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We consider a class of spin systems on Z
d with vector valued spins (Sx ) that interact via

the pair-potentials Jx,y Sx · Sy . The interactions are generally spread-out in the sense
that the Jx,y’s exhibit either exponential or power-law fall-off. Under the technical
condition of reflection positivity and for sufficiently spread out interactions, we prove
that the model exhibits a first-order phase transition whenever the associated mean-
field theory signals such a transition. As a consequence, e.g., in dimensions d ≥ 3, we
can finally provide examples of the 3-state Potts model with spread-out, exponentially
decaying interactions, which undergoes a first-order phase transition as the tempera-
ture varies. Similar transitions are established in dimensions d = 1, 2 for power-law
decaying interactions and in high dimensions for next-nearest neighbor couplings. In
addition, we also investigate the limit of infinitely spread-out interactions. Specifically,
we show that once the mean-field theory is in a unique “state,” then in any sequence
of translation-invariant Gibbs states various observables converge to their mean-field
values and the states themselves converge to a product measure.

KEY WORDS: First-order phase transitions, mean-field theory, infrared bounds,
reflection positivity, mean-field bounds, Potts model, Blume-Capel model.

1. INTRODUCTION

1.1. Motivation

The understanding of the quantitative aspects of phase transitions is one
of the basic problems encountered in physical (and other) sciences. Most
of the existing mathematical approaches are based on the use of contour
expansions via Pirogov-Sinai theory(41,42,50) and/or the use of correlation
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inequalities.(21,44,45) Notwithstanding, many “practical” scientists still rely on
the so-called mean-field theory which, in its systematic form, goes back to the
work of Landau. From the perspective of mathematical physics, it is there-
fore desirable to shed as much light as possible on various mean-field the-
ories and, in particular, attempt to place the subject on an entirely rigorous
basis.

In a recent paper,(11) two of us have established a direct connection between
temperature-driven first-order phase transitions in certain ferromagnetic nearest-
neighbor spin systems on Z

d and their mean-field counterparts. The principal re-
sult of Ref. 11 states that, once the mean-field theory signals a first-order phase
transition, the actual system has a similar transition provided the dimension d is
sufficiently large and/or the mean-field transition is sufficiently strong. Moreover,
the transition happens for the values of parameters that are appropriately “near”
the mean-field transitional values; indeed, the various error terms tend to zero
as d → ∞.

The principal goal of the present paper is two-fold. First, we will consider-
ably extend the scope of systems to which the ideas of Ref. 11 apply; i.e., we
will prove discontinuous phase transitions in systems which heretofore have been
beyond the reach of rigorous methods. Second, we will in a general way expound
on the mean-field philosophy. In particular, we will demonstrate that mean-field
theory provides an asymptotic description of a certain class of systems regardless
of the nature of their transitions.

Our approach is somewhat akin to the bulk of work on the so-called Kac
limit of lattice(14−17) as well as continuum(30,36,37) systems. Here one considers
finite-range interactions of unit total strength which are smeared out over a region
of scale 1/γ . As γ tends to zero, each individual site interacts with larger and
larger number of other sites and so, for γ � 1, one is in the position to prove that
the characteristics of an actual system (e.g., the magnetization) are close to those
of the corresponding mean-field theory. In particular, all “approximations” (i.e.,
upper and lower bounds) become exact as γ ↓ 0.

Notwithstanding, the similarity between the Kac limit and our approach ends
with the above statements: Our technique involves tight bounds on the fluctua-
tions of the effective field while the analyses of Refs. 14–17 are based on coarse-
graining arguments. As a consequence, we have no difficulty treating models with
complicated single-spin spaces—even those exhibiting continuous internal sym-
metries or leading to power-law decay of correlations—or nearest-neighbor sys-
tems in large dimensions. Of course, there is a price to pay: Our technique requires
the infrared bound on two-point correlation function which is presently available
only for models obeying the condition of reflection positivity. Moreover, unless
we assume power-law decaying interactions, the use of infrared bounds does not
permit any statements in d = 2, while the Kac-limit approach works equally well
in all d ≥ 2.
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1.2. Models of Iterest

For the duration of the paper, as in Ref. 11, we will focus on spin models with
two body interactions as described by the formal Hamiltonian

βH = −β
∑
〈x,y〉

Jx,y (Sx , Sy) −
∑

x

(h, Sx ). (1.1)

The various objects on the right-hand side are as follows: β is the inverse tem-
perature, 〈x, y〉 denotes an unordered pair of distinct sites, Jx,y (= Jy,x ) is the
coupling constant associated with this pair, the spins Sx take values in a compact
set � ⊂ R

n , the (reduced) external field h is a vector from R
n and (·, ·) denotes

some inner product in R
n . Implicit in the notation is an underlying a priori mea-

sure on � which represents the behavior of the spins in the absence of interactions.
(In principle, the term which describes the coupling to the external field, namely
the (h, Sx )’s, could be absorbed into the definition of the a priori measure. How-
ever, for æsthetic reasons, here we will often retain these terms as part of the
interaction.)

Mean-field behavior is typically anticipated in situations where fluctuations
are insignificant and, on general grounds, one expects this to be the case in high
dimensions. These were precisely the operating conditions of Ref. 11 (as well
as of Refs. 13, 34) where, in a mathematically precise sense, the stipulation con-
cerning the fluctuations was vindicated. However, an alternative route for ramping
down fluctuations is to consider “spread out” interactions, i.e., Jx,y’s which do not
go to zero too quickly. As alluded to earlier, this alternative is, in fact, the com-
mon starting point for modern mathematical studies of phase transitions based on
mean-field theory, e.g., Refs. 14–17, 36 and Refs. 26–29, 43.

Unfortunately, we do not have complete flexibility as to how we can spread
out our interactions. Indeed, our principal error estimate requires that the (Jx,y)
satisfy the condition of reflection positivity (RP). Notwithstanding, the following
three classes of interactions are available to our methods:

(1) Nearest along with next-nearest neighbor couplings, i.e., potentials such
that Jx,y = λ if x and y are nearest neighbors, Jx,y = κ with λ ≥ 2(d −
1)|κ| if x and y are next-nearest neighbors and Jx,y = 0 in the remaining
cases.

(2) Yukawa-type potentials of the form

Jx,y = e−µ|x−y|1 , (1.2)

where µ > 0 and |x − y|1 is the �1-distance between x and y.
(3) Power-law decaying interactions of the specific form

Jx,y = 1

|x − y|s1
, (1.3)
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with s > 0.

Aside from these “pure” interactions, reflection positivity holds for

(4) any combination of the above with positive coefficients.

The derivation of the reflection-positivity property for these interactions goes back
to the classic references on the subject(22−24); for reader’s convenience we will
provide additional details in Sec. 3.1 and Sec. 4 (Remark 4.5).

We note that for all positive values of s the interactions listed in item (3)
are indeed, in the technical sense, reflection positive. However, some values of s
are not viable and others are not particularly useful. Specifically, if s ≤ d, then
the interaction is attractive and non-summable so there is no thermodynamics.
Thus we may as well assume that s > d. Furthermore, if d = 1 and s ≥ 2 or
d = 2 and s ≥ 4 then our methods break down. With some reason: In the one
dimensional cases with s > 2, the results of Refs. 3, 19, 20, 39, 47 indicate (and
in specific cases prove) that no magnetic ordering is possible. Similarly, in the
above mentioned two-dimensional cases, magnetic ordering is precluded in many
systems.

To summarize, we will impose the following limitations on our power-law
interactions in Eq. (1.3):

(a) s < 2 in d = 1,
(b) s < 4 in d = 2,
(c) s > d in all d ≥ 1.

Although case (1) does not give us any real options for spreading the interaction
beyond the previous recourse of taking d � 1, cases (2) and (3) offer us the pos-
sibility to do so on a fixed lattice. This is essentially obvious in case (2)—just take
the parameter µ small. As for case (3) it is seen, after a little thought, that taking s
close to d presents an additional and powerful method for smearing interactions.

1.3. Outline of Results

Given the ability to smear interactions on a fixed lattice, much of the technology
developed in Ref. 11 can be applied without the stipulation of “d sufficiently
large.” Thus it will prove possible to make statements about specific models on
reasonable lattices with (more or less) reasonable interactions.

One such “specific” model will be the q-state Potts model (see Sec. 2.2).
Here, for example, we will establish a discontinuous transition between the or-
dered and disordered states of a 3-state Potts model on Z

3 with interactions de-
caying to zero exponentially. (And similarly for any other q-state Potts model
on Z

d with q ≥ 3 and d ≥ 3.) Analogous first-order phase transitions are also
proved in dimensions one and two provided we have power-law decay of the
couplings as discussed above. For example, in d = 1, for any power-law decay
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exponent s ∈ (1, 2), we produce couplings such that the 3-state Potts model has a
first-order transition as the overall strength of the coupling varies.

As another illustration, we consider the low temperature behavior of the
Blume-Capel model. The system will be described precisely in Sec. 3.4, for now
it suffices to say that the spins take values in {−1, 0,+1} with a priori equal
weights. The zero temperature phase diagram of this model has a triple point
where the three states of constant spin are degenerate in energy, however, as
demonstrated in Ref. 46, this degeneracy is broken at finite temperatures in favor
of the state dominated by the zeros. The previous analyses of this phenomenon
required rather detailed contour estimates; here we will establish similar results
by relatively painless methods.

The techniques at our disposal will allow us to put to rest some small con-
troversies which, in recent years, have been topics of some discussion. For in-
stance, a conjecture has been made (32,33) which boils down to the statement that in
any one-dimensional finite-state spin system with arbitrary translation-invariant,
summable interaction, the set of phase-coexistence points at positive temperatures
is a subset of the corresponding set at zero temperature. We will rule this out by
our analysis of the Potts models in an external field.

In addition to predicting first-order transitions, our mean-field framework
provides an explicit description of general lattice spin systems in the limit when
the interactions become highly diffuse. In particular we show that, whenever the
mean-field theory is in a unique “state,” the magnetization and the energy den-
sity of the actual system converge to their mean-field counterparts. Moreover,
every translation invariant Gibbs state converges to a product (i.i.d.) measure with
individual-spin distribution self-consistently adjusted to produce the correct value
of the magnetization. (This vindicates the assumptions typically used to “justify”
mean-field theory; see Sec. 2.1.) Results in this direction have appeared before; cf
Refs. 13, 34, but the main difference is that here we are not forcing d → ∞ and
hence it is possible to envision a limiting system towards which we are heading.

1.4. Organization

The organization of the remainder of this paper is as follows: In Sec. 2.1 we
describe, in succinct terms, some general aspects of mean-field theory. In Sec. 2.2
we discuss the mean-field theory for the Potts model in an external field—which is
the primary model studied in this work. Precise results concerning these situations
are the subject of Sec. 2.3.

Sec. 3 is devoted to the statements of our main result. Specifically, in Sec. 3.1
we formulate a general theorem (Theorem 3.2) that allows us to prove first-
order phase transitions in actual lattice models with interaction (1.1)—and RP
couplings—by comparison to the associated mean-field theory. Sec. 3.2 provides
conditions under which the mean-field theory is obtained as a limit of lattice
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systems when the interaction becomes infinitely spread out. Sects. 3.3 and 3.4
contain precise statements of our theorems concerning the behavior of the specific
systems we study: The zero-field q-state Potts models with q ≥ 3, the same model
(with q ≥ 4) in an external field which enhances or supresses—depending on the
sign—one of the states, and the Blume-Capel model near its zero-temperature
triple point. Sec. 3.5 mentions some recent conjectures that can be addressed us-
ing our results.

The principal subject of Sec. 4 is to give the proof of our general results
(Theorems 3.2 and 3.3). As part of the proof, we will discuss certain interesting
convexity bounds (Sec. 4.1), reflection positivity (Sec. 4.2) and infrared bounds
(Sec. 4.3). In Sec. 4.5 we show how the specific interactions listed in Sec. 1.2
fit into our general scheme. Sec. 5 is devoted to the mathematical details of the
mean-field theories for all the above mentioned models; in particular the proofs of
all claims made in Sec. 2.3. Sec. 6 then assembles all ingredients into the proofs
for actual lattice systems.

2. MEAN-FIELD THEORY AND THE POTTS MODEL

Here we shall recall to mind a formalism underlying (our version of) mean-field
theory and provide heuristic discussion of the basic facts. The specifics will be
demonstrated on an example of the q-state Potts model in an external field; first
somewhat informally in Sec. 2.2 and then precisely in Sec. 2.3.

2.1. Mean-Field Heuristic

We will focus on the situations described by the Hamiltonian in Eq. (1.1). Of
course the real models must be carefully defined on Z

d as limits of finite volume
measures corresponding to this Hamiltonian at inverse temperature β and some
sort of boundary conditions. We shall assume the reader is familiar with this basic
theory (enough of the relevant formalism can be found in Sec. 3.1) and skip right
to the consideration of an infinite-volume translation-invariant Gibbs state µβ,h

corresponding to the Hamiltonian in Eq. (1.1) and inverse temperature β. For
convience we will assume here, as in the rest of this paper,

Jx,x = 0,
∑
x∈Zd

|J0,x | < ∞ and
∑
x∈Zd

J0,x = 1. (2.1)

We will let Eβ,h denote the expectation with respect µβ,h and E0 expectation with
respect to the a priori (product) measure µ0. (We will of course assume in the
following that µ0 is supported on more than one point.)

The principal idea is to study the distribution of one spin variable, e.g., the
one at the origin of coordinates. Let m denote the expected value of this spin,
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m = Eβ,h(S0). Then, conditioning on the configuration in the complement of the
origin, we get the identity

m = Eβ,h

(
E0

(
S e(S,βm0+h)

)
E0(e(S,βm0+h))

)
, (2.2)

where m0 is the random variable given by the weighted average

m0 =
∑
x∈Zd

J0,x Sx . (2.3)

We emphasize that the expectation Eβ,h “acts” only on m0 while E0 “acts” only
on the auxiliary spin variable S.

When all is said and done, the underlying assumption behind the standard
mean-field theories boils down to the statement that the quantity m0 is non-
random, and therefore equal to m. Postponing, momentarily, any discussion that
concerns the validity of such an assumption, the immediate relevance is that in
Eq. (2.2) we can replace m0 by m which in turn makes the outer expectation on
the right-hand side redundant. We thus arrive at the self-consistency constraint

m = E0(S e(S,βm+h))

E0(e(S,βm+h))
(2.4)

which is the mean-field equation for the magnetization. Clearly, if it can be es-
tablished that the fluctuations of m0 are negligible, then the actual magnetization
must be near a solution of Eq. (2.4).

In this light, our results are not that hard to understand: In most instances
where the mean-field theory predicts a discontinuous transition this prediction is
showcased by the fact that Eq. (2.4) simply does not admit continuous solutions.
Thus if the error caused in the approximation m0 ≈ m is much smaller than the
discontinuities predicted in the mean-field approximation, jumps of the physical
magnetization cannot be avoided.

As all of the above is predicated on the near constancy of the random vari-
able m0, let us turn to a discussion of the fluctuations of this quantity. An easy
calculation shows that

Var(m0) =
∑
x,y

J0,x J0,yEβ,h((Sx , Sy) − |m|2) (2.5)

where |m|2 = (m, m). The quantity Eβ,h((Sx , Sy) − |m|2) is the thermal two-
point correlation function which, on general grounds, may be presumed to tend to
zero at large separations. It would thus seem that the stipulation of a “spread out
interaction” along with any sort of decay estimate on the two-point correlations
would allow us to conclude that the variance of m0 is indeed small. However,
while explanations of this sort are satisfactory at a heuristic level, a second glance
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at Eq. (2.5) indicates that the task is not necessarily trivial. Indeed, of actual in-
terest is the decay of correlations within the effective range of the interaction,
which is guaranteed to be delicate. At the core of this paper is the use of reflection
positivity to provide these sorts of estimates.

