n) and �G (n, α/n).
We begin with upper and lower bounds on Pn,α(K):

Lemma 3.3. Pn,α(K) ≤ (
1 − (1 − α/n)n−1

)n−1
.

Proof. Let E be the event—concerning the graph �G (n, α/n)—that every vertex except
number 1 has at least one outgoing edge. Then G ⊂ E and so

Pn,α(G) ≤ Pn,α(E) = (
1 − (1 − α/n)n−1

)n−1
. (3.4)

Invoking Lemma 3.2, this proves the desired upper bound.

We remark that the upper bound in Lemma 3.3 has been discovered (and rediscovered)
several times in the past. It seems to have appeared in [34] for the first time and later in [25,35]
and also [24]. A generalization to arbitrary connected graphs has been achieved in [26].

Lemma 3.4. Pn,α(K) ≥ (
1 − (1 − α/n)n−1

)n−1 1
n .

Proof. Consider the following events for directed random graph �G (n, α/n): Let E be the
event that every vertex, except vertex number 1, has at least one outgoing edge and let F
be the event every such vertex has exactly one outgoing edge. Since G ⊂ E, we have

Pn,α(G) = Pn,α(E)Pn,α(G|E). (3.5)

We claim that
Pn,α(G|E) ≥ Pn,α(G|F). (3.6)

Indeed, let us pick an outgoing edge for each vertex different from 1, uniformly out of all
edges going out of that vertex, and let us color these edges red. Let G′ be the event that G
occurs using only the red edges. The distribution of red edges conditional on E is the same as
conditional on F. Hence Pn,α(G|E) ≥ Pn,α(G′|E) = Pn,α(G′|F). But, on F, every available
edge is red and so Pn,α(G′|F) = Pn,α(G|F). Combining these inequalities, (3.6) is proved.

The number of configurations that �G (n, α/n) can take on F is exactly (n − 1)n−1. On
the other hand, the number of configurations which result in �G (n, α/n) being grounded is
an = nn−2—the number of labeled trees with n vertices. Hence

Pn,α(G|F) ≥ nn−2

(n − 1)n−1
≥ 1

n
. (3.7)

Using that Pn,α(E) = (1 − (1 − α/n)n−1)n−1 the desired bound follows.

Random Structures and Algorithms DOI 10.1002/rsa
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Proof of Theorem 2.3. The claim is proved by noting

lim
n→∞

(1 − (1 − α/n)n−1)n−1

(1 − e−α)n−1
= exp

(
(1 − α/2)

αe−α

1 − e−α

)
(3.8)

and using the results of Lemmas 3.3 and 3.4.

4. ONLY TREES

Here we will assemble the necessary ingredients for the proof of Theorem 2.4. The proof
is based on somewhat detailed combinatorial estimates and arguments using generating
functions.

Recall that L denotes the event that G (n, α/n) contains no cycles and that Br denotes
the event that all components of G (n, α/n) have no more than r vertices. We begin by a
combinatorial representation of the probability Pn,α(L ∩ Br): Let a� denote the number of
labeled trees on � vertices. Then

Pn,α(L ∩ Br) =
∑

∑
m��=n

m�=0 ∀�>r

n!∏
�

[
m�!(�!)m�

]
( ∏

�≥1

[
a�

(α

n

)�−1
]m�

) (
1 − α

n

)(n
2)−n+∑

m�

= n!
(α

n

)n (
1 − α

n

)(n
2)−n

n∑
k=1

(α

n

)−k (
1 − α

n

)k

Qn,k,r ,

(4.1)

where we set k = ∑
� m�, applied the constraint

∑
� �m� = n and let Qn,k,r denote the sum

Qn,k,r =
∑

∑
m��=n∑
m�=k

m�=0 ∀�>r

∏
�≥1

(a�

�!
)m� 1

m�! . (4.2)

We begin by isolating the large-n, k behavior of this quantity:

Proposition 4.1. Consider the polynomial

Fr(s) =
r∑

�=1

s�a�

�! (4.3)

Then for all n, k, r ≥ 1,

Qn,k,r ≤ 1

k! inf
s>0

Fr(s)k

sn
. (4.4)

Moreover, for each η > 0, there is n0 < ∞ and a sequence (cr)r≥1 of positive numbers for
which

Qn,k,r ≥ cr√
n

1

k! inf
s>0

Fr(s)k

sn
(4.5)

holds for all n ≥ n0, all k ≥ 1 and all r ≥ 2 such that k < (1 − η)n and rk > n(1 + η).

