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The onset of jamming as the sudden emergence
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PACS. 64.60.Ak – Renormalization-group, fractal, and percolation studies of phase transi-
tions.

PACS. 64.70.Pf – Glass transitions.

PACS. 83.80.Fg – Granular solids.

Abstract. – A theory is constructed to describe the zero-temperature jamming transition of
repulsive soft spheres as the density is increased. Local mechanical stability imposes a constraint
on the minimum number of bonds per particle; we argue that this constraint suggests an analogy
to k-core percolation. The latter model can be solved exactly on the Bethe lattice, and the
resulting transition has a mixed first-order/continuous character reminiscent of the jamming
transition. In particular, the exponents characterizing the continuous parts of both transitions
appear to be the same. Finally, numerical simulations suggest that in finite dimensions the
k-core transition can be discontinuous with a nontrivial diverging correlation length.

Understanding a continuous phase transition is tantamount to determining the universality
class to which it belongs. In contrast, understanding the nature of a discontinuous change
of phase requires a detailed study of the system at hand. Under normal circumstances [1],
the two categories are mutually exclusive. However, there are a few examples of continuous
transitions that exhibit characteristics of first-order transitions [2–10]. In this letter, we will
present arguments that the jamming transition in sphere packings [11–13] belongs to this
class and can genuinely be described as both continuous and discontinuous. Indeed, we will
identify the minimal physics needed to capture the nature of the transition by analogy to
the k-core percolation model, and show by exact calculation that the latter model has a true
mixed transition of this type with similar exponents at the level of mean-field theory. We
also present numerical evidence that k-core models can still exhibit mixed transitions in finite
dimensions. We remark that, starting from a different vantage point, Toninelli et al. [14] have
arrived at a model of the k-core type and have reached similar conclusions about the nature
of the transition in their studies of kinetically-constrained models.
Numerical studies [11–13] of sphere packings at zero temperature suggest that there is a

packing density φc (Point J) where the onset of jamming is truly sharp; i.e. the static bulk
and shear moduli vanish for φ ≤ φc and are nonzero for φ > φc. This transition exists for
spheres that repel when they overlap and otherwise do not interact. For small φ, particles
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easily arrange themselves so as not to overlap with any other particle and hence the total
potential energy is V ≡ 0. As φ is increased, there is a particular value of φc above which the
particles can no longer “avoid” each other and V becomes nonzero. The average coordination
number (the average number of overlapping neighbors per particle) is Z = 0 for φ < φc. As φ
approaches φc from above, however, the behavior is very different: 〈Z〉 ≈ Zc + Z0(φ − φc)β ,
where β = 0.49 ± 0.04 [12]. Moreover, the singular part of the shear modulus vanishes with
the exponent γ = 0.48± 0.05 [12] and recent simulations by Silbert et al. [13] find a diverging
length scale exponent ν = 0.24± 0.03 [13,15].
These numerical results imply that the transition at Point J has characteristics of both

types: certainly there is a discontinuity in the average coordination number, 〈Z〉, but as the
transition is approached from the ordered (jammed) phase, it exhibits the typical singularities
associated with continuous transitions; 〈Z〉 tends to its limiting value with a nontrivial power
law and there are divergent length scales.
We will now present arguments that the Point J transition is indeed a mixed transition,

many aspects of which can properly be understood by analogy to a relatively simple model
called “k-core percolation” (sometimes also called “bootstrap percolation” [16]). Let us start
with an informal discussion of the essentials of the jamming model. Clearly, a jammed packing
of spheres at T = 0 must be mechanically stable. For a sphere in d dimensions to be locally
stable, it must have interactions (i.e. overlap) with at least d + 1 neighboring spheres [17].
Evidently, spheres with fewer than d+1 overlapping neighbors do not contribute to the forma-
tion of a jammed structure and thus are irrelevant. Thus we may envision the mechanics for
a system below the jamming threshold density as its energy is lowered towards the minimum:
although large clusters of overlapping particles may happen to form, those at the boundary
of the cluster are unstable and will move away, further lowering the energy. This in turn ex-
poses secondary particles, who are in turn forced to move away, and so forth until the cluster
dissolves. At high density the situation is more complicated. However, it is still true that
all particles that do contribute to the jammed structure must have at least d+ 1 overlapping
neighbors that are not “irrelevant”, and each of these overlapping neighbors must have at least
d+ 1 overlapping neighbors that are not irrelevant, and so on. In other words, only particles
that survive this entire hierarchy of irrelevance can contribute to the jammed structure.
These considerations are suggestive of the k-core percolation model, defined as follows.