In many cases, Eq. (2.4) on its own is insufficient for understanding the be-
havior of a system—even at the level of mean-field theory. Specifically, in the
case of a discontinuous transition, Eq. (2.4) will typically have multiple solutions
the overall structure of which does not allow for a continuous solution. While this
may have the advantage of signaling the existence of discontinuities, it does not
provide any insight as to where the discontinuities actually occur. Thus, when-
ever there are multiple solutions to Eq. (2.4), a supplementary “rule” is needed to
determine which of these solutions ought to be selected.

The supplement—or starting point of the whole theory depending on one’s
perspective—is the introduction of the mean-field free-energy function �β,h(m)
defined as follows: Let S(m) be the entropy function associated with the a priori
measure on the spins. Formally, this quantity is defined by means of the Legendre
transform

S(m) = inf
b∈Rn

{G(b) − (b, m)} (2.6)

of the cumulant generating function

G(b) = log E0
(
e(b,S)

)
. (2.7)

The mean-field free-energy function is then defined as the difference of the energy
function, E(m) = − β

2 |m|2 − (h, m), and the entropy S(m):

�β,h(m) = −β

2
|m|2 − (h, m) − S(m). (2.8)

Then, as is not hard to see, the mean-field equation is implied by the condition
that �β,h be minimized. Indeed, writing ∇�β,h(m) = 0 some straightforward
manipulations give us

m = ∇G(βm + h), (2.9)

which is exactly Eq. (2.4).
Eq. (2.8) along with the stipulation to minimize adds a whole new dimension

to the theory that was defined by Eq. (2.4). Foremost, in the case of multiple solu-
tions, we now have a “rule” for the selection of the relevant solutions. Beyond this,
we have a framework resembling a full thermodynamical theory: A free energy—
defined by evaluating �β,h at the minimizing m—along with an entropy and en-
ergy which are the corresponding functions evaluated at this magnetization. In
fact, a secondary goal of this work is to demonstrate that this “more complete”
mean-field theory provides an asymptotic description of the actual theories with
spread out interactions.
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Remark 2.1. We conclude this subsection with the remark that the mean-field
theory for any particular Hamiltonian of the form (1.1) can be produced in an ac-
tual spin-system by considering the model on the complete graph. Explicitly, for
a system with N sites, we take Jx,y = 1

N , compute all quantities according to the
standard rules of statistical mechanics and then take N → ∞. The result of this
procedure is the mean-field theory described in this subsection for the thermo-
dynamics and a limiting distribution for the spins which is i.i.d. The connection
between mean-field theory and complete graph models is well known and has
been proved in numerous special cases (see, e.g., Ref. 18 for a recent study of
ensemble equivalence for the Potts model on the complete graph). A complete
proof for the general form of H given in Eq. (1.1) appears e.g. in Sec. 5 of
Ref. 11.

2.2. Potts Models in External Field

The best example of a system which exhibits a rich spectrum of behaviors while
remaining tractable is the Potts model in an external field. The Potts model is
typically defined using discrete spin variables σx ∈ {1, . . . , q} with no appar-
ent internal geometry. The energy of a configuration is given by the (formal)
Hamiltonian

βH = β
∑
x,y

Jx,yδσx ,σy −
∑

x

hδ1,σy . (2.10)

Here β is the inverse temperature, the Jx,y’s are the coupling constants for the
system, and δσx ,σy is the Kronecker delta. The reduced external field h is related
to the physical external field h̃ via h̃ = h/β. We have chosen only the state “1” as
the state affected by the external field even though more general versions are also
possible.(7,9,10,12)

This system is cast in the form of Eq. (1.1) by using the tetrahedral repre-
sentation: We take spin variables Sx ∈ {v̂1, . . . v̂q}, where the v̂k’s are the vertices
of a unit tetrahedron in R

q−1. Inner products (defined the usual way for vectors in
R

q−1) between the v̂k’s satisfy

(v̂k, v̂l) =
{

1, if k = l,
−1

q−1 , otherwise,
(2.11)

and so

δσx ,σy − 1

q
= q − 1

q
(Sx , Sy). (2.12)

After similar consideration of the magnetic field terms, it is seen that the
Hamiltonian in Eq. (2.10) is manifestly of the form in Eq. (1.1). To stay in ac-
cord with the classic references on the subject, e.g., Ref. 48, we will keep the
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q-dependent prefactor suggested by Eq. (2.12). So, our official Hamiltonian for
the Potts model will read

βH = −q − 1

q
β

∑
(x,y)

Jx,y (Sx , Sy) − q − 1

q
h

∑
x

(v̂1, Sx ) (2.13)

with the J ’s obeying Eq. (2.1) and h ∈ R.
The mean-field theory is best expressed in terms of the vector magnetization

given by

m = x1v̂1 + · · · + xq v̂q , (2.14)

and the mean-field free-energy function is [11, 48]

�
(q)
β,h(m) =

q∑
k=1

(
−β

2
x2

k + xk log xk

)
− hx1. (2.15)

Here the “barycentric” coordinates xk are components of a probability vectors,
i.e., we have xk ≥ 0 and x1 + · · · + xq = 1. In the context of the Potts model on
a complete graph, xk represents the fraction of sites in the k-th spin state.

Let us start with a recapitulation of the zero-field case where the resulting
theory is quite well known. For each q there is a number β

(q)
MF such that if β <

β
(q)
MF, the unique global minimizer is the “most symmetric state,” m = 0, while for

β > β
(q)
MF, there are exactly q (asymmetric) global minima which are permutations

of one probability vector of the form x1 > x2 = . . . = xq . Thus we may express
all quantities in terms of a scalar magnetization, e.g., x1 = 1

q + m and xk = 1
q −

m
q−1 , k = 2, . . . , q. Then, when β > β

(q)
MF, the mean-field magnetization is given

by mMF(β) = q−1
q θ , where θ is the maximal positive solution to the equation

θ = eβθ − 1

eβθ + q − 1
. (2.16)

The crucial point—which can be gleaned form a perturbative analysis of
Eq. (2.16)—is the division at q = 2 of two types of behavior. In particu-
lar, mMF(β) tends to a strictly positive value as β ↓ β

(q)
MF for q > 2, while for q = 2

the limit value is zero. (Indeed, for q = 2, there are no nontrivial solutions to
Eq. (2.16) at β = β

(2)
MF = 2.)

Remark 2.2. Interestingly, the values of β
(q)
MF and the limit value mMF(β(q)

MF) are
explicitly computable:

β
(q)
MF = 2

q − 1

q − 2
log(q − 1), mMF

(
β

(q)
MF

) = q − 2

q
. (2.17)

This observation goes back to at least Ref. 48.
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Let us now anticipate, without going to details, what happens for h �= 0.
(The full-blown statements and proofs will appear in Sec. 2.3 and Sec. 5, respec-
tively.) We will capitalize on the principle that local minimizers are stable to small
changes in parameters. Consider q ≥ 3 and h �= 0 such that |h| � 1. The overall
situation cannot differ too drastically from the zero-field case; the only distinc-
tion is that for h > 0 only one of the “h = 0 asymmetric minimizers” is allowed
while for h < 0 the same minimizer is suppressed in favor of the remaining q − 1
ones. On the other hand, for h positive and large, it is clear that the minimizer
of �

(q)
β,h(m) will be unique no matter what β is. Thus, for h > 0 we should have

a line of mean-field first-order phase transitions which terminates at a finite value
of h. On general grounds, the terminal point is expected to be a critical point.

Next, let us consider h < 0 with |h| � 1. The situation at h = −∞ is clear;
this is just the (q − 1)-state Potts model. Thus for finite but large |h|, we can see
a clear distinction between q = 3 and q > 3. In the former cases, the mean-field
transition should be Ising like and hence continuous. In the latter case, the tran-
sition should be discontinuous. Thus, the q = 3 line should break at a tricritical
point followed by a line of continuous transitions while for q > 3 there will be an
unbroken line of discontinuous mean-field phase transitions.

Aside from general interest, the key motivation for obtaining such detailed
knowledge about mMF is as follows: Under specific conditions on (1.1), virtually
all that has just been discussed pertaining to discontinuous transitions in these sys-
tems can be established with rigor in the spread out “real” systems. (On the down-
side is the fact that virtually nothing pertaining to the continuous transition can
be proved by these methods.) To illustrate let us consider the transition at h > 0
when q is large. The mean-field picture is as follows: A non-convexity of �

(q)
β,h(m)

develops when β is of order unity, but it does not “touch down” until β is appre-
ciable (of order log q). However, the existence of a non-convexity suggests that a
strong-enough magnetic field can tilt the balance in favor of a magnetized state,
even for β’s of order unity. This is indeed the case for the MFT as our detailed cal-
culations later show. As a consequence of the general techniques presented here,
this result from the MFT will be processed into a theorem for actual systems.

2.3. Precise Statements for Mean-Field Potts Model

Our precise results for the mean-field theory of the Potts model in an external
field are summarized into two theorems; one for positive fields and the other for
negative fields.

Theorem 2.3. (Positive fields) Let q ≥ 3, let m and the probability vec-
tor (x1, . . . , xq ) be related as in Eq. (2.14) and let �

(q)
β,h(m) denote the function
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from Eq. (2.15). Let hc denote the quantity

hc = log q − 2(q − 2)

q
. (2.18)

Then there is a continuous function β
(q)
+ : (0, hc) → (0,∞) such that

(1) For all (β, h) such that either h ≥ hc or β �= β
(q)
+ (h), there is a unique

global minimizer of �
(q)
β,h(m) with x2 = . . . = xq . The quantity x1 cor-

responding to this minimizer is strictly larger than the mutual value of
the xk’s for k = 2, . . . , q.

(2) For all h < hc, there are two distinct global minimizers of �
(q)
β,h(m) at

(β(q)
+ (h), h).

(3) For (β, h) such that h ≥ hc or β �= β
(q)
+ (h), let x1 = x1(β, h) denote

the first coordinate of the global minimizer of �
(q)
β,h(m). Then (β, h) �→

x1(β, h) is continuous with well-defined but distinct (one-sided) limits
at (β, h) = (β(q)

+ (h), h). Furthermore, writing x1 = 1
q + m, the quantity

θ = q
q−1 m obeys the equation

θ = eβθ+h − 1

eβθ+h + q − 1
. (2.19)

in the region of uniqueness. At the points (β(q)
+ (h), h), both limiting values

obey this equation.
(4) The function h �→ β

(q)
+ (h) is strictly decreasing on (0, hc) with limit val-

ues β
(q)
+ (h) ↑ β

(q)
MF = 2 q−1

q−2 log(q − 1) as h ↓ 0 and β
(q)
+ (h) ↓ 4(q−1)

q as
h ↑ hc.

In order to preserve uniformity of exposition, we will restrict the statement
of negative-field results to q ≥ 4.

Theorem 2.4. (Negative fields) Let q ≥ 4, let m and the probability vec-
tor (x1, . . . , xq ) be related as in Eq. (2.14) and let �

(q)
β,h(m) denote the function

from Eq. (2.15). Then we have:

(1) All global minima are permutations in the last q − 1 variables of vectors
with the representation

x1 < x2 = · · · = xq−1 ≤ xq . (2.20)

Moreover, there exists a function β
(q)
− : (−∞, 0) → (0,∞) such that the

following hold:
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(2) (Symmetric Minimum) For all β < β
(q)
− (h), there is a unique global min-

imum and it has x2 = . . . = xq . Moreover, if m is such that x1 = 1
q − m

and xk = 1
q + m

q−1 , for all k = 2, . . . , q, then θ = q
q−1 m corresponds to

a global minimum when

θ = eβθ−h − 1

(q − 1)eβθ−h + 1
. (2.21)

There is only one θ ∈ [0, 1
q−1 ] for which Eq. (2.21) holds.

(3) (Asymmetric Minima) For all β > β
(q)
− (h), we have q − 1 global minima.

These are permutations in the last q − 1 variables of a single minimum
whose coordinate representation takes the form

x1 < x2 = · · · = xq−1 < xq . (2.22)

(4) At β = β
(q)
− (h) there are q global minima. One of these is of the type

described in (2)—namely, the symmetric minimum—while the other q − 1
are of the type described in (3).

(5) The function h �→ β
(q)
− (h) is strictly increasing and continuous. Moreover,

we have the limits

lim
h→−∞

β
(q)
− (h) = β

(q−1)
MF and lim

h↑0
β

(q)
− (h) = β

(q)
MF (2.23)

Theorem 2.3 is proved in Sec. 5.3 and Theorem 2.4 is proved in Sec. 5.4.
The corresponding statement for the actual lattice systems is the subject of
Theorem 3.5.

3. MAIN RESULTS

Here we give the statements of the principal theorems which apply to any model
whose interaction is of the type (1.1). Then we apply these to the Potts and Blume-
Capel models.

3.1. General Theory

We begin by a precise definition of the class of models we consider. Let � be a
compact subset of R

n , with the inner product denoted by (·, ·), and let Conv (�)
denote the convex hull of �. Let µ0 be a Borel probability measure on (�,B)
that describes the a priori distribution of the individual spins. We will consider
spin configurations (Sx ) from �Z

d
and, abusing the notation slightly, use µ0 to

denote also the corresponding a priori product measure.
To define the interacting spin system, let us pick a finite set � ⊂ Z

d , a
spin configuration S� ∈ �� in � and the “boundary condition” S�c ∈ ��c

. For
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each h ∈ R
n and each β > 0, we then define the finite-volume Hamiltonian

H�(S�, S�c ) by

βH�(S�, S�c ) = −β
∑
〈x, y〉

x ∈ �, y ∈ Z
d

Jx,y (Sx , Sy) −
∑
x∈�

(h, Sx ). (3.1)

The first sum goes over all unordered pairs of distinct sites 〈x, y〉 at least one of
which is contained in �.

The above Hamiltonian can now be used to define the finite-volume Gibbs
measure ν

(S�c )
� on spin configuration from �� by

ν
(S�c )
� (dS�) = e−βH�(S�,S�c )

Z (S�c )
� (β, h)

µ0(dS�), (3.2)

where the normalizing constant Z (S�c )
� (β, h) is the partition function. Of particular

interest are the (weak subsequential) limits of these measures as � expands to fill
out the entire Z

d . These measures obey the DLR-conditions (25) and are generally
referred to as (infinite-volume) Gibbs measures. In this formalism, phase coexis-
tence is said to occur for parameters β and h if there is more than one limiting
Gibbs measure. Under these conditions the system is said to exhibit a first-order
phase transition.

We proceed by formulating the precise conditions under which our re-
sults will be proved. To facilitate our next definition, for each lattice direction
� ∈ {1, . . . , d}, let H� denote the half-space

H� = {x = (x1, . . . , xd ) ∈ Z
d , x� > 0}. (3.3)

We will use ϑ (�) to denote the reflection ϑ (�): H� → Z
d \ H� defined explicitly by

the formula ϑ (�)(x1, . . . , xd ) = (x1, . . . , x�−1, 1 − x�, x�+1, . . . , xd ).

Definition 3.1 (RP “through bonds”) Consider a collection of coupling con-
stants (Jx,y)x,y∈Zd . We say that these are RP if the following conditions hold:

(1) (translation invariance) for any x, y ∈ Z
d we have Jx,y = J0,y−x .

Moreover, for any lattice direction � ∈ {1, . . . , d},
(2) (reflection invariance) for any x, y ∈ H� we have

Jx,y = Jϑ (�)x,ϑ (�) y . (3.4)

(3) (reflection positivity) if f : H� → R is absolutely summable with∑
x∈H�

f (x) = 0, (3.5)
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then ∑
x ∈ H�

y ∈ Z
d \H�

Jx,y f (x) f (ϑ (�) y) ≥ 0. (3.6)

Given a translation-invariant Gibbs measure, we use the word magnetization
to denote the expectation of the spin at the origin. The statement of our general
result can then be viewed as a restriction on the possible values of the magnetiza-
tion. However, not all magnetizations that can be physically produced are (prov-
ably) accessible to our methods. The reason is that the underlying Gibbs states
for which our techniques work will have to satisfy the conditions of reflection
positivity—in particular, they have to be obtained as weak limits of torus states.
Our next item of business will be to define precisely the set of “allowed values”
of the magnetization.