Random Structures and Algorithms DOI 10.1002/rsa



10 BISKUP, CHAYES, AND SMITH

Proof of upper bound. Let us consider the generating function

Q̂r(s, z) = 1 +
∞∑

n=1

n∑
k=1

Qn,k,rz
ksn = exp

{
zFr(s)

}
, (4.6)

where we used Fubini-Tonelli to derive the second equality. Since Fr is a polynomial, the
Cauchy integral formula yields

Qn,k,r = 1

(2π i)2

∮
ds

∮
dz

exp{zFr(s)}
sn+1zk+1

= 1

2π i

1

k!
∮

ds
Fr(s)k

sn+1
, (4.7)

where all integrals are over a circle of positive radius centered at the origin of C. Since
all coefficients of Fr are nonnegative, θ �→ |Fr(s eiθ )| for s > 0 is maximized at θ = 0.
Bounding the integrand by its value at θ = 0, the integral yields a factor 2π ; optimizing
over s > 0 then gives the upper bound in (4.4).

Proof of lower bound. As is common in Tauberian arguments, the lower bound will
require somewhat more effort. First let us note that under the conditions k < (1 − η)n
and rk > n(1 + η) the function s �→ Fr(s)k/sn, for s > 0, blows up both at 0 and ∞. Its
minimum is thus achieved at an interior point; for the rest of this proof we will fix s to a
minimizer of this function. Since |Fr(s eiθ )| < Fr(s) for all θ ∈ (−π , π ] \ {0}, the part of
the integral in (4.7) corresponding to |θ | > ε is exponentially small (in n) compared to the
infimum in (4.5). We thus need to show the lower bound only for the portion of the integral
over θ with |θ | ≤ ε, for some fixed ε > 0.

Since Fr has positive coefficients, Fr �= 0 in the (complex) ε-neighborhood of s. This
allows us to define the function

g(θ) = log
Fr(s eiθ )�

s eiθ
, |θ | ≤ ε, (4.8)

where � plays the role of k/n. The function g is analytic in an O(ε)-neighborhood of the
origin. The choice of s implies that g′(0) = 0 which is equivalent to

sF ′
r(s)

Fr(s)
= 1

�
. (4.9)

For the second derivative we get g′′(0) = −�Var(X), where X is the random variable with
law

P(X = �) = 1

Fr(s)

a�s�

�! , � = 1, . . . , r. (4.10)

In particular, since our restrictions on � between 1
r (1+η) and 1−η imply that s is bounded

away from zero, this law is nondegenerate and so g′′(0) < 0.
The analyticity of θ �→ g(θ) for θ = O(ε) implies that g′′′ is bounded in this neigh-

borhood, and so by Taylor’s theorem we have

g(θ) = g(0) − Aθ 2 + O(θ 3), (4.11)

where A = A(r, �) is positive uniformly in the allowed range of �s, and O(θ 3) is a quantity
bounded by |θ |3 times a constant, depending only on r, ε, and η. (In particular, we may
assume that O(θ 3) is dominated by 1

2 Aθ 2 for |θ | ≤ ε.)
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We will split the integral over θ ∈ [−ε, ε] into two more parts. Let δ > 0 and note
that ng(0) is the logarithm of the infimum in (4.5). Then for θ with δn−1/3 ≤ |θ | ≤ ε we
have

nReg(θ) ≤ ng(0) − 1

2
A δ2n1/3 (4.12)

which shows that even this portion of the integral brings a contribution that is negligible
compared to the right-hand side of (4.5). But for |θ | ≤ δn−1/3 we have nO(θ 3) = O(δ) and
so for δ � 1, the Taylor remainder will always have imaginary part between, say, −π/4
and π/4. This means that

Re
∫ δn−1/3

−δn−1/3
eng(θ) dθ ≥ 1

2
eng(0)

∫ δn−1/3

−δn−1/3
e−nAθ2

dθ ≥ c√
n

eng(0) (4.13)

for some constant c > 0 which may depend on r and η but not on � and n. Combined with
the previous estimates, this proves the lower bound (4.5).