Consider a regular lattice of coordination number Zmax and some integer k with 2 ≤ k < Zmax.
Initially, sites are independently occupied with probability p. In the first stage, all occupied
sites with fewer than k neighboring occupied sites are eliminated. Then, this decimation
process is applied to the surviving occupied sites, and so on, until all surviving sites (if any)
have at least k surviving neighbors. Thus, at the end of this process, every surviving site has
at least k neighbors, all of which in turn have at least k neighbors, etc. The surviving sites
are called the k-core and phases of the model are determined by the presence or absence of
an infinite cluster of these survivors.
The overall analogy between the two models is self-evident. The initiating density p

corresponds the the packing fraction φ, k corresponds to d + 1 and Zmax to the so-called
kissing number, that is the maximum number of equivalent hyperspheres in d dimensions that
can touch a central one without overlaps. (In d = 2, Zmax = 6, and in d = 3, Zmax = 12.)
In the mean-field theory of k-core percolation, i.e. the Bethe lattice and infinite-range

complete graph models, it is well established that the order parameter undergoes a discontin-
uous jump at threshold [16,18], accompanied by a square-root singularity [16,18,19]. However,
the fact that the latter was indicative of a critical phenomenon has heretofore been underem-
phasized; in particular, a divergent length scale had not been identified. Below we will show
that, at least on the Bethe lattice, there is indeed critical behavior in the sense of a diverg-
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ing susceptibility and correlation length and the various exponents are in (rather dramatic)
agreement with their counterparts in the Point J simulations.
The k-core percolation model can be solved exactly on the Bethe lattice. We begin by

considering the half-space Bethe lattice, for which we derive recursion relations for quantities
at level n + 1 in terms of quantities at level n. All occupied sites at level 0 of the half-space
Bethe lattice belong to what we call the “deep core.” We keep track of two quantities, the
probability of belonging to the deep core at level n+1, ΥHS

n+1, which requires the site at level
n+1 to have at least k neighbors at level n that belong to either the deep core or to what we
call the “corona.” To be in the corona at level n+1, a site must have exactly k− 1 neighbors
at level n that belong to the deep core or the corona. We denote by ΦHS

n+1 the probability
of belonging to the corona at level n + 1, and by ΓHS

n+1 ≡ ΥHS
n+1 + Φ

HS
n+1 the probability of

belonging to either the deep core or the corona. The deep core will necessarily be part of the
k-core; we need to keep track of the corona because when two half-spaces are glued together
to form the full Bethe lattice, corona can be converted to k-core. The recursion relation is

ΓHS
n+1 = p

Zmax−1∑
l=k−1

(
Zmax − 1

l

)
(ΓHS

n )
l(1− ΓHS

n )
Zmax−1−l

≡ pΠZmax
k−1 (Γ

HS
n ). (1)

In the limit of large n, ΓHS
n = ΓHS

n+1 ≡ ΓHS. Clearly, ΓHS = 0 is always a solution. However,
there can be a nontrivial solution for p exceeding some pc. For k ≥ 3 [16,19]

ΓHS ∼ a+ b(p − pc)1/2. (2)

At the transition, the curve pΠk−1(ΓHS) is just tangent to ΓHS, i.e. pcΠ′
k−1(Γ

HS) = 1.
The average coordination number, susceptibility and correlation length exponents, which

are needed for the comparison to sphere packings, must be calculated on the full Bethe lattice,
obtained by connecting two half-space lattices. The resulting probability of belonging to the
k-core, K, is given by K = ΥHS+ΦHSΓHS. This has the same behavior as ΓHS in eq. (2). The
average number of occupied neighboring sites per occupied site (i.e. the average coordination
number) also behaves in the same fashion as ΓHS (eq. (2)). It jumps from zero for p < pc to
〈Z〉 ≈ Zc + Z0(p − pc)1/2 for p > pc, in excellent agreement with the numerical results for
sphere packings [12].
The susceptibility is the sum of correlation functions, τ	,m, connecting levels � andm of the