We will proceed as in Ref. 11. Let Z�(β, h) be the partition function in vol-
ume �—the boundary condition is irrelevant—and let F(β, h) denote the (phys-
ical) free energy defined as the limit of − 1

|�| log Z� as � increases to fill the

entire Z
d (in the sense of van Hove(25)). The function F(β, h) is jointly concave,

so we may let K�(β, h) denote the set of all pairs [e�, m�] such that

F(β + �β, h + �h) − F(β, h) ≤ e� �β + (m�,�h) (3.7)

for any �β ∈ R and any �h ∈ R
n . Now K�(β, h) is a convex set so we

let M�(β, h) to denote the set of values m� for which there exists an e� such
that [e�, m�] is an extreme value of K�(β, h). Our main theorem then reads:

Theorem 3.2. Consider the spin system on Z
d with the Hamiltonian (1.1)

such that the couplings (Jx,y) are RP, the inverse temperature β > 0 and ex-
ternal field h ∈ R

n . For each k ∈ [−π, π ]d , let Ĵ (k) = �x∈Zd J0,x eik·x and recall
that Ĵ (0) = 1 by Eq. (2.1). Then for any m� ∈ M�(β, h),

�β,h(m�) ≤ inf
m∈Conv(�)

�β,h(m) + βn
κ

2
I , (3.8)

where n is the (underlying) dimension of the spin-space, κ = maxS∈� |S|2 and

I =
∫

[−π,π]d

dk

(2π )d

| Ĵ (k)|2
1 − Ĵ (k)

. (3.9)

The useful aspect of Theorem 3.2 is that the error term E = βn κ
2 I can be

made small by appropriate adjustment of parameters. A general statement of this
sort appears in Proposition 4.10 but, typically, these conditions have to be veri-
fied on a case by case basis. Let us tend to the details of these adjustments later
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and, for the time being, simply assume that E is small. Then, along with the obvi-
ous supplement of Eq. (3.8), �β,h(m�) ≥ inf m∈ Conv (�) �β,h(m), we have learned
that the allowed values of the magnetization in the physical system nearly mini-
mize the mean-field free energy. In this sense, the mean-field theory already pro-
vides a quantitatively accurate description of the physical system once E � 1. In
Secs. 3.3–3.4 we will use this fact to prove a first-order phase transitions in a few
models of interest.

To demonstrate the use of Theorem 3.2, let us consider the “evolution” of
a typical MFT phase transition, in which two local minima of �β,h exchange
roles of the global minimizer as β varies. Specifically, let ms(β) and ma(β) be
local minima of �β,h—one of which is always global—for β near some βt, and
suppose that �β,h(ma) > �β,h(ms) for β > βt and vice versa for β < βt. Then
Theorem 3.2 can be applied under the condition that, outside some small neigh-
borhoods of ms(β) and ma(β) for β ≈ βt, no magnetizations have a free energy
within E of the absolute minimum. For β >≈ βt, this stipulation applies even to the
neighborhood of ms(β) and, for β <≈ βt, to the neighborhood of ma(β). Then, The-
orem 3.2 tells us that in the region β <≈ βt, the actual magnetization is near ms(β),
for β ≈ βt it could be near ms or ma, and for β >≈ βt it is only near ma(β). On gen-
eral grounds, as long as the difference ma − ms is bounded uniformly away from
zero, somewhere near βt there has to be a point of phase coexistence.

3.2. Mean-Field Philosophy

In this section we will state some general facts about spin systems and their mean-
field analogues. The stipulations that govern this section are rather mild; first we
will assume that the Hamiltonian is of the form (1.1) with the Jx,y’s satisfying
the conditions of reflection positivity. Second, we will assume that the associated
mean-field free-energy function defined in Eq. (2.8) has a unique minimizer. Fi-
nally, we will investigate the small-I behavior of these models. The preferred
viewpoint is a fixed dimension d with parameters µ—as defined in Eq. (1.2)—
tending to zero or s—as defined in Eq. (1.3)—tending to d.

We note that special cases (usually restricted to concrete models) have been
addressed elsewhere; see, in particular, Ref. 34 and references therein, but there
the only mechanism to force I → 0 was the d → ∞ limit which we find æsthet-
ically somewhat unsatisfactory. Another possibility is to consider the aforemen-
tioned Kac limit which more or less boils down to infinite smearing out of the in-
teraction. A contour-based analysis of this limit has been carried out, but the tech-
nical aspects have so far been overcome only for very specific models.(14−17,36)

Here we provide a general result in this direction under the sole condition of re-
flection positivity.
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Theorem 3.3. (Mean-field philosophy) Consider the spin system as described
above and let �β,h be as in Eq. (2.8). Suppose that the parameters β > 0
and h ∈ R

n are such that �β,h has a unique minimizer m on Conv (�) in Eq. (2.8).

Let (J (n)
x,y) be a sequence of coupling constants that are RP and obey Eq. (2.1), and

let 〈−〉(n)
β,h be a sequence of translation and rotation-invariant Gibbs states corre-

sponding to these couplings. If the sequence of integrals In , obtained from (J (n)
x,y)

via Eq. (3.9), satisfies

In → 0 as n → ∞, (3.10)

then we have the following facts:

(1) The actual magnetization tends to m, i.e.,

〈S0〉(n)
β,h −→

n→∞ m. (3.11)

(2) The energy density tends to its mean-field value, i.e.,〈(
S0,

β

2
m0 + h

)〉(n)

β,h

−→
n→∞ E(m), (3.12)

where m0 is as in Eq. (2.3) and E(m) is as in Sec. 2.1.

In particular, in the limit n → ∞, the spin variables at distinct sites become in-
dependent with distribution given by the product of the titled measures

e(S,βm+h)−G(βm+h)µ0(dS). (3.13)

Here µ0 is the a priori measure.

The preceding—as is the case in much of the principal results of this paper—
reduces (the I → 0 limit of) the full problem to a detailed study of the associated
mean-field theory. Two specific models will be analyzed in great detail shortly
(see Secs. 3.3 and 3.4); let us mention two other well known (or well studied)
examples.

First are the O(n) spin systems at zero external field. Here each Sx takes
values on the unit sphere in R

n with a priori uniform measure. In the mean-field
theory of these models, the scalar magnetization m(β) vanishes for β less than
some βc while for β ≥ βc it is the maximal positive solution of a certain transcen-
dental equation (see, e.g., Ref. 34). In particular, this solution rises continuously
from zero according to

|m(β)| = (β − βc)
1/2 [C(n) + o(1)], β ↓ βc. (3.14)

By Theorem 3.3, the actual magnetization converges to this function but, unfor-
tunately, our control is not strong enough to rule out the possibility of small dis-
continuities (which vanish as I → 0).
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A less well known but very interesting example is the cubic model where
the spins point to the center of a face on an r -dimensional unit hypercube,
i.e., Sx ∈ � = {±ê1, . . . ,±êr }. For r > 3 the transition in this model is first or-
der (and was analyzed in Ref. 11). The case r = 2 reduces to an Ising system but
the borderline case, r = 3, while still continuous, features a somewhat anomalous
(namely, tricritical) behavior. Indeed, for this system, the mean-field magnetiza-
tion obeys

|m(β)| = (β − βc)
1/4 [C + o(1)], β ↓ βc, (3.15)

where βc = 3. Once again, the actual magnetization converges to such a function
but the control is not sufficient to rule out small discontinuities.

While these sorts of results do not establish any critical behavior in particular
systems, they could represent a first step in proving that a variety of (mean-field)
critical behaviors are possible.

3.3. Results for the Potts model

Our first result concerns the zero-field q-state Potts model with q ≥ 3. Let F(β, h)
denote the free energy of the Potts model with the Hamiltonian in Eq. (2.10) and
let m�(β) be the quantity

m�(β) = ∂

∂h+ F(β, h)
∣∣∣
h=0

− 1

q
. (3.16)

(An alternative definition of m�(β) would be the limiting probability that the spin
at the origin is “1” in the state generated by the boundary spins all set to “1.”)
Let mMF = mMF(β) be related to the maximal positive solution θ of Eq. (2.16) by
mMF = q−1

q θ . Then we have:

Theorem 3.4. Let q ≥ 3 be fixed. For each ε > 0 there exists δ > 0 with the
following property: For any d ≥ 1 and any collection of coupling constants (Jx,y)
on Z

d that are RP, obey (2.1) and for which the integral I in Eq. (3.9) satis-
fies I ≤ δ, there exists a number βt ∈ (0,∞) such that∣∣βt − β

(q)
MF

∣∣ ≤ ε (3.17)

holds and such that the physical magnetization m� = m�(β) of the corresponding
q-state Potts model obeys the bounds

m�(β) ≤ ε for β < βt (3.18)

and

|m�(β) − mMF(β)| ≤ ε for β > βt. (3.19)



Mean-Field Driven First-Order Phase Transitions 1157

In particular, whenever the integral I is sufficiently small, β �→ m�(β) undergoes
a jump near the value β

(q)
MF. A similar jump occurs (at the same point) in the energy

density.

This statement extends Theorem 2.1 of Ref. 11 to a class of spread-out RP
interactions. (A minor technical innovation is that the bound in Eq. (3.19) holds
uniformly.) As a consequence, we are finally able to provide examples of interac-
tions for which the q = 3 state Potts models in dimension d = 3 can be proved to
have a first-order transition. Similar conclusion holds for all q ≥ 3 but, unfortu-
nately, our requirements on the “smallness” of the corresponding parameters are
not uniform in q.

In d = 1, we show that the long-range Potts models with power-law decay-
ing interactions go first order once the exponent of the power-decay is between
one and two. Models in this category have been studied in Ref. 40 in the context
of percolation; the domination techniques of, e.g., Ref. 3 then imply the exis-
tence of a low temperature phase. However, the percolation-based approach alone
is unable to tell whether the transition is discontinuous or not. Some additional
discussion is provided in Sec. 3.5.

Our next item of interest will be the same system in an external field, as
described by the full Hamiltonian (2.10). For reasons alluded to in Sec. 2.2, we
will restrict our attention to the q ≥ 4 cases.

Theorem 3.5. Let q ≥ 4 be fixed and let us consider the q-state Potts model with
coupling constants Jx,y that are RP and obey Eq. (2.1). Then there exists δ0 > 0
and a function h0: (0, δ0] → [0, hc), where hc is as in Eq. (2.18), such that if
(3.9) obeys I ≤ δ with some δ ≤ δ0, then there exists a function βt: (−∞, h0) →
(0,∞) with the following properties:

(1) A first-order transition (accompanied by a discontinuity in the energy
density and the magnetization) occurs at the parameters (h, βt(h)), for
any external field h ∈ (−∞, h0).

(2) Let m�(β, h) be the “spin-1 density” defined by the right partial deriva-
tive ∂

∂h+ F(β, h). Then there exists an h1 = h1(δ) < 0 such that h �→
m�(β, h) has a discontinuity at field strength h̃ such that β = βt(h̃) pro-
vided that h̃ ∈ (h1, h0).

The function h0 is decresing while h1 is increasing. Moreover, limδ↓0 h0(δ) = hc

and limδ↓0 h1(δ) = −∞.

The second part of the theorem asserts that, even if state “1” is suppressed by
the field, the order-disorder transition will be felt by the “spin-1 density” m�(β, h).
There is no doubt in our mind that the restriction to h ≥ h1 in this claim is only of
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technical nature. Our lack of control for h very large negative stems from the fact
that the jump in the mean-field counterpart of m�(β, h) decreases exponentially
with |h| as h → −∞. Theorems 3.4 and 3.5 are proved in Sec. 6.

3.4. Results for the Blume-Capel Model

The Blume-Capel model is a system whose spins σx take values in the set � =
{−1, 0, 1} with a priori equal weights. The Hamiltonian is given most naturally
in the form

βH (σ ) = β
∑
〈x,y〉

Jx,y(σx − σy)2 − λ
∑

x

(σx )2 − h
∑

x

σx . (3.20)

As is easy to see, a temporary inclusion of the terms proportional to (σx )2 into the
single-spin measure shows that this Hamiltonian is indeed of the general form in
Eq. (1.1).

If we consider the situation at zero temperature (β = ∞) with λ and h fi-
nite we see that in the (λ, h)-plane there are three regions of constant spin which
minimize βH (σ ). The regions all meet at the point h = 0, λ = 0; tentatively we
will call the origin a triple point (and the lines phase boundaries). Ostensibly one
would wish to establish that this entire picture persists at finite temperature. How-
ever, we will confine attention to the line h = 0 which is of the greatest interest.
We will show, both in the context of mean-field theory and, subsequently, realistic
systems that there is indeed a finite temperature first order transition at some λt(β).
Of significance is the fact that this occurs at a λt which is strictly positive; i.e., for
1 � β < ∞, the point λ = 0 lies inside the phase which is dominated by zeros.

We remark that results of this sort are far from new; indeed the proof of this
and similar results represented one of the early triumphs of low temperature tech-
niques Ref. 46. The physical reason behind the shifting of the phase boundary is
the enhanced ability of the “zero” phase over the plus and minus phases to harbor
elementary excitations. Interestingly, in spite of the fact that our method relies on
suppression of fluctuations, the corresponding entropic stabilization is neverthe-
less manifest in our derivation. In addition, while the contour-based approaches
require a non-trivial amount of “low temperature labor” to ensure that the in-
teractions between excitations are limited, our methods effortlessly incorporate
whatever interactions may be present.

To simplify our discussion, from now on we will focus on the situation at
zero external field, i.e., h = 0, and suppress h from the notation. First let us take
a look at the mean-field theory. Here we find it useful to express the relevant
quantities in terms of mole fractions x1, x0, x−1 of the three spin states in �. To
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within an irrelevant constant, the mean-field free-energy function is

�β,λ = 4βx1x−1 + βx0(1 − x0) + λx0 +
∑

σ=±1,0

xσ log xσ . (3.21)

Here we have used the fact that x1 + x0 + x−1 = 1. Our main result concerning
the mean-field theory of the Blume-Capel model is now as follows:

Theorem 3.6. For all β ≥ 0 and all λ ∈ R, all local minima of �β,λ obey the
equations

x1e4βx−1 = x−1e4βx1 = x0eβ(1−2x0)+λ. (3.22)

Moreover, there exists a β0 < ∞ such that for all β ≥ β0, any such (local) min-
imum is of the form that two components of (x1, x0, x−1) are very near zero and
the remaining one is near one. Explicitly, there exists a constant C < ∞ such that

(1) If x0 is the dominant index, then x1 = x−1 = 1
2 (1 − x0) and we have

that (1 − x0) ≤ Ce−β+λ.
(2) If x1 is the dominant index, then x−1 ≤ Ce−4β while x0 ≤ Ce−β−λ. A cor-

responding statement is true for the situation when x−1 is dominant.

Furthermore, consider two local minima at (β, λ), one dominated by x0 and the
other dominated by x1. Let φ0(β, λ) be the mean-field free energy correspond-
ing to the former minimum and let φ1(β, λ) be that corresponding to the latter
minimum. Then

φ0(β, λ) − φ1(β, λ) = λ − e−β+λ + O(βe−2β ) (3.23)

where O(βe−2β ) denotes a quantity bounded by a constant times βe−2β for all λ in
a neighborhood of the origin. In particular, for all β sufficiently large there exists
λMF(β) = e−β + O(βe−2β ) such that the global minimizes of �β,λ have x±1 � 1
for λ < λMF(β) and x0 � 1 for λ > λMF(β).