In light of the above lemma, the k-th term in the sum on the extreme right of (4.1)
becomes

α−knke−α k
n Qn,k,r = eo(n) inf

s>0
exp

{
n�r(s, k/n)

}
, (4.14)

where
�r(s, �) = −� log α − � log � + � + � log Fr(s) − log s. (4.15)

Here we should interpret (4.14) as an upper bound for r = n and a lower bound for
fixed r. It is clear that, regardless of r, the sum is dominated by k = 
�n� for which
� �→ inf s>0 �r(s, �) is maximal. Such values are characterized as follows:

Lemma 4.2. Let α > 0 and r ≥ 2. Then there is a unique (sr , �r) ∈ [0, ∞] × [1/r, 1] for
which

�r(sr , �r) = sup
1/r≤�≤1

inf
s>0

�r(s, �). (4.16)

Moreover, we always have sr ∈ (0, ∞) and �r ∈ (1/r, 1) and, furthermore,

lim
r→∞ �r(sr , �r) =

{
1 + α/2 − log α, if α ≤ 1,

1 + 1
2α

, if α > 1.
(4.17)

Proof. We begin by ruling out the “boundary values” of s and �. First, if � = 1/r, then
the infimum over s is actually achieved by s = ∞. In that case Fr(s) = ∞ and the (one-
sided) derivative with respect to � is infinite, i.e., � = 1/r is a strict local minimum of
� �→ inf s>0 �r(s, �). Similarly, for � = 1 the infimum over s > 0 is achieved at s = 0
but then the �-derivative of � �→ inf s>0 �r(s, �) is at negative infinity, i.e., also � = 1
is a strict local minimum. It follows that any (sr , �r) satisfying (4.16) necessarily lies in
(0, ∞) × (1/r, 1).

Setting the partial derivatives with respect to s and � to zero shows that any minimizing
pair is the solution of the equations

Fr(s) = α� and sF ′
r(s) = α. (4.18)
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In light of monotonicity of s �→ sF ′
r(s), the solution is actually unique. To figure out the

asymptotic as r → ∞, we note that for s ≤ 1/e,

sF ′
r(s) =

r∑
�=1

a�

s�

(� − 1)! −→
r→∞ W(s), (4.19)

where W is the unique number in [0, 1/e] such that We−W = s. (Incidentally, W is closely
related to the survival probability of the Galton-Watson branching process with Poisson
offspring distribution.) If s > 1/e, then sF ′

r(s) → ∞ as r → ∞. Using the relation
between sF ′

r(s) and α, we thus get

sr −→
r→∞

{
αe−α , if α ≤ 1,

1/e, if α > 1.
(4.20)

Integrating the derivative of Fr now shows that Fr(sr) → α(1 − α/2) for α ≤ 1. Using that
F ′

r(s) is bounded for s ≤ sr , we also find that Fr(sr) → 1/2 for α ≥ 1. This yields

�r −→
r→∞

{
1 − α/2, if α ≤ 1,
1

2α
, if α > 1.

(4.21)

Noting that �(sr , �r) = �r − log sr we now get (4.17).

Proof of Theorem 2.4. By the fact that the supremum over � in (4.16) is achieved at an
interior point, we can control the difference between the maximizing k/n and its continuous
counterpart �. Thence

Pn,α(L ∩ Br) = qn,r n!
(α

n

)n

e−αn/2 exp
{
n�r(sr , �r)

}
, (4.22)

where
c̃r√

n
≤ qn,r ≤ n (4.23)

for some positive constants c̃r which may depend on r and α. Since Bn contains every
realization ofG (n, α/n), taking r = n and applying Lemma 4.2 directly shows that Pα,n(L) ≤
en	(α)+o(n). To get a corresponding lower bound, we fix r ≥ 2 and apply Pα,n(L) ≥ Pα,n(L ∩
Br). Taking 1/n-th power and letting n → ∞ then yields

lim
n→∞ Pn,α(L ∩ Br)

1/n = αe−1−α/2+�r (sr ,�r ). (4.24)

As we have just checked, the right-hand side tends to e	(α) as r → ∞.

Corollary 4.3. We have

lim
r→∞ lim

n→∞ Pα,n(Br ∩ L)1/n = lim
n→∞ Pα,n(L)1/n. (4.25)

Proof. This summarizes the last step of the previous proof.
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5. NO BIG = NO CYCLES

Here we will prove that absence of large component has a comparable cost to absence of
cycles, at least on an exponential scale. To achieve this goal, apart from Corollary 4.3, we
will need the following upper bound:

Lemma 5.1. Let Br be the event that G (n, α/n) has no components larger than r, and
let L be the event that all connected components of G (n, α/n) are trees. Then for all r ≥ 1,

Pn,α(Br) ≤ Pn,α(L)
(

1 − α

n

)− 1
2 rn

. (5.1)

Proof. Let C be the restriction of G (n, α/n) to a set S ⊂ {1, . . . , n}. Let T be a tree on S.
Then

Pn,α(C = T)

Pn,α(C ⊃ T)
=

(
1 − α

n

)(|S|
2 )−|S|+1 ≥

(
1 − α

n

) 1
2 |S|2

. (5.2)

Hence

Pn,α(C is connected) ≤
∑

T

Pn,α(C ⊃ T) ≤
(

1 − α

n

)− 1
2 |S|2

Pn,α(C is a tree). (5.3)

Now, if Lr is the event that no component of G (n, α/n) of size larger than r has cycles, then
Br ⊂ Lr and so Pn,α(Br) ≤ Pn,α(Lr). Let {Sj} be a partition of {1, . . . , n} and let Pn,α({Sj})
denote the probability that {Sj} are the connected components of G (n, α/n). Then

Pn,α(Lr) =
∑
{Sj}

Pn,α({Sj})Pn,α(Lr|{Sj}), (5.4)

where Pn,α(Lr|{Sj}) is the conditional probability of Lr given that {Sj} are the connected
components of G (n, α/n).

Letting Cj represent the restriction of G (n, α/n) to Sj, the bound (5.3) tells us that

Pn,α(Lr|{Sj}) =
∏

j : |Sj |≥r

Pn,α(Cj is a tree | Cj is connected)

≤
∏

j

Pn,α(Cj is a tree | Cj is connected)
∏

j : |Sj |<r

(
1 − α

n

)− 1
2 |Sj |2 (5.5)

Using that |Sj| < r for every Sj contributing to the second product and applying that the
sum of |Sj| over the components with |Sj| < r gives at most n, we then get

Pn,α(Lr|{Sj}) ≤ Pn,α(L|{Sj})
(

1 − α

n

)− 1
2 rn

. (5.6)

Plugging this back in (5.4), the desired bound follows.

Proof of Theorem 2.5. By Lemma 5.1 we have

lim sup
n→∞

Pn,α(Bεn)
1/n ≤ eε/2 lim

n→∞ Pn,α(L)1/n. (5.7)
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On the other hand, the inclusion Br ⊃ Br ∩ L and Corollary 4.3 yield

lim inf
n→∞ Pn,α(Br)

1/n ≥ lim inf
n→∞ Pn,α(Br ∩ L)1/n −→

r→∞ lim
n→∞ Pn,α(L)1/n. (5.8)

Since Pn,α(Br) ≤ Pn,α(Bεn) eventually for any fixed r ≥ 1 and ε > 0, all limiting quantities
are equal provided we take r → ∞ and/or ε ↓ 0 after n → ∞.

6. PROOF OF MAIN RESULT

Before we start proving our main result, Theorem 2.1, we need to ensure that if a large
component is present in the graph, then it is unique. The statement we need is as follows:

Lemma 6.1. Let Kε,2 be the event that G (n, α/n) is either connected or has exactly two
connected components, each of which is of size at least εn, and recall that K is the event
that G (n, α/n) is connected. Then for all α0 > 0 and ε0 > 0 there exists c1 = c1(α0, ε0) < 1,
such that for all ε ≥ ε0 and all α ≤ α0,

lim sup
n→∞

Pα,n(K
c|Kε,2)

1/n < c1. (6.1)

Proof. It clearly suffices to show that the ratio of Pα,n(Kε,2 \ K) and Pα,n(K) decays to zero
exponentially with n, with a rate that is uniformly bounded in ε ≥ ε0 and α ≤ α0. In light
of Theorem 2.3 and the fact that Kε,2 only admits components that grow linearly with n, we
have

Pα,n(Kε,2 \ K)

Pα,n(K)
= eo(n)

∑
εn≤k≤n−εn

(
n

k

)
π1(α k/n)

k π1

(
α(1 − k/n)

)n−k

π1(α)n

(
1 − α

n

)k(n−k)

, (6.2)

where o(n)/n tends to zero uniformly in ε ≥ ε0 and α ≤ α0. Writing � for k/n, the
expression under the sum can be bounded by en[�(�)−�(0)], where

�(�) = −S(�) + � log π1(α�) + (1 − �) log π1

(
α(1 − �)

) − α�(1 − �). (6.3)

Since � is restricted to the interval [ε, 1−ε], the right-hand side of (6.2) will be exponentially
small if we can show �(�) < �(0) for all � ∈ (0, 1) and all α.