Theorem 3.6 is proved in Sec. 5.1. Next we will draw our basic conclusions
about the actual system:

Theorem 3.7. Consider the Blume-Capel model in Eq. (3.20), with zero field
(h = 0), inverse temperature β and the coupling constants (Jx,y) that are RP and
obey Eq. (2.1). Let I be the integral in Eq. (3.9). There exist constants β0 ∈
(0,∞) and C < ∞ such that if β ≥ β0 and βI � e−β , then there is a func-
tion λt: [β1, β2] → R satisfying |λt(β) − e−β | < βI such that any translation-
invariant Gibbs state 〈−〉β,λ obeys

(1) 〈σ 2
x 〉β,λ ≤ Ce−β if λ < λt(β),

(2) 〈σ 2
x 〉β,λ ≥ 1 − Ce−β if λ > λt(β).
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Moreover, at λ = λt(β), there exist three distinct, translation-invariant Gibbs
states 〈−〉σβ,λ, with σ ∈ {+1, 0,−1}, the typical configuration of which contains
fraction at least 1 − Ce−β of the corresponding spin state.

We remark that the phase transition happens at a value of λ which (at least
for β � 1) is strictly positive. This demonstrates the phenomenon of entropic
suppression (of ±1 ground states at λ = 0) established previously in Ref. 31 by
the contour-expansion techniques. The entropic nature of the above transition is
also manifested by the fact that the free-energy “gap” separating the distinct states
decreases as β → ∞. This is the reason why, to maintain uniform level of control,
we need I to be smaller for smaller temperatures. Theorem 3.7 is proved in
Sec. 6.

3.5. Discussion

We close this section with a discussion of some conjectures that can be addressed
via the above theorems.

Starting with the intriguing results in Ref. 31 and culminating in Refs. 32,
33, A. Kerimov formulated the following conjecture (we quote verbatim from
the latter pair of references): “Any one-dimensional model with discrete (at most
countable) spin space and with a unique ground state has a unique Gibbs state if
the spin space of this model is finite or the potential of this model is translation-
ally invariant.” The conclusions of Theorem 3.4 manifestly demonstrate that this
conjecture fails for the 1D Potts model in external field. Indeed, for q ≥ 3, h > 0
and interactions decaying like 1/r s with s ∈ (1, 2) which are RP and satisfy the
condition that the integral in Eq. (3.9) is sufficiently small, the Potts model has
phase coexistence at some positive temperature. However, it is clear that this sys-
tem enjoys a unique ground state.

In a recent paper,(4) N. Berger considered random-cluster models with
parameter q and interactions between sites x and y decaying as |x − y|−s ,
where d < s < 2d. He proved, among other results, that at the percolation thresh-
old there is no infinite cluster in the measure generated by the free boundary
conditions. For ordinary percolation (i.e., q = 1), this implies continuity of the
infinite cluster density. As to the wired boundary conditions, for q = 2—i.e., the
Ising model—the classic results of Refs. 1, 2 show that the magnetization vanishes
continuously once the model is in the “mean-field regime” s ∈ (1, 3/2). However,
for general random-cluster models with q > 1 and wired boundary conditions,
the situation remained open.

While we cannot quite resolve the situation at the percolation threshold, our
results prove that, for sufficiently spread out random-cluster models with RP cou-
plings, there is a point where the free and wired densities are indeed different. To
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resolve the full conjecture from Ref. 4, one would need to establish that the only
place such a discontinuity can occur is at the percolation threshold.

Our third application concerns the problem of partition function zeros of
the Potts model in a complex external field with Re h < 0. Here there have been
numerical results(38,49) claiming that no such zeros occur for the nearest-neighbor
2D Potts model with q ≤ 7. On the basis of the classic Lee-Yang theory,(38,49)

absence of such zeros would imply analyticity of the spin-1 density. The results
of Refs. 5, 6, 8–10 rule this out for q very large and Theorem 3.5(2) also makes
this impossible for reasonable values of q and sufficiently spread-out interactions
(of course, for d = 1, 2 this requires a power-law interaction).

4. PROOFS: GENERAL THEORY

The goal of this section is to prove Theorems 3.2 and 3.3. In Sec. 4.1 we present
some general convexity results that provide the framework for the derivation of
our results. However, the driving force of our proofs are the classic tools of reflec-
tion positivity and infrared bounds which are reviewed (and further developed)
in Sects. 4.2 and 4.3. The principal results of this section are Theorem 4.1 and
Lemmas 4.2, 4.8 and 4.9.

4.1. Convexity Bounds

We begin with an intermediate step to Theorem 3.2 which gives an estimate on
how far above the mean-field free energy evaluated at a physical magnetization is
from the absolute minimum.

Theorem 4.1. Suppose (Jx,y) are translation and rotation invariant couplings
on Z

d such that Eq. (2.1) holds. Let νβ,h be a translation and rotation-invariant,
infinite volume Gibbs measure corresponding to β ≥ 0 and h ∈ R

n . Let 〈−〉β,h

denote the expectation with respect to νβ,h and let m� = 〈S0〉β,h. Then

�β,h(m�) ≤ inf
m∈ Conv (�)

�β,h(m) + β

2
{〈(S0, m0)〉β,h − |m�|2}, (4.1)

where m0 = �x∈Zd J0,x Sx .

Proof: The proof is very similar to that of Theorem 1.1 of Ref. 11. Let � be
a box of L × · · · × L sites in Z

d and let M� be the total spin in �, i.e., M� =
�x∈�Sx . Let us also recall the meaning of the mean-field quantities from (2.6–
2.8). The starting point of our derivations is the formula

e|�|G(b) = 〈
e(b,M�)+βH�(S�|S�c ) Z�(S�c )

〉
β,h

, b ∈ R
n, (4.2)
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which is obtained by invoking the DLR conditions for the Gibbs state νβ,h.
Here H�(S�|S�c ) is as in Eq. (3.1) and Z�(S�c ) is a shorthand for the partition
function in � given S�c .

The goal is to derive a lower bound on the right-hand side of Eq. (4.2).
First we provide a lower bound on Z�(S�c ) which is independent of boundary
conditions. To this end, let 〈−〉0,b denote expectation with respect to the product
measure

e(b,M�)−|�|G(b)
∏
x∈�

µ0(dSx ) (4.3)

and let mb denote the expectation of any spin in � with respect to this measure.
Jensen’s inequality then gives us

Z�(S�c ) = e|�|G(b)
〈
e−(b,M�)−βH�(S�|S�c )

〉
0,b

≥ e|�|[G(b)−(b,mb)] e−〈βH�(S�|S�c )〉0,b . (4.4)

Now, (2.6–2.7) imply that G(b) − (b, mb) = S(mb), while the absolute summa-
bility of x �→ J0,x implies that for all ε > 0 there is a C1 < ∞, depending on ε,
the Jx,y’s and the diameter of �, so that

−〈βH�(S�|S�c )〉0,b ≥ |�|E(mb) − βε|�| − βC1|∂�|, (4.5)

with E(mb) denoting the mean-field energy function from Sec. 2.1. (Note that we
used also the normalization condition (2.1).) Invoking Eq. (2.8) and optimizing
over all b ∈ R

n , we thus get

Z�(S�c ) ≥ e−|�|FMF(β,h)−βε|�|−βC1|∂�|, (4.6)

where FMF(β, h) is the absolute minimum of �β,h(m) over all m ∈ Conv (�).
Having established the desired lower bound on the partition function, we

now plug the result into Eq. (4.2) to get

e|�|G(b) ≥ 〈
e(b,m�)+βH�(S�|S�c )

〉
β,h

e−|�|FMF(β,h)−βε|�|−βC1|∂�|. (4.7)

The expectation can again be moved to the exponent using Jensen’s inequality,
now taken with respect to measure νβ,h. Invoking the translation and rotation in-
variance of this Gibbs state, bounds similar to Eq. (4.5) imply〈

βH�(S�|S�c )
〉
β,h

≥ −|�|
( ∑

x∈Zd

β

2
J0,x 〈(Sx , S0)〉β,h + (h, m�) − ε

)
− C2|∂�|. (4.8)
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Plugging this back into Eq. (4.7), taking logarithms, dividing by |�| and letting
|�| → ∞ (with |∂�|/|�| → 0) followed by ε ↓ 0, we arrive at the bound

G(b) − (b, m�) ≥ −β

2

∑
x∈Zd

J0,x 〈(Sx , S0)〉β,h − (h, m�) − FMF(β, h). (4.9)

Optimizing over b gives

S(m�) − (h, m�) ≤ β

2

∑
x∈Zd

J0,x 〈(Sx , S0)〉β,h + FMF(β, h) (4.10)

from which Eq. (4.1) follows by subtracting β

2 |m�|2 on both sides. �

Similar convexity estimates allow us to establish also the following bounds
between the energy density and fluctuations of the weighted magnetization m0:

Lemma 4.2. Let κ = supS∈�(S, S) and let (Jx,y) be a collection of couplings
satisfying Eq. (2.1). For each β > 0 and h ∈ R

n there exists a number � = �(β, h
such that for any translation and rotation invariant Gibbs state 〈−〉β,h we have

β� 〈 |m0 − m�|2〉β,h ≤ 〈(S0, m0)〉β,h − |m�|2 ≤ βκ
〈 |m0 − m�|2

〉
β,h

, (4.11)

where m0 = �x∈Zd J0,x and m� = 〈S0〉β,h.

Proof: We begin with a rewrite of the correlation function in the middle of
Eq. (4.11). First, using the DLR equations to condition on the spins in the com-
plement of the origin, we have

〈(m0, S0)〉β,h = 〈(m0,∇G(βm0 + h)〉β,h. (4.12)

Next, our hypotheses imply that m� = 〈m0〉β,h = 〈∇G(βm0 + h)〉β,h, and so

〈(m0,∇G(βm0 + h)〉β,h − |m�|2

= 〈(m0 − m�,∇G(βm0 + h) − ∇G(βm� + h))〉β,h. (4.13)

For the rest of this proof, let � abbreviate the inner product in the expectation on
the right-hand side.

We will express � using the mean value theorem

� = (
m0 − m�, [∇∇G(b)](m0 − m�)

)
, (4.14)

where b is a point somewhere on the line between βm0 + h and βm� + h.
The double gradient ∇∇G(b) is a matrix with components (∇∇G(b))i, j =
〈S(i)

0 S( j)
0 〉0,b − 〈S(i)

0 〉0,b〈S( j)
0 〉0,b. As was shown in Ref. 11, the �2-operator norm

of ∇∇G(b) is bounded by κ = supS∈�(S, S) and so we have

� ≤ βκ |m0 − m�|2. (4.15)
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Taking expectations on both sides, and invoking Eqs. (4.12–4.13), this proves the
upper bound in Eq. (4.11).

To get the lower bound we note that, µ0 almost surely, the double gradient
∇∇G(b) is positive definite on the linear subspace generated by vectors from �.
(We are using that � is the support of the a priori measure µ0.) Since βm0 + h
takes values in a compact subset of this subspace, we have

� ≥ β� |m0 − m�|2 (4.16)

for some (existential) constant � > 0. Taking expectations, the left inequality in
(4.11) follows. �

We emphasize that in its present form, the bounds (4.1) and (4.11) are es-
sentially of complete generality. Underlying most of the derivations in this paper
is the observation that the variance term on the right-hand side of Eq. (4.11) is
sufficiently small. Via Eq. (4.1), the physical magnetization m� is then forced to
be near one of the near minima of the mean-field free energy. This reduces the
problem of proving discontinuous phase transitions to:

(1) controlling the variance term in Eq. (4.11),
(2) a detailed analysis of the minimizers of �β,h.

For (1), we will use the method of reflection positivity/infrared bounds discussed
in the following subsections. As mentioned before, this does impose some restric-
tions on our interactions and our Gibbs states. Part (2) is model specific and, for
the Potts and Blume-Capel models, is the subject of Sec. 5.

4.2. Reflection Positivity

Our use of reflection positivity (RP) will require that we temporarily restrict our
model to the torus TL of L × . . . × L sites. In order to define the interaction
potential on this torus, we recall that the Jx,y’s are translation invariant and define
their “periodized” version by

J (L)
x,y =

∑
z∈Zd

Jx,y+Lz, (4.17)

where Lz is the site whose coordinates are L-multiples of those of z. The torus
version of the Hamiltonian (1.1) is then defined by

βHL (S) = −
∑
〈x, y〉

x, y ∈ TL

β J (L)
x,y (Sx , Sy) −

∑
x∈TL

(Sx , h). (4.18)
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(Here, as in Eq. (1.1), the first sum is over all unordered pairs of sites.) Let PL

denote the Gibbs measure on �TL whose Radon-Nikodym derivative with respect
to the a priori spin distribution µ0(dS) is the properly normalized e−βHL (S).

Let us suppose that L is even and let us temporarily regard TL as a periodized
box {1, . . . , L}d . Let T

+
L be those sites whose i-th coordinate ranges between 1

and L/2 and let T
−
L be the remaining sites. The two parts of the torus are related

to each other by a reflection in the “hyperplane” P that separates the two halves
from each other. (The geometrical image of the plane has two components.) Given
such a plane P , we let F+

P denote the σ -algebra of events that depend on the
configuration in T

+
L , and similarly for F−

P and T
−
L .

Let ϑP denote the reflection taking T
+
L onto T

−
L and vice versa (cf. the def-

inition of ϑ (k) in Sec. 3.1). In the natural way, ϑP induces an operator ϑ�
P on the

set of real-valued functions on (�TL ). Then we have:

Definition 4.3 (RP on torus) We say that PL is reflection positive if for every
plane P as described above and any two bounded, F+

P -measurable random vari-
ables X and Y ,

EL (Xϑ�
P (Y )) = EL (Yϑ�

P (X )) (4.19)

and

EL (Xϑ�
P (X )) ≥ 0. (4.20)

Here EL is the expectation with respect to PL .
Condition (4.20) in the above definition is often too complicated to be ver-

ified directly. Instead we verify a convenient sufficient condition which we will
state next:

Lemma 4.4. Consider a collection of coupling constants (Jx,y)x,y∈Zd satisfying
the properties of Definition 3.1 in Sec. 3.1. Then the measure PL , defined on TL

using the periodized coupling constants from Eq. (4.17), is reflection positive in
the sense of Definition 4.3.

Proof: This is a multidimensional version of Proposition 3.4 of [22]. �

Remark 4.5. We note that the three classes of interactions listed in Sec. 1.2 are
reflection positive. For the most part, interactions of this sort were discussed in
Ref. 22; however, for reader’s convenience, we provide the relevant calculations
below.

(1) Nearest-neighbor/next-nearest neighbor couplings: Consider a func-
tion f : H1 → C which is nonzero only on the sites of H1 that are adja-
cent to Z

d \ H1. (By inspection of Eq. (3.6), for nearest and next-nearest
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neighbor interactions, this is the most general function that need to be
considered.) Pick η ∈ R and consider the function

g j (x) = f (x) + η f
(
x + ê j

)
, j = 2, . . . , d, (4.21)

and define a collection of coupling constants (Jx,y) by the formula∑
x ∈ H1

y ∈ Z
d \ H1

Jx,y f (x) f (ϑ (1) y) =
∑

j=2,...,d

∑
x∈H1

g j (x)g j (x) (4.22)

Now the right-hand side is clearly positive and so the Jx,y’s satisfy the
condition in Eq. (3.6).

It remains to identify the explicit form of these coupling constants.
Let x ∈ H1 be a boundary site and let x ′ = ϑ (1)x be its nearest neighbor
in Z

d \ H1. First we note that, for each x and j , there is an interaction of
“strength” η between x and its next-nearest neighbor x ′ + ê j and a similar
interaction between x and the site x ′ − ê j . So, the next-nearest neighbors
have coupling strength η. As to the nearest-neighbor terms, for a fixed x
and fixed j , there is the direct interaction with x ′ of strength 1 and there
is a term of strength η2. Thus, upon summing, the nearest-neighbor inter-
action has total strength (d − 1)(1 + η2).