As is easy to check, the function � �→ �(�) is symmetric about the point � = 1/2.
Hence, if we can prove that it is strictly convex throughout [0, 1], then it is maximized at
the endpoints. Introducing the function

G(η) = η log
π1(η)

η
(6.4)

we have
α�(η/α) = G(η) + G(α − η) + η(α − η). (6.5)

In order to prove strict convexity of �, it thus suffices to show that G′′(η) + 1 > 0
for all η > 0. Introducing yet another abbreviation q(η) = η/(1 − e−η), a tedious but
straightforward differentiation yields

G′′(η) + 1 = 1

q
(q′ − q)(q e−η − 1). (6.6)

A direct evaluation now shows that both q′ − q and q e−η − 1 are negative once η > 0.
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We will use the above lemma via the following simple conclusion:

Lemma 6.2. Let Nr denote the number of connected components of G (n, α/n) of size at
least r and let Vr be the set of vertices contained in these components. Then for all α > 0
and � > ε > 0 there exists c = c(ε, �, α) > 0 such that

Pα,n

(|Vεn| = 
�n� & Nεn = 1
) ≥ (1 − e−cn)Pα,n

(|Vεn| = 
�n�). (6.7)

Proof. Clearly, (6.7) will follow if we can prove that

Pα,n

(|Vεn| = 
�n� & Nεn > 1
) ≤ e−cnPα,n

(|Vεn| = 
�n�). (6.8)

LetV (x)denote the connected component ofG (n, α/n) containing the vertex x and let x � y
denote the event that x, y ∈ Vεn but V (x) ∩ V (y) = ∅. Then (6.8) will be proved once we
show

Pα,n

(|Vεn| = 
�n� & x � y
) ≤ e−2cnPα,n

(|Vεn| = 
�n�). (6.9)

(Indeed, the sum over x, y adds only a multiplicative factor of n2 on the right-hand side.)
By conditioning on the set Vεn and the set V (x) ∪ V (y), this inequality will in turn follow
from

Pα,n

(
x � y & V (x) ∪ V (y) = V

) ≤ e−2cnPα,n

(
V (x) ∪ V (y) = V

)
. (6.10)

Indeed, let us multiply both sides by the probability that V is disconnected from the rest
of the graph and that all components disjoint from V of size at least εn take the total
volume 
�n� − |V |. The sum over all admissible V reduces from (6.10) to (6.9).

We will deduce (6.10) from Lemma 6.1. Recall that K is the event that the graph is
connected and Kε,2 is the event that it has at most two components, each of which is of size
at least εn. We will now use these events for the restriction of G (n, α/n) to V : Let m = |V |,
α̃ = α m

n and ε̃ = ε n
m . Then we have

{x � y} ∩ {
V (x) ∪ V (y) = V

} ⊂ Kc ∩ Kε̃,2, (6.11)

while for the event on the right-hand side of (6.10) we simply get{
V (x) ∪ V (y) = V

} = Kε̃,2. (6.12)

By Lemma 6.1 and the fact that α̃ ≤ α and ε̃ ≥ ε,

Pα̃,m(Kc | Kε̃,2) ≤ e−c1m, (6.13)

once n is sufficiently large. But m ≥ 2εn and so (6.10) holds with c = εc1.

Now we have finally amassed all ingredients needed for the proof of our main result.

Proof of Theorem 2.1. The case � = 0 is quickly reduced to Theorems 2.4–2.5 while � = 1
boils down to Theorem 2.3. Thus, we are down to the cases � ∈ (0, 1). Let ε ∈ (0, �). By
Lemma 6.2, we can focus on the situations with Nεn = 1. To make our notation simple, let
us assume that �n is an integer. Then we have

Pα,n

(|Vεn| = �n & Nεn = 1
) =

(
n

�n

)
P�n,α�(K)Pn−�n,α(1−�)(Bεn)

(
1 − α

n

)�n(1−�)n

. (6.14)
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The terms on the right-hand side represent the following: the number of ways to choose
the unique component of size �n, the probability that this component is connected, the
probability that the complement contains no component of size larger than εn and, finally,
the probability that the two parts of the graph do not have any edge between them. Invok-
ing Stirling’s formula to deal with the binomial term, and plugging explicit expressions
for P�n,α�(K) and Pn−�n,α(1−�)(Bεn) from Theorems 2.3–2.5, the result reduces to a simple
calculation.
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