Since the overall strength of the interaction is irrelevant, the ratio
of the strength of the next-nearest neighbor to the nearest-neighbor cou-
plings has to be a number of the form 1

d−1
η

1+η2 which, in particular, per-

mits any ratio whose absolute value is bounded by 1
2(d−1) .

(2) Yukawa potentials: Reflection positivity for the Yukawa potentials can
be shown by applying the criterion from Lemma 4.4: Fix µ > 0 and let
Jx,y = e−µ‖x−y‖1 . Then for any observable f : H1 → R,∑

x ∈ H1

y ∈ Z
d \ H1

Jx,y f (x) f (ϑ (1) y)

=
∑

x2, . . . , xd ∈ Z

y2, . . . , yd ∈ Z

K (x, y)

( ∑
x1>0

e−µx1 f (x)

)( ∑
y1>0

e−µy1 f (y)

)
, (4.23)

where the operator kernel K : Z
d−1 → Z

d−1 is defined by K (x, y) =
exp{−µ�d

j=2|x j − y j |}. This operator is symmetric and diagonal in the
Fourier basis; a direct calculation shows that K has only positive eigen-
values. This means that the right-hand side is non-negative, proving
condition (3) of Definition 3.1. (The other conditions are readily checked
as well.)
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(3) Power-laws: We begin by noting that all conditions on Jx,y in Defini-
tion 3.1 are linear in Jx,y . Therefore, any linear combination of reflection
positive Jx,y’s with non-negative coefficients is also reflection positive. In
particular, if we integrate a one parameter family of interactions against a
positive measure, the result must also be RP. Now if we let

Jx,y =
∫ ∞

0
µs−1e−µ|x−y|1 dµ for s > 0, (4.24)

then Jx,y = C(s)|x − y|−s
1 and so the power laws are RP as well.

We observe that in the classics, particularly, Refs. [22, 23], the above
types of interactions are treated and the RP properties established with all
distances expressed in �2-norms. The derivations therein all rely, to some
extent, on latticization of the field-theoretic counterparts to reflection pos-
itivity which were, perhaps, better known in their heyday. Our �1 deriva-
tions, while being a more pedestrian method of extension from d = 1,
have the advantage that they are self-contained.

4.3. Infrared Bounds

Our principal reason for introducing reflection positivity is to establish an upper
bound on the two point correlation term in Theorem 4.1. This will be achieved
by invoking the connection between reflection positivity and infrared bounds. For
spin systems this connection goes back to Ref. 24 where infrared bounds were
used to provide proofs of phase coexistence in certain continuous-spin models at
low temperature. Here we will follow the strategy of Ref. 11, and so we will keep
our discussion brief.

In order to apply infrared bounds to the problem at hand we must first restrict
consideration to those Gibbs states with the following two properties:

Property 4.1. (Torus state). An infinite volume Gibbs measure νβ,h is called
a torus state if it can be obtained as a weak limit of finite-volume states with
periodic boundary conditions. (The torus states need not correspond exactly to
the values β and h.)

Property 4.2. (Block averages). An infinite volume Gibbs measure νβ,h is said
to have block average magnetization m� if

lim
�↑Zd

1

|�|
∑
x∈�

Sx = m�, νβ,h-almost surely. (4.25)
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Similarly, the measure is said to have block average energy density e� if

lim
�↑Zd

1

|�|
∑
〈x, y〉

x, y ∈ �

Jx,y (Sx , Sy) = e�, νβ,h-almost surely. (4.26)

Here in Eqs. (4.25–4.26) the limits are along increasing sequences of square
boxes centered at the origin.

It is conceivable that not every (extremal) Gibbs state will obey these restric-
tions, so the reader might wonder how we are going to detect the desired phase
transitions. We will use an approximation argument which goes back to Ref. 11.
Recall the definition of the set M�(β, h) of “extremal magnetizations” from the
paragraph before Theorem 3.2. Then we have:

Lemma 4.6. For all β > 0, h ∈ R
n and all m� ∈ M�(β, h), there exists an in-

finite volume Gibbs state νβ,h for interaction (1.1) which obeys Properties 4.1
and 4.2.

Proof: This is, more or less, Corollary 3.4 from Ref. 11 enhanced to include the
block average energy density. �

Our next goal is to show that the right-hand side of Eq. (4.1) can be controlled
for any Gibbs state satisfying Properties 4.1 and 4.2. To this end let D−1(x, y)
denote the inverse of the (weighted) Dirichlet lattice Laplacian defined using
the Jx,y’s. Explicitly, we have

D−1(x, y) =
∫

[−π,π]d

dk

(2π )d

eik·(x−y)

1 − Ĵ (k)
, (4.27)

where Ĵ (k) = �x∈Zd J0,x eik·x . We will always work under the conditions for which
the integral is convergent. Our principal estimate is now as follows:

Lemma 4.7. (Infrared bound). Assume that k �→ (1 − Ĵ (k))−1 is Riemann inte-
grable. Fix β > 0, h ∈ R

n and let νβ,h be an infinite-volume Gibbs measure for
interaction (1.1) that satisfies Properties 4.1 and 4.2. Let 〈−〉β,h denote the ex-
pectation with respect to νβ,h and let n be the dimension of the underlying spin
space. Then the bound∑

x,y∈Zd

vx v̄y〈(Sx − m�, Sy − m�)〉β,h ≤ n

β

∑
x,y∈Zd

vx v̄y D−1(x, y) (4.28)

holds for all v: Z
d �→ C such that �x∈Zd |vx | < ∞.
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Proof: As this lemma and its proof are similar to Lemma 3.2 of Ref. 11 we will
stay very brief. Let J (L)

x,y denote the periodized interactions corresponding to the
torus TL and let

T
�
L =

{(
2π

L
n1, . . . ,

2π

L
nd

)
: 1 ≤ ni ≤ L

}
(4.29)

be the reciprocal torus. It is easy to see that the k-th Fourier component Ĵ (L)(k)
of the J (L)

x,y ’s satisfies Ĵ (L)(k) = Ĵ (k) for all k ∈ T
�
L . This means that the inverse

Dirichlet Laplacian on TL can be written in terms of the original coupling con-
stants, i.e.,

D−1
L (x, y) = 1

|T�
L |

∑
k∈T

�
L \ {0}

eik·(x−y)

1 − Ĵ (k)
. (4.30)

The infrared bound of Ref. 22 then says that, for any Gibbs state 〈−〉(L)
β,h on TL we

have ∑
x,y∈Zd

〈(wx , Sx )(w̄y, Sy)〉(L)
β,h ≤ 1

β

∑
x,y∈Zd

(wx , w̄y)D−1
L (x, y) (4.31)

for any absolutely summable collection of complex vectors (wx )x∈TL

with Re wx , Im wx ∈ R
n and �x∈TL wx = 0.

Now let us consider a torus state νβ,h with almost-surely constant block mag-
netization. We will first prove that νβ,h satisfies the L → ∞ version of Eq. (4.31).
By the assumption on the Riemann integrability of 1

1− Ĵ (k)
,

D−1
L (x, y) −→

L−→∞
D−1(x, y), (4.32)

independently of x, y. Letting all wx be parallel, i.e., wx = wx ê, where ê is a unit
vector in R

n , and passing to the limit L → ∞, we thus get∑
x,y∈Zd

wx w̄y〈(Sx , Sy)〉β,h ≤ n

β

∑
x,y∈Zd

wx w̄y D−1(x, y) (4.33)

whenever w: Z
d → C is absolutely summable and �x∈Zd wx = 0.

In order to make the m�’s appear explicitly on the left-hand side, we need
to relax the condition on the total sum of the wx ’s. Under the condition in
Property 4.2, this is done exactly as in Lemma 3.2 of Ref. 11. �

4.4. Actual Proofs

A key consequence of the infrared bound is the following estimate on the variance
of the quantity m0 = �x∈Zd J0,x Sx :
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Lemma 4.8. (Variance bound). Consider a collection (Jx,y) of coupling
constants that are RP and obey Eq. (2.1), and let I be the integral in
Eq. (3.9). Let 〈−〉β,h be a translation and rotation invariant Gibbs state satisfying
Properties 4.1 and 4.2 and let m� = 〈S0〉β,h. Then

β 〈 |m0 − m�|2〉β,h ≤ nI . (4.34)

Proof: We have to show how the bound (4.28) is used to estimate the variance
of m0. Let (vx ) be defined by vx = J0,x . Using Lemma 4.7 and Lemma 4.6, for
any 〈−〉β,h as above, this choice of the vx ’s leads to the variance of m0 on the
left-hand side of Eq. (4.28), while on the right-hand side the sum turns into the
integral I . �

The proof of Theorem 3.2 is now reduced to two lines:
Proof of Theorem 3.2: Combining Lemmas 4.6 and 4.8 with Eqs. (4.11)
and (4.1), we obtain Eqs. (3.8–3.9). �

Armed with the conclusions of Theorem 3.2, we can now finish also the
proof of Theorem 3.3:

Proof of Theorem 3.3: In light of the previous derivations, the claims in
Theorem 3.3 are hardly surprising. The difficulty to be overcome is the fact that
the limits in Eqs. (3.11–3.12) are claimed for sequences of any states, regardless
of whether they obey Properties 4.1 and 4.2 above.

We begin with the proof of part (1); namely, Eq. (3.11). Since m is the unique
minimizer of �β,h, for each ε > 0 there exists δ > 0 such that

{m′ ∈ Conv (�): �β,h(m′) < FMF(β, h) + δ} (4.35)

is contained in a ball Uε(m) of radius ε centered at m. By Eq. (3.8), once βn κ
2 I ≤

δ, all of M�(β, h) must be contained in this ball. But, M�(β, h) is the set of
extremal magnetizations, and any magnetization m′ that can be achieved in a
translation-invariant state is thus in the convex hull of M�(β, h). It follows that
m′ ∈ Uε(m), proving Eq. (3.11).

To prove Eq. (3.12), let [e�, m�] be an extremal pair in K�(β, h). (See the
discussion prior to Theorem 3.2 for the definition of these objects.) Let 〈−〉β,h be
a translation and rotation invariant state for which

e� =
〈(

S0,
β

2
m0 + h

)〉
β,h

and m� = 〈S0〉β,h (4.36)

and suppose the state satisfies Properties 4.1 and 4.2. (The existence of such a
state is guaranteed by Lemma 4.6.) Combining Eqs. (4.11) and (4.34), we get

0 ≤ 〈(S0, m0)〉β,h − |m�|2 ≤ κnI , (4.37)
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and so, invoking the result of part (1) of this theorem, e� is close to E(m�) once I
is sufficiently small. But this is true for all extremal pairs in K�(β, h) and so it
must be true for all pairs in K�(β, h). Hence, K�(β, h) shrinks to a single point
as I ↓ 0, which is what is claimed in part (2) of the theorem.

To conclude the proof of the theorem, we need to show that the spin config-
uration converges in distribution to a product measure. Applying the DLR con-
ditions, the conditional distribution of S0 given a spin configuration in Z

d \ {0}
is

e(S0,βm0+h)−G(βm0+h)µ0(dS0), (4.38)

i.e., the distribution of S0 depends on the rest of the spin configuration only
via m0 = �x∈Zd J0,x Sx . Hence, it clearly suffices to show that m0 converges
to m—the unique minimizer of �β,h—in probability. But this is a direct con-
sequence of the convexity bound on the left-hand side of Eq. (4.11) which tells
us that, once the magnetization and energy density converge to their mean-field
values, the variance of m0 tends to zero. �

While we cannot generally prove that, in systems with interaction (1.1) the
magnetization increases with β, the estimates in the previous proof provide a
bound on how bad the non-monotonicity can be:

Lemma 4.9. (Near monotonicity of magnetization). Let (Jx,y) be coupling
constants that are RP and obey Eq. (2.1), and let I be the integral in Eq. (3.9).
Let β < β ′ and let m� ∈ M�(β, h) and m′

� ∈ M�(β ′, h). Then we have:

|m�|2 ≤ |m′
�|2 + κnI . (4.39)

Proof: Let 〈−〉β,h and 〈−〉β ′,h be (translation and rotation invariant) states sat-
isfying Properties 4.1 and 4.2 in which the above magnetizations are achieved.
(Such states exist by Lemma 4.6.) By Eq. (4.11) we have

〈(S0, m0)〉β,h ≥ |m�|2, (4.40)

and Eqs. (4.11) and (4.37) yield

〈(S0, m0)〉β ′,h ≤ |m′
�|2 + κnI . (4.41)

But the quantities on the left are, more or less, derivatives of the physical free
energy with respect to β (in the parametrization introduce in Eq. (1.1)). Hence,
standard convexity arguments give us

〈(S0, m0)〉β ′,h ≥ 〈(S0, m0)〉β,h. (4.42)

Combining these inequalities the claim follows. �
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4.5. Bounds for Specific Interactions

Having presented the main theorem, we now argue that by appropriately adjusting
the parameters µ and s in the Yukawa and power law terms of an interaction, one
can make the integral I as small as desired. We begin with a general criterion
along these lines:

Proposition 4.10. Let (J (λ)
x,y) be a family of translation and reflection-invariant

couplings depending on a parameter λ. Assume that the J (λ)
x,y obey Eq. (2.1) and

let Ĵλ(k) = �x∈Zd J (λ)
0,x eik·x be the Fourier components. Suppose that the following

two conditions are true:

(1) There exists a δ > 0 and a constant C > 0 such that for all sufficiently
small λ, we have

1 − Ĵλ(k)

|k|d−δ
≥ C, k ∈ [−π, π ]d \ {0}. (4.43)

(2) The �2-norm of (J (λ)
0,x ) tends to zero as λ → 0, i.e.,

lim
λ→0

∑
x∈Zd

[
J (λ)

0,x

]2 = 0. (4.44)

Then we have:

lim
λ→0

∫
[−π,π]d

dk

(2π )d

| Ĵλ(k)|2
1 − Ĵλ(k)

= 0. (4.45)

Proof: Note that, by Eq. (2.1) and condition (1) above we have Ĵλ(0) = 1
and Ĵλ(k) < 1 for all k �= 0. (The reflection invariance guarantees that Ĵλ is
an even and real function of k.) First we will bound the part of the integral
corresponding to k ≈ 0. To that end we pick r > 0 and estimate∫

|k|<r

dk

(2π )d

| Ĵλ(k)|2
1 − Ĵλ(k)

≤
∫

|k|<r

dk

(2π )d

1

C |k|d−δ
= C1r δ, (4.46)

where C1 = C1(δ, d, C) < ∞. Next we will attend to the rest of the integral.
Let M(r ) be the supremum of (1 − Ĵλ(k))−1 over all k ∈ [−π, π ]d with |k| ≥ r .
By condition (1) above, we have that M(r ) ≤ 1

C r δ−d . Therefore,

∫
k ∈ [−π, π]d

|k| ≥ r

dk

(2π )d

| Ĵλ(k)|2
1 − Ĵλ(k)

≤ M(r )
∑
x∈Zd

[
J (λ)

0,x

]2
, (4.47)
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where we also used Parseval’s identity. By condition (2) above, this vanishes as
λ → 0, while the integral in (4.46) can be made as small as desired by letting r ↓
0. From here the claim follows. �

Now we apply the above lemma to our specific interactions. We begin with
the Yukawa potentials:

Lemma 4.11. Let (J (µ)
x,y ) be the Yukawa interactions with parameter µ—as de-

scribed in Sec. 1.2—and suppose these are adjusted so that Eq. (2.1) holds. Then
(J (µ)

x,y ) obey conditions (1) and (2) of Proposition 4.10 as µ ↓ 0 with δ = d − 2.
Consequently, in dimensions d ≥ 3, the corresponding integral in Eq. (3.9) tends
to zero as µ ↓ 0.

Proof: Let (J (µ)
x,y ) be as above and let Ĵµ denote the Fourier transform. In order

to handle the overall normalization effectively, we introduce the quantity Cµ by
Cµµd�x �=0e−µ|x |1 = 1 and note that Cµ converges to a finite and positive limit
as µ ↓ 0. From here we check that the �2-norm in Eq. (4.44) scales as µd and so
condition (2) of Proposition 4.10 follows.

It remains to prove that 1 − Ĵµ(k) is bounded from below by a positive
constant times |k|2, where |k| denotes the �2-norm of k. First we claim that for
all η > 0 there exists a constant A < ∞ such that for all k ∈ [−π, π ]d ,

Ĵµ(k) ≤ 1 − η, |k| ≥ Aµ. (4.48)

Indeed, an explicit calculation gives us

Ĵµ(k) = µdCµ

∑
x �=0

e−µ|x |1+ik·x ≤ µdCµ

d∏
j=1

{
Re

1

1 − e−µ+ik j

}
, (4.49)

where we first neglected the condition x �= 0, then wrote the result as the product
over lattice directions and, finally, threw away some negative constants from each
term in the product (the real parts are positive). Introducing the abbreviations
a = e−µ, ε = 1 − a and � j = 1 − cos(k j ), the ε-multiple of the j-th term in the
product is now

ε Re
1

1 − e−µ+ik j
= ε2 + a� jε

ε2 + 2a� j
. (4.50)

Now if ε2 ≥ � j the right-hand side is less than 1 + aε, while if ε2 ≤ � j , then
it is less than ε + 1

2a
ε2

� j
, which is � 1 once ε2 � � j . Going back to Eq. (4.49),

if at least one component of k exceeds large constant times µ (which is itself of
order ε), then the right-hand side of Eq. (4.49) is small. This proves Eq. (4.48)
for µ small; for all other µ this holds existentially.
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The condition (4.48) implies Eq. (4.44) for |k| ≥ Aµ. As for the comple-
mentary values of k, here we pick a small number θ and write

1 − Ĵµ(k) ≥ Cµµd
∑
x �= 0

|x |1 ≤ θ/µ

e−µ|x |1 [1 − cos(k · x)]. (4.51)

By the fact that |k| ≤ Aµ, the condition |x |1 ≤ θ/µ (with θ sufficiently small) im-
plies that 1 − cos(k · x) ≥ c(k · x)2 for some c > 0. Plugging this into Eq. (4.51)
and using that the domain of the sum is invariant under reflection of any compo-
nent of x , the result will be proportional to |k|2. The constant of proportionality is
of order µ−2 and so condition (1) is finally proved. �

Next we attend to the power laws:

Lemma 4.12. Let (J (s)
x,y) be the power-law interactions with exponent s > d—

see Sec. 1.2—and suppose these are adjusted so that Eq. (2.1) holds. Then (J (s)
x,y)

obey conditions (1) and (2) of Proposition 4.10 as s ↓ d with any δ < d. Conse-
quently, the corresponding integral in Eq. (3.9) tends to zero as s ↓ d in all d ≥ 1.

Proof: Our first item of business will again be the overall normalization. Let Cs

be the constant defined by

Cs(s − d)
∑
x �=0

|x |−s
1 = 1. (4.52)

As is not hard to check, Cs tends to a positive and finite limit as s ↓ d.
Since �x �=0|x |−2s

1 is uniformly bounded for all s > d, the �2-norm in Eq. (4.44) is
proportional to (s − d). This proves condition (2) of Proposition 4.10.

In order to prove condition (1), we first write

1 − Ĵs(k) = Cs(s − d)
∑
x �=0

|x |−s
1 (1 − cos(k · x)), (4.53)

where Ĵs is the Fourier transform of the (J (s)
x,y). Consider the set Rk =

{x ∈ Z
d : cos(k · x) ≤ 0}, which we note is the union of strips of width—and

separation—of the order O(1/|k|) which are perpendicular to vector k. A sim-
ple bound gives us ∑

x �=0

|x |−s
1

(
1 − cos(k · x)

) ≥
∑

x∈Rk

|x |−s
1 . (4.54)

Next we let R′
k = {x ∈ Z

d : |x · k| > π}. The fact that |x |−s
1 decreases with dis-

tance allows us to bound the second sum in Eq. (4.54) by a similar sum with
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x ∈ R′
k . Using the usual ways to bound sums by integrals, we thus get

1 − Ĵs(k) ≥ C(s − d)
∫

|k·x |≥π

dx

|x |s , (4.55)

where C is a positive constant (independent of s) and |x | is the �2-norm of x . Ex-
tracting a factor of |k|s−d , the resulting integral times (s − d) is uniformly positive
for all s > d. Hence we proved that for some c′ > 0,

1 − Ĵs(k) ≥ c′|k|s−d (4.56)

for all s > d and all k ∈ [−π, π ]d , and so condition (1) of Proposition 4.10 holds
as stated. �

5. PROOFS: MEAN-FIELD THEORIES

5.1. Blume-Capel Model

We begin by giving the proof of Theorem 3.6 which deals with the mean-field
theory of the Blume-Capel model. The core of this proof, and other proofs in this
paper, are certain facts about the mean-field theory of the Ising model in an exter-
nal field. In the formalism of Sec. 2.2, this model corresponds to the q = 2 Potts
model. The magnetizations are parameterized by a pair of quantities (z1, z−1),
where z1 + z−1 = 1, which represent the mole-fractions of plus and minus spins.
The mean-field free energy is given by

�J,h = J z1z−1 − hz1 + z1 log z1 + z−1 log z−1. (5.1)

The following properties are the results of straightforward calculations:

(I1) If h = 0 and J ≤ 2, then the only local—and global—minimum occurs
at z1 = z−1.

(I2) If h = 0 and J > 2, then there is only one local minimum with z1 ≥ z−1

and it satisfies J z1 > 1 > J z−1. A corresponding local minimum with
with z1 ≥ z−1 exists and obeys J z−1 > 1 > J z1.

(I3) Let now h be arbitrary. If (z1, z−1) is a local minimimum of �J,h ,
then m = z1 − z−1 satisfies J (1 − m2) ≤ 1.

These properties are standard; for some justification see, e.g., the proof of
Lemma 4.4 in Ref. 11.

Proof of Theorem 3.6: Let (x1, x0, x−1) be a triplet of positive variables which
corresponds to a local minimum of the Blume-Capel free-energy function �β,λ

from Eq. (3.21). A simple calculations shows that the derivative of the entropy part
of �β,λ is singular in the limit when any component of (x1, x0, x−1) tends to zero,
while nothing spectacular happens to the energy. Therefore, the minimum must
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lie strictly inside the simplex of allowed values. Accounting for the constraint
x1 + x0 + x−1 = 1, the condition that the gradient of �β,λ vanish at (x1, x0, x−1)
translates into the equations (3.22).

Due to the symmetry between x1 and x−1, we may (and will) assume for sim-
plicity that x1 ≥ x−1. First we claim that, under this condition, we have 4βx−1 ≤
1. Indeed, for a fixed x0, the Blume-Capel mean-field free energy �β,λ expressed
in terms of (z1, z−1), where z±1 = x±1/(1 − x0), is proportional to the Ising free
energy (5.1) with J = 4β(1 − x0). Since the Ising pair (z1, z−1) is at its local
minimum, we have J z−1 = 4βx−1 ≤ 1 by property (I2) above.

Once we know that x−1 is small, the question is whether x0 and x1 divide
the amount 1 − x−1 democratically or autocratically. Here we observe that, once
again, for a fixed x−1, the (x1, x0)-portion of the Blume-Capel mean-field free en-
ergy �β,λ is proportional to its Ising counterpart in Eq. (5.1) with J = β(1 − x−1)
and h = 3βx−1 − λ. In light of property (I3) above, the magnetization vari-
able m = (x1 − x0)/(1 − x−1) thus satisfies the bound J (1 − m2) ≤ 1. Using the
inequality

√
1 − a ≥ 1 − a valid for all a ≤ 1, we have

|x1 − x0|
1 − x−1

≥ 1 − 1

β(1 − x−1)
(5.2)

once β is sufficiently large. Some simple algebra now shows that this implies

2β min{x1, x0} ≤ 1. (5.3)

Using these findings in Eq. (3.22) and extracting appropriate inequalities we de-
rive the bounds listed in (1) and (2) with C being a numerical constant.

To derive the asymptotics (3.23) on the free-energy gap for λ ≈ 0, let us first
evaluate the free energy at a generic local minimum. Suppose (x1, x0, x−1) obey
Eq. (3.22) and let � denote the logarithm of the quantity in Eq. (3.22). A direct
calculation shows that then

�β,h = −4βx1x−1 + βx2
0 + �. (5.4)

Now let us consider a minimum with x0 dominant. Then the inequality β(1 −
x0) = β(x1 + x−1) ≤ 3/4 < 1 shows that the (x1, x−1) Ising pair is subcritical.
By (I1) above we must have x1 = x−1 = 1

2 (1 − x0) and, as is seen by a direct
calculation, x0 can be determined from the equation

1 − x0

x0
= 2e−β+λ. (5.5)

In particular, for λ bounded we have 1 − x0 = 2e−β+λ + O(e−2β ). Similarly, if
the minimum corresponds to a triple dominated by x1, our bounds show that x0 =
1 − x1 + O(e−4β) and so we have

x1 = (1 − x1 + O(e−4β ))eβ+λ+O(βe−β ). (5.6)
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From here we have 1 − x1 = e−β−λ + O(βe−2β ).
Now we are ready to derive Eq. (3.23). First, using that � = log x0 + β(1 −

2x0) + λ we have

φ0(β, λ) = −4βx1x−1 + β(1 − x0)2 + λ + log x0

= λ − 2e−β+λ + O(e−2β ). (5.7)

Next, in light of � = log x1 + 4βx−1 and the bounds proved on x−1 in (2) above
we have

φ1(β, λ) = −4βx1x−1 + βx2
0 + log x1 + 4βx−1

= −e−β−λ + O(βe−2β ). (5.8)

Combining Eqs. (5.7–5.8), the desired relation (3.23) is proved. �

We finish this section with a computational lemma that will be useful in the
proof of Theorem 3.7:

Lemma 5.1. There exists α > 0 and, for each C � 1, there exists β0 < ∞ such
that the following is true for all β ≥ β0 and all λ with |λ| ≤ Ce−β: If (x1, x0, x−1)
is a triplet with

max{x1, x0, x−1} = 1 − Ce−β, (5.9)

then

�β,λ(x1, x0, x−1) − inf �β,λ ≥ α(C log C)e−β. (5.10)

Here �β,λ is the function in Eq. (3.21) and inf �β,λ is its absolute minimum.

Proof: An inspection of Eqs. (5.7–5.8) shows that, once |λ| ≤ Ce−β , we have
that | inf �β,λ| is proportional to Ce−β and so we just have to prove that, once C is
sufficiently large, �β,λ(x1, x0, x−1) is proportional to (C log C)e−β . We will focus
on the situation when the maximum in Eq. (5.10) is achieved by x1; the other
cases are handled similarly.

By our assumption we have that x0 and x−1 are quantities less than Ce−β .
Inspecting the various terms in Eq. (3.21), we thus have

βx0(1 − x0) = βx0 + O(βC2e−2β ),

βx1x−1 = 4βx−1 + O(βC2e−2β ),

x1 log x1 = −Ce−β + O(C2e−2β ), (5.11)

Plugging these back into the definition of �β,λ we get

�β,λ(x1, x0, x−1) = x0[β + log x0] + x−1[4β + log x−1]

+ λx0 − Ce−β + O(βC2e−2β ). (5.12)
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Now |λx0| ≤ |λ| ≤ Ce−β , and if β0 is such that βCe−β � 1, the last three terms
on the right-hand side are all of order Ce−β . It thus suffices to to prove that the
first two terms exceed a constant times (C log C)e−β .

We first replace 4β by β in Eq. (5.12) and then substitute x0 = y0e−β

and x−1 = y−1e−β . The relevant two terms on the right-hand side then equal
e−β [y0 log y0 + y−1 log y−1]. Under the condition (5.9)—which implies that at
least one of the y’s is larger than C/2—this is a number of order e−βC log C
(for C � 1). The right-hand side of Eq. (5.12) is thus of order e−βC log C when-
ever β ≥ β0, which proves the desired claim. �

5.2. Potts Model: Preliminaries

Next we turn our attention to the mean-field theory of the Potts model. In the
present section we will first establish some basic properties of the (local) min-
imizers of the Potts mean-field free energy. The proof of Theorem 2.3 dealing
with positive fields is then the subject of Sec. 5.3. The negative-field portion of
our results (Theorem 2.4) is somewhat more involved and we defer its discussion
to Sec. 5.4.

We invite the reader to recall the representation of magnetizations in terms
of barycentric coordinates in Eq. (2.14), the mean-field free-energy function �β,h

from Eq. (2.15) and the transitional coupling β
(q)
MF for the q-state Potts model

from Eq. (2.17). We begin with some general monotonicity properties of the
minimizers:

Lemma 5.2. (Monotonicity in h). For any β ≥ 0 we have:

(1) Let h < h′, let x1 be the first barycentric coordinate of a global minimum
of �

(q)
β,h and let x ′

1 be the first barycentric coordinate of a global minimum

of �
(q)
β,h′ . Then x1 ≤ x ′

1.
(2) Let (x1, . . . , xq ) be the probability vector corresponding to a global min-

imizer of �
(q)
β,h . If h > 0 then x1 > max{x2, . . . , xq}. Similarly, if h < 0

then x1 < min{x2, . . . , xq}.
(3) If h �→ m(β, h) is a differentiable trajectory of local extrema, then

d

dh
�

(q)
β,h(m(β, h)) = −x1(β, h), (5.13)

where x1(β, h) is the first component of m(β, h) in the decomposition
into (v̂1, . . . , v̂q ).
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Proof:

(1) Let m ∈ Conv �. Then we have

�
(q)
β,h(m) − �

(q)
β,h′(m) = (h′ − h)x1, (5.14)

where x1 is the first component of m. Let x1 and x ′
1 be as above and let m

and m′ be the corresponding minimizers. Then Eq. (5.14) implies

x1 ≤ �
(q)
β,h(m) − �

(q)
β,h′(m′)

h′ − h
(5.15)

Similar reasoning gives

x ′
1 ≥ �

(q)
β,h(m) − �

(q)
β,h′(m′)

h′ − h
. (5.16)

Combining Eqs. (5.15) and (5.16) gives the result.
(2) Let h > 0 and let (x1, . . . , xq ) be a probability vector with x1 < x2. Inter-

changing x1 and x2 shows that, due to the interaction with the field, the q-
tuple (x2, x1, . . . , xq ) has strictly lower free energy than (x1, . . . , xq ), i.e.,
(x1, . . . , xq ) could not have been a global minimizer. Hence x1 ≥ x2.
To rule out x1 = x2 we note that x1, x2 > 0 and so the gradient of
the free energy, subject to the constraint x1 + x2 = const, must vanish.
Hence x1e−βx1−h = x2e−βx2 which forces x1 �= x2. The cases h < 0 are
handled similarly.

(3) This is a consequence of the fact that the gradient ∇�
(q)
β,h vanishes at any

local extremum in the interior of Conv (�).
�

Lemma 5.3. (Monotonicity in β) Fix h ∈ R. If β �→ m(β, h) is a differentiable
trajectory of local extrema, then

d

dβ
�

(q)
β,h(m(β, h)) = −1

2
|m(β, h)|2. (5.17)

Proof: The proof is analogous to that of Lemma 5.2(3). �

The next lemma significantly narrows the list of possible candidates for
global minimizers:

Lemma 5.4. (Symmetries of global minimizers) Let �
(q)
β,h(m) be the mean-

field free-energy function. Let m ∈ Conv � be a global minimum of �
(q)
β,h and

let (x1, . . . , xq ) be the corresponding probability vector of barycentric coordi-
nates.
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(1) If h > 0, then

x1 > x2 = · · · = xq . (5.18)

(2) If h < 0, then (x1, · · · , xq ) is a permutation in indices x2, . . . , xq of a
vector with

x1 < x2 = . . . = xq−1 ≤ xq . (5.19)

Proof: The main idea of the proof is that the variables x2, . . . , xq , properly
scaled, behave like a (q − 1)-state, zero-field Potts model. Abusing the notation
slighly, let us write �

(q)
β,h(x1, . . . , xq ) instead of �

(q)
β,h(m) whenever m corresponds

to the probability vector (x1, . . . , xq ). In looking for global minima, we may as-
sume that all xk’s satisfy xk ∈ (0, 1). Letting

zk = xk

1 − x1
, k = 2, . . . , q, (5.20)

this allows us to write

�
(q)
β,h(x1, . . . , xq ) = (1 − x1)�(q−1)

β(1−x1),0(z2, . . . , zq ) + R(x1), (5.21)

where R(x1) is a function of x1 (and β and h). The rest of the proof is based on
some basic properties of the zero-field Potts free energy for which we refer the
reader back to Sec. 2.2.

Let (x1, . . . , xq ) correspond to a global minimum. A principal conclusion
coming from Eq. (5.21) is that the components of the vector (x2, . . . , xq ), ordered
increasingly, satisfy x2 = · · · = xq−1 ≤ xq . Using part (2) of Lemma 5.2, this im-
mediately implies Eq. (5.19). To prove Eq. (5.18), let h > 0 and let (x̃1, . . . , x̃q )
be a global minimizer at zero field with maximal value of x̃1. By general facts
about the zero-field problem, this forces β(1 − x̃1) < β

(q−1)
MF and, since part (2)

of Lemma 5.2 implies that x1 > x̃1, also β(1 − x1) < β
(q−1)
MF . Hence, the vari-

ables (z2, . . . , zq ) correspond to a subcritical Potts model and thus z2 = . . . = zq .
Invoking again Lemma 5.2(2), we have Eq. (5.18). �

5.3. Potts Model: Positive Fields

Next we will focus on the cases with h > 0. Our first step is to characterize the
local and global minima of m �→ �

(q)
β,h(m) for m restricted to satisfy Eq. (5.18).

While we could appeal to the “on-axis” formalism from Ref. 11, we will keep the
requisite calculations more or less self-contained.

For any probability vector satisfying Eq. (5.18), let us consider the
parametrization θ = q

q−1 m, where m denotes the scalar magnetization defined

via x1 = 1
q + m and xk = 1

q − m
q−1 , k = 2, . . . , q. (The physical values of θ are
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θ ∈ [0, 1].) Let φβ,h(θ ) denote the value of �
(q)
β,h(m) where m corresponds to the

above (x1, . . . , xq ). Then we have:

Lemma 5.5. (“On-axis” minima) The local minima of θ �→ φβ,h(θ ) are solu-
tions to the equation θ = f (θ ), where

f (θ ) = eβθ+h − 1

eβθ+h + q − 1
. (5.22)

Moreover, let β0 = 4 q−1
q . Then

(1) For all β ≤ β0 and all h ∈ R, the equation θ = f (θ ) has only one solu-
tion.

(2) For β > β0 there exists an interval (h−, h+) such that θ = f (θ ) has
three distinct solutions once h ∈ (h−, h+) and only one solution for h �∈
[h−, h+]. At h = h±, there are two distinct solutions. Once h �= h±, only
the extreme solutions (the largest and the smallest) correspond to local
minima of θ �→ φβ,h(θ ).

Finally, for each β > β0, there exists a number h1 = h1(β) ∈ (h−, h+) such that
the global minimizer of θ �→ φβ,h(θ ) is unique as long as h �= h1. On the other
hand, for h = h1 there are two distinct global minimizers (the two extreme solu-
tions of θ = f (θ )).

Remark 5.6. Although the above holds as stated in complete generality, it is
only useful (in the present context) for β < β

(q)
MF. In particular, for β ≥ β

(q)
MF, while

h1(β) continues on taking negative values, it does not correspond to any equilib-
rium commodity.

Proof of Lemma 5.5: Since the derivative of θ �→ φβ,h(θ ) diverges as θ tends to
either zero or one, all local minima will lie in (0, 1). Differentiating with respect
to θ we find that these must satisfy f (θ ) = θ with f as given above.

In order to characterize the solutions to θ = f (θ ), let us calculate the first
two derivatives of this function:

f ′(θ ) = β
eβθ+h

eβθ+h + q − 1
(1 − f (θ )) (5.23)

and

f ′′(θ ) = β2 eβθ+h

eβθ+h + q − 1
(1 − f (θ ))

(
1 − 2

eβθ+h

eβθ+h + q − 1

)
. (5.24)

Since we also have f (θ ) < 1, we find that f is strictly increasing, strictly convex
for θ < θI and strictly concave for θ > θI, where θI is the inflection point of f ,
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which is given by

eβθ+h

eβθ+h + q − 1
= 1

2
, (5.25)

i.e., eβθ+h = q − 1. In particular, the derivative f ′(θ ) is maximal at θ = θI, where
it equals f ′(θI) = β

4
q

q−1 .
Let us suppose that f ′(θI) ≤ 1, which is equivalent to β ≤ β0. Then there is

only one solution to θ = f (θ ), proving (1) above. Let us now assume that f ′(θI) >

1. The fact that increasing h amounts to “shifting the graph of f to the left”
implies that there exists an h0 such that θI solves θ = f (θ ) for h = h0. Simi-
lar arguments show that there exists a unique value h+ > h0 such that the di-
agonal line (at 45◦) is tangent to the graph of f at some θ < θI, and a similar
value h− < h0 such that the diagonal line is tangent to the θ ≥ θI portion of
the graph of f . For h ∈ [h−, h+], there are altogether three solutions, labeled
θL < θM < θU, where f ′(θ ) ≤ 1 at θ = θL, θU while f ′(θM) ≥ 1 (with the in-
equalities strict when h �= h±).

The “dynamics” of these solutions as h changes is easy to glean from the
above picture. First θL is defined for all h ≤ h+ while θU is defined for all h ≥ h−.
Now, as h decreases through h−, the middle θM and upper θU solutions merge
and disappear; and similarly for θM and θL as h increases through h+. Only the
remaining solution continues to exist in the complementary part of the h-axis.
Clearly, both θL and θU are continuous and strictly increasing on the domain of
their definition with θL → 0 as h → −∞ and θU → 1 as h → ∞. Since φβ,h(θ )
has local maxima at θ = 0 and 1, we must have that θL and θU are local minima
and θM is a local maximum of φβ,h . (These are strict except perhaps at h �= h±.)
This finishes the proof of (2).

It remains to prove the existence of the transitional field-strength h1. By
Lemma 5.4, every global minimizer m �→ �

(q)
β,h(m) corresponds to either θL or θU.

Observe that, since θU and θL never enter the portion of the graph of f where f ′

exceeds one, we have θU ≥ θU(h+) > θL(h−) ≥ θL and so the difference θU −
θL is uniformly positive. Consequently, the values �

(q)
β,h at the corresponding

magnetizations change at a strictly different rate with h (see Lemma 5.2). In par-
ticular, there exists a unique point h1(β) ∈ (h−, h+), where the status of the global
minimizer changes from θL to θU. By continuity, at h = h1, both one-sided limits
are minimizers of �β,h . �

Now we are ready to finish the prove of Theorem 2.3.

Proof of Theorem 2.3: Most of the claims of the theorem have already been
proved. Indeed, let h1 be as in Lemma 5.5 and let β ≥ β

(q)
MF. By the proper-

ties of the zero-field Potts model, the maximal solution to θ = f (θ ) is a global
minimizer of θ �→ φβ,0(θ ). It follows that h1(β) ≤ 0 for β ≥ β

(q)
MF. Invoking also
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Lemma 5.4(1), we thus conclude that for β ≤ β0 or β ≥ β
(q)
MF and h > 0, the

global minimizer of m �→ �
(q)
β,h(m) is unique, while for β ∈ (β0, β

(q)
MF) this is only

true when h �= h1(β). This establishes parts (2) and (3) of the theorem. It thus
remains to prove the strict inequality between x1 and x2 = . . . = x1 in part (1)—
the rest follows by Lemma 5.4(1)—and the properties of β �→ h1(β) in part (4).

First, it is easy to see that h1 is continuous. Indeed, let β ′ ∈ (β0, β
(q)
MF] and

suppose that β �→ h1(β) has two limit points as β → β ′. By a simple compactness
argument, there are two distinct minimizers of φ

(q)
β ′,h for h at these limit points,

which contradicts the uniqueness of h1(β ′). Applying this to β ′ = β
(q)
MF, we thus

have that h1(β) → 0 as β → β
(q)
MF.

Second, we claim that β �→ h1(β) is actually strictly decreasing. To this end,
let m+(β) and m−(β) denote the values of the two global minimizers of m �→
�

(q)
β,h(m) at h = h1(β) and let x+

1 (β) and x−
1 (β) denote the corresponding first

components. From Lemmas 5.2 and 5.3 we can now extract

d

dβ
h1(β) = −1

2

|m+(β)|2 − |m−(β)|2
x+

1 (β) − x−
1 (β)

, (5.26)

which the reader will note is the Clausius-Clapeyron relation. Since both x1

and |m| are increasing with the scalar magnetization, the right hand side is nega-
tive and so β �→ h1(β) is strictly decreasing.

Third, we turn our attention to the inequality x1 > x2 = · · · = xq once h >

0. In light of Eq. (5.18), it suffices to show that, for h > 0, the state with equal
barycentric coordinates is not a local minimum once h > 0. This is directly
checked by differentiating Eq. (2.15) subject to appropriate constraints. Finally,
we will compute the value of h at the end of the line h �→ β+(h). Let θ+(h)
and θ−(h) denote the two distinct (extremal) solutions of f (θ ) = θ , with f as
in Eq. (5.22), for β = β+(h). As h increases, β+ decreases to β0 and θ± con-
verge to a single value θ0—the unique solution of f (θ ) = θ at β = β0. But the
inflection point, θI, is always squeezed between θ+ and θ−, and so we must
have θ0 = θI. Now the inflection point is characterized by eβθI+h = q − 1 and
the equation θ = f (θ ) gives us that β+(h) = β0 at h = hc. �

5.4. Potts Model: Negative Fields

The goal of this section is to give the proof of Theorem 2.4. The difficulty here is
that, on the basis of Eq. (5.19), the full-blown optimization problem is intrinsically
two-dimensional. We begin with some lemmas that encapsulate the computational
parts of the proof. First we will address the symmetric minima by describing the
solutions to the “on-axis” equation:
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Lemma 5.7. Let β ≥ 0 and h < 0 and let g: [0, 1
q−1 ] → R be the function

g(θ ) = eβθ−h − 1

(q − 1)eβθ−h + 1
. (5.27)

Then g is increasing, concave and satisfies g(0) > 0 and g(θ ) < 1. In particular,
the equation g(θ ) = θ has a unique solution on [0, 1

q−1 ].

Proof: This is a result of straightforward computations which are not entirely
dissimilar from those in Eqs. (5.23–5.24). �

The two-parameter nature of solutions of the form (5.19) will be handled
by fixing the first barycentric coordinate and optimizing over the remaining ones.
Here the following property of the resulting “partial minimum” will turn out to be
very useful:
Lemma 5.8. Let β > β

(q−1)
MF and let ã be the minimum of 1/q and the quan-

tity a satisfying β(1 − a) = β
(q−1)
MF . For each x ∈ [0, ã], let z2(x), . . . , zq (x) de-

note the vector corresponding to the asymmetric minimizer of (z2, . . . , zq ) �→
�

(q−1)
β(1−x),0(z2, . . . , zq ) with z2 = . . . = zq−1 < zq . Let ψ(x) denote the quan-

tity �
(q)
β,h(m) evaluated at m = m(x) where

m(x) = x v̂1 + (1 − x)z2(x)v̂2 + · · · + (1 − x)zq (x)v̂q . (5.28)

Then
ψ ′′′(x) < 0 for all x ∈ [0, ã]. (5.29)

Proof: Let ψ(x) be as stated above. Let t = t(x) = β(1 − x) and let z(x) =
(z2(x), . . . , zq (x)) denote the asymmetric global minimum of �

(q−1)
t(x),0 . This allows

us to rewrite ψ(x) as

ψ(x) = −β

2
x2 + x log(x) + (1 − x) log(1 − x) − hx

+ (1 − x)�(q−1)
t(x),0 (z(x)). (5.30)

We will write z2 = · · · = zq−1 = 1
q−1 − m(t)

q−2 and zq = 1
q−1 + m(t), where m(t) is

the maximal positive solution to

q − 1

q − 2
m(t) =

exp
{
t q−1

q−2 m(t)
} − 1

exp
{
t q−1

q−2 m(t)
} + q − 2

. (5.31)

The various steps of the proof involve two specific functions u(t) and α(t) defined
by

u(t) = t
q − 1

q − 2
m(t) (5.32)
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and

α(t) = eu(t)

eu(t) + q − 2

(
1 − eu(t) − 1

eu(t) + q − 2

)
. (5.33)

We state these definitions here to facilitate later reference.
A simple argument gives that t �→ m(t) is smooth when t ≥ β

(q−1)
MF , so ψ(x)

is differentiable. The actual proof then commences by the calculation of the third
derivative of ψ(x):

ψ ′′′(x) = − 1

x2
+ 1

(1 − x)2

+ 2
q − 2

q − 1

(
u(t)

1 − x

)2 (
3

m ′(t)
m(t)

+ t
m ′′(t)
m(t)

+ t
(m ′(t)

m(t)

)2
)

, (5.34)

where m ′ and m ′′ denote the first and second derivative of t �→ m(t) and where we
have used Lemma 5.3 to differentiate �

(q−1)
t,0 . Since we want to show ψ ′′′(x) < 0

and we know that x ≤ ã < 1/2, it suffices to prove the inequality

3
m ′(t)
m(t)

+ t
m ′′(t)
m(t)

+ t

(
m ′(t)
m(t)

)2

< 0. (5.35)

Differentiating both sides of Eq. (5.31) and solving for m ′(t) yields

m ′(t)
m(t)

= α(t)

1 − tα(t)
. (5.36)

Taking another derivative with respect to t allows us to express m ′′(t)/m(t) in
terms of α(t) and α′(t). In conjunction with Eq. (5.36), this shows that Eq. (5.35)
is equivalent to

3 + t
α′(t)
α(t)

< 0. (5.37)

Differentiating Eq. (5.33) and applying Eqs. (5.32) and (5.36), we have

α′(t) = α(t)
u(t)

t[1 − tα(t)]

(
1 − 2

eu(t)

eu(t) + q − 2

)
. (5.38)

Writing Eq. (5.37) back in terms of u(t), we see that Eq. (5.35) is equivalent to
the inequality

3

(
1 − t(q − 1)eu(t)

(eu(t) + q − 2)2

)
< u(t)

eu(t) − q + 2

eu(t) + q − 2
. (5.39)

The rest of the proof is spent on proving Eq. (5.39).
We first use that x ≤ ã implies t ≥ β

(q−1)
MF = 2 q−2

q−3 log(q − 2) and so the left-

hand side of Eq. (5.39) increases if we replace t by β
(q−1)
MF . After this, there is no
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explicit dependence on t and so we may regard the result as an inequality for the
quantity u. Clearing denominators, substituting s = eu , and recalling that u(t) ≥
2 log(q − 2) for x ≤ ã, it suffices to show that

γ (s) = Aqs + s2 log s − λ2 log s − 3s2 − 3λ2 (5.40)

is strictly positive for all s ≥ λ2 and all q ≥ 4, where λ = q − 2 and

Aq = 3(q − 1)β(q−1)
MF − 6(q − 2). (5.41)

Since β
(q−1)
MF ≥ 2.5 for q ≥ 4, we easily check that Aq ≥ 10 once q ≥ 4.

First we will observe that γ is actually increasing for all s ≥ λ2. Indeed, a
simple calculation shows that, for such s, we have γ ′(s) ≥ ω(s), where

ω(s) = Aq − 1 + 2s log s − 5s. (5.42)

Next we find that mins≥0 ω(s) = Aq − 1 − 2e
3/2. Since e

3/2 ≈ 4.48 and Aq ≥ 10,
we have that ω—and hence γ ′—are strictly positive for s ≥ λ2. Hence γ is in-
creasing for all s of interest.

Once we know that γ is increasing, it suffices to show that γ (λ2) is positive.
Here we note that

γ (λ2) = q − 1

q − 3
(q − 2)2{(q2 − 3q + 6)2 log(q − 2) − 3(q − 1)(q − 3)} (5.43)

and so γ (λ2) is positive once

2 log(q − 2) > 3
(q − 1)(q − 3)

q2 − 3q + 6
. (5.44)

Noting that the right-hand side is less than 3, and using that 2 log 5 > 3, this holds
trivially for q ≥ 7. In the remaining cases q = 4, 5, 6, the inequality is verified by
direct calculation. �

Using Lemma 5.8 we arrive at the following conclusion:

Corollary 5.9. Let q ≥ 4, β ≥ 0 and h < 0. Then �
(q)
β,h has at most one (sym-

metric) global minimizer with x1 < x2 = · · · = xq and at most one (asymmetric)
global minimizer with x1 < x2 = · · · = xq−1 < xq .

Proof: Let (x1, . . . , xq ) correspond to a minimizer of �
(q)
β,h . Since h < 0,

Lemma 5.4 allows us to assume that x1 < x2 = · · · = xq−1 ≤ xq . If x2 = · · · =
xq , then a simple calculation shows that the quantity θ , which is related to x1

via x1 = 1
q − q−1

q θ , obeys the equation g(θ ) = θ , where g is as in Eq. (5.27).
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By Lemma 5.7, such a solution is unique and so there is at most one symmetric
minimizer.

Next let us assume that xq exceeds the remaining components. Note that
we must have that β(1 − x1)β(q−1)

MF because otherwise Eq. (5.21) implies that
(x2, . . . , xq ), properly scaled, would correspond to the (q − 1)-state Potts model
in the high-temperature regime. Since in addition x1 < 1/q, we are permitted to use
Lemma 5.8 and conclude that x1 is a minimizer of the function ψ from Eq. (5.30).
As is seen from its definition and Eq. (5.29), ψ starts off convex (and decreasing)
at x = 0 and, as x increases, may eventually turn concave. In particular, there
could be at most two points in [0, ã] where ψ achieves its absolute minimum—
one in (0, ã) and the other at ã.

We claim that if ψ ′(ã) < 0 then ã cannot be the first coordinate of an asym-
metric global minimizer. Indeed, if ψ is strictly decreasing at ã, then the free
energy could be lowered by increasing the first component beyond ã. Therefore,
if ψ ′(ã) < 0, then ψ has at most one relevant minimum in [0, ã]. On the other
hand, the above concavity-convexity picture implies that, once ψ ′(ã) ≥ 0, there
is only one point in [0, ã] where ψ is minimized. Hence, in all cases, there is at
most one asymmetric minimizer. �

The proof of Theorem 3.5 will require some comparisons between the two
minimizers allowed by Corollary 5.8. These are stated in the following lemma.

Lemma 5.10. Let q ≥ 4, β ≥ 0 and h ∈ (−∞, 0). Suppose that �
(q)
β,h has

two minimizers, one symmetric with x (S)
1 < x (S)

2 = · · · = x (S)
q and the other

asymmetric with x (A)
1 < x (A)

2 = · · · = x (A)
q−1 < x (A)

q . Then

x (A)
1 < x (S)

1 and x (S)
q < x (A)

q . (5.45)

Moreover, let eA = [x (A)
1 ]2 + . . . + [x (A)

q ]2 and eS = [x (S)
1 ]2 + . . . + [x (S)

q ]2. Then
there exists a constant cq > 0 such that for any h ∈ [−∞, 0) and any β where

both minimizes of �
(q)
β,h “coexist,” we have

eA − eS ≥ cq . (5.46)

Both parts of this lemma are based on the following fact. Let (x1, . . . , xq ) be
a minimizer of �

(q)
β,h ordered such that x1 < x2 = · · · = xq−1 ≤ xq . The stationar-

ity condition yields

x1e−βx1−h = x2e−βx2 = · · · = xqe−βxq , (5.47)

and so let � denote the common value of this equality. Then we have:
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Lemma 5.11. Let h < 0 and β ≥ 0. If � and �′ correspond to two minimizers
of �

(q)
β,h , and � = �′, then the minimizers are the same (up to permutations in the

last q − 1 indices).

Proof: Suppose that both minimizers are ordered increasingly. By h < 0 and
Lemma 5.2, x1 ≤ x2 = · · · = xq−1. The fact that ( x2

1−x1
, . . . ,

xq

1−x1
) is the mini-

mizer of �
(q−1)
β(1−x1),h—see Eq. (5.21)—then implies βxk ≤ 1 for all k = 1, . . . , q −

1. Since the function r (x) = xe−βx is invertible for x with βx ≤ 1, equality of
the �’s implies equality of the first q − 1 coordinates. The constraint on the total
sum implies equality of the xq ’s as well. �

Proof of Lemma 5.10: We will first attend to the proof of Eq. (5.45). In light of
Eq. (5.21), the (q − 1)-state Potts system on (x2, . . . , xq ) is at the effective tem-
perature β

(S)
eff = (1 − x (S)

1 )β for the symmetric minimizer and β
(A)
eff = (1 − x (A)

1 )β
for the asymmetric minimizer. But for both symmetric and asymmetric minimiz-
ers to “coexist” we must have β

(S)
eff ≤ β

(q−1)
MF ≤ β

(A)
eff and so x (A)

1 ≤ x (S)
1 . To rule out

the equality sign, we note that if x (A)
1 = x (S)

1 , then the corresponding �’s are the
same and Lemma 5.11 thus forces equality of all components. Once β

(S)
eff ≤ β

(A)
eff

is known, x (S)
q < x (A)

q follows.
In order to prove Eq. (5.46), let φ be the common value of �

(q)
β,h for the two

minimizers and let �A and �S be the corresponding �’s. Let us take the logarithm
of every term in (5.47), multiply the result for the j-th term by x j and add these
all up to get

φ − β

2
eS = log �S and φ − β

2
eA = log �A. (5.48)

As x (A)
1 < x (S)

1 ≤ 1/β, we have �A < �S for all h ∈ (−∞, 0); for h = 0,−∞ this
holds by a direct argument for the zero-field Potts model. Hence eS < eA when-
ever the two minimizers are “coexist.”

To see that the positivity of eA − eS holds uniformly in (h, β) ∈ [−∞, 0] ×
[0,∞], we use a compactness argument. First, we only need to worry about
the β’s in a finite, closed interval Iq . Indeed, the effective temperature of the
Potts model, βeff = β(1 − x1), is a number between β and β(1 − 1/q) and so if
either β < β

(q−1)
MF or β(1 − 1/q) > β

(q−1)
MF , then no coexistence of minimizers is

possible.
Next let us consider a sequence of (h, β) in [−∞, 0] × Iq with a topol-

ogy that makes this set compact. If eA − eS tends to zero along this sequence,
the above arguments imply that the asymmetric and symmetric minimizers must
coalesce as the parameters tend to a limiting point. But this is impossible because
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by the second half of Eq. (2.17), the scalar magnetization of the correspond-
ing (q − 1)-state Potts model, which is proportional to the ratio of x (A)

q − x (A)
2

and 1 − x (A)
1 , is always at least q−3

q−1 . �

Remark 5.12. The previous proof kept the distinctness of eS and eA in the realm
of the existential. A calculation actually shows that, for any h < 0, there are con-
stants e1 < e2 depending only on q such that eS < e1 and eA > e2 whenever the
two minimizers “coexist.”

Proof of Theorem 2.4: Fix β ≥ 0 and h < 0. Corollary 5.8 implies that, up to
a permutation in all-but-the-first component, �

(q)
β,h has at most two global min-

imizers: one symmetric mS and one asymetric mA. This proves part (1) of the
theorem.

Among the global minima, the first barycentric coordinate x1 = x1(β, h) is
(strictly) increasing in h (see Lemma 5.2) and so the effective coupling βeff (h) =
β(1 − x1(β, h)), which governs the (q − 1)-state Potts model on (x2, . . . , xq ), is
decreasing. Now if βeff (h) > β

(q−1)
MF then only the asymmetric minimum is rele-

vant, while if β(h) < β
(q−1)
MF then only the symmetric minimum applies. Hence,

for β ∈ (β(q−1)
MF , β

(q)
MF), there is a unique h2 = h2(β) such that the role of mini-

mizers changes as h increases through h2. (For β outside (β(q−1)
MF , β

(q)
MF), the mini-

mizers are in qualitative agreement with those of h = −∞ or h = 0−.) In par-
ticular, the minimizer is unique for h �= h2(β) and both minimizers “coexist”
for h = h2(β).

Modulo the definition of function β
(q)
− , parts (2–4) of the theorem are proved.

It remains to show that β �→ h2(β) is strictly increasing (and thus invertible), con-
tinuous and with limits −∞ and 0 at the left and right endpoints of (β(q−1)

MF , β
(q)
MF),

respectively. By Lemma 5.10, the quantities eS and eA are separated by a “gap.” A
simple limiting argument (not dissimilar to that used in the proof of Theorem 2.3)
now shows that h2 is continuous. Moreover, by Lemma 5.3, the norm-squared
of all minimizers increases with β, and so h2 is strictly monotone and the limits
of h2 at the endpoints of (β(q−1)

MF , β
(q)
MF) must be as stated. These facts allow us

to define β
(q)
− as the inverse of h2 and verify all its properties in part (5) of the

theorem. �

6. PROOFS: ACTUAL SYSTEMS

Here we will provide the proofs of our results for actual spin systems. The ma in
portion of the arguments has already been given in Sects. 4 and 5. We will draw
freely on the notation from these sections. The proofs are fairly straightforward
(and mostly existential) and so we will stay rather brief.
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First we will attend to the zero-field Potts model:

Proof of Theorem 3.4: The proof is more or less identical to that of Theo-
rem 2.1 of Ref. 11; the only substantial difference is that now we are not per-
mitted to assume that the magnetization is monotone (indeed, some of the Jx,y’s
may be negative). We will base our arguments on the mean-field properties of the
zero-field Potts model, as outlined in Sec. 2.2.

Recall the mean-field free-energy function �
(q)
β,0 from Eq. (2.15). By the fact

that the global minimizer of �
(q)
β,0 changes from symmetric to asymmetric as β

increases through β
(q)
MF, we can make the following conclusions: Given β ≈ β

(q)
MF,

let Uε be an ε-neighborhood of m = 0 and let Vε be the union of ε-neighborhoods
of the asymmetric minimizers. Then for each ε > 0, there exists δ > 0 such that
for all β with |β − β

(q)
MF| ≤ ε the set

Oδ = {
m ∈ Conv (�): �(q)

β,0(m) − FMF(β, 0) < δ
}

(6.1)

is contained in Uε ∪ Vε . Moreover, if β = β
(q)
MF − ε, then Oδ ⊂ Uε while at β =

β
(q)
MF + ε, we have Oδ ⊂ Vε .

Let M�(β, 0) be the set of “extremal magnetizations.” By Theorem 3.2, if the
integral I in Eq. (3.9) is so small that β κ

2 nI = β
q−1

2 I ≤ δ for all β with β ≤
β

(q)
MF + ε, then M� ⊂ Oδ . Now the asymmetric minimizers have norm at least 1/2,

and the near-monotonicity of the magnetization from Lemma 4.9 thus implies
that, at some βt with |βt − β

(q)
MF| ≤ ε, the physical magnetization jumps from some

value inside Uε to some value inside Vε . The jump (of this size) is unique by
Lemma 4.9. From here the claims (3.17–3.19) follow. �

Next we dismiss the cases with non-zero field:

Proof of Theorem 3.5: Let hc be the quantity from Theorem 2.3 and β
(q)
MF(h)

be the concatenation of functions β+ and β− from Theorems 2.3 and 2.4. An
argument similar to the one used in the previous proof shows that, for each ε >

0 there exists δ > 0, such that if β
(q)
MF

κ
2 nI ≤ δ and h ≤ hc − ε, a strong first-

order transition occurs at some βt(h) which is within ε of β
(q)
MF(h). This transition

is manifested by a jump in both magnetization and energy density. This proves
part (1) of the theorem.

As to part (2), by Lemma 5.10 we know that the first components of the two
minimizers are uniformly separated whenever h is confined to a compact subset
of (−∞, hc). Since our general bounds in Theorem 3.2 imply that the physical
magnetizations at (h, βt(h)) are very near their mean-field values provided I is
sufficiently small, also the first components thereof must be different. Using the
monotonicity of the first component of physical minimizers in h, the existence of
a jump in m�(β, h) on the transition line follows. �
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Proof of Theorem 3.7: The proof is based on Theorem 3.6 and Lemma 5.1.
Indeed, Theorem 3.6 implies that all minima are characterized by the fact that
one of (x1, x0, x−1) is larger than 1 − Ce−β . These minima are nearly degenerate
for λ of order e−β with free energy difference given by λ − e−β + O(βe−β ). The
goal is to show that the free energy is uniformly large (on the scale of e−β in the
complement of the Ce−β -neighborhood of these minima.

Let C � 1 be the number exceeding the corresponding constant from
Theorem 3.6 and suppose that |λ| ≤ Ce−β . Consider the set Oβ of all
triplets (x1, x0, x−1) with x1 + x0 + x−1 = 1, such that max{x1, x0, x−1} > 1 −
Ce−β . We claim that for β ≥ β0 (with β0 depending on C),

inf
(x1,x0,x−1)∈Oc

β

�β,λ(x1, x0, x−1) ≥ α(C log C)e−β, (6.2)

where α is a positive number independent of C . Indeed, Theorem 3.6 implies that
all local minima of �β,λ lie in Oβ , and so the absolute minimum of �β,λ must
occur on the boundary of Oc

β . But the “outer” boundary of Oc
β is not a possibility,

and so the mimimum occurs at a point with max{x1, x0, x−1} = 1 − Ce−β . The
bound (6.2) is then a consequence of Lemma 5.1.

Let now the integral I in Eq. (3.9) be such that βI � (C log C)e−β . Then
Theorem 3.2 ensures that all physical magnetizations (from M�) are contained
inside Oβ . However, by Eq. (3.23), for β such that λ − e−β ≥ O(βe−β ) the set Oβ

contains no triplets with dominant x±1 while for λ − e−β ≤ O(βe−β ), there are
no x0-dominant states. The standard thermodynamic arguments imply that the
amount of zero-ness decreases as λ increases. Hence, there must be a jump at
some λt = e−β + O(βe−β ) from states dominated by 0’s to those where 0’s are
very sparse. This finishes the proof. �
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transitions: Pirogov-Sinai theory. J. Statist. Phys. 116(1-4):97–155 (2004).

9. M. Biskup, C. Borgs, J. T. Chayes, and R. Kotecký, Phase diagrams of Potts models in external
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