Bethe lattice, and has the form χ =
∑

n(Zmax−1)nτ0,n. We consider two different correlation
functions: τ#

0,n represents the probability that both level 0 and level n are connected to the
deep core, while τ∗

0,n represents the probability that levels 0 and n are connected to each
other via the corona [20]. This latter probability can be derived by considering the chain of
sites connecting a given site at level 0 to a site at level n. To belong to the corona, each site
along the chain must be occupied and have exactly k neighbors (including the two adjacent
sites along the chain) connected to the deep core or corona. The corresponding probability
for each site is Θ = p

(
Zmax−2

k−2

)
(ΓHS)k−2(1 − ΓHS)Zmax−k. The final probability τ∗

0,n therefore
scales as Θn. When this is summed over n, it yields a susceptibility exponent of γ∗ = 1/2. By
somewhat more complicated reasoning, the dominant contribution to τ#

0,n scales as nΘn; this
leads to γ# = 1. Note that τ∗

0,n measures the size of the corona, which is the region that can
be converted into k-core or not, depending on the state of only one site. This is the source of
cooperativity underlying the transition.
Another way to compute a susceptibility is to calculate the response to a perturbation; in

the case of percolation, this corresponds to the addition of low-probability “short routes to
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the infinite cluster.” In our system we have done this in two ways: first by providing a small
fraction of additional random sites with k − 2 occupied neighbors that are connected directly
to the deep core plus corona, and secondly by declaring a small fraction of sites to be in the
deep core plus corona regardless of their connectivity. Both prescriptions yield γ∗ = 1/2, as
well as a “magnetic field” exponent of δ∗ = 2.
The correlation length corresponding to both susceptibility exponents diverges with the

exponent ν∗ = 1/4 (although there is a logarthmic difference between the two). We use the
usual embedding of a Bethe lattice in Euclidean space [21] to arrive at this result. One would
expect the usual mean field relation ν = γ/2 to hold; the exponent γ# = 1 may be an artifact
of the Bethe lattice. However, we also obtain ν# = 1/2 by looking at how quickly the order
parameter approaches its bulk value as a function of distance from the boundary.
The exponents β = 1/2, γ∗ = 1/2, and ν∗ = 1/4 are in excellent agreement with numerical

simulations of particle packings near Point J. However, these simulations are carried out in 2
and 3 dimensions while the k-core calculations correspond to infinite dimensions (the mean-
field limit). This raises the question of whether the mixed nature of the k-core transition
can survive in finite dimensions. Most studies have focused on particularly simple systems
such as the 2d square and triangular lattices [22], some 3d cubic lattices [23] and hypercubic
lattices [9]. For these simple systems, the transition falls into one of two categories: Either
the transition is continuous or it does not occur until p = 1. Systems that exhibit continuous
transitions all contain self-sustaining clusters, i.e. clusters that are finite and yet survive the
decimation process. For example, for k = 3 on the 2d triangular lattice, the smallest self-
sustaining cluster is a fully-occupied hexagon and the k-core transition appears to correspond
to ordinary percolation of these hexagons [22]. Systems that fail to exhibit a transition below
p = 1 apparently contain “unstable voids” [9, 24, 25] that lead to decimation of the entire
population whenever p < 1.
We regard percolation of self-sustaining clusters and unstable voids as “artifacts” of sim-

ple k-core models. Indeed, for jammed sphere packings these two effects cannot arise. First,
self-sustaining clusters of overlapping particles are forbidden due to the repulsive nature of the
interactions between particles. Likewise, voids (i.e. collections of floaters, or particles with no
overlapping neighbors) cannot grow because of the force constraints and because floaters can
shift around, but cannot actually disappear. To see this, consider the interface between a void
and the surrounding sea of particles with at least k overlapping neighbors. For a sufficiently
large void, a particle on the boundary with at least k overlapping neighbors will inevitably
experience a nonzero net force into the void, since floaters provide no compensating force.
Thus, large voids will shrink away; they will not grow. To capture some of this physics,
we have introduced a 3-core model with “force-balance” on the square lattice [26]. Potential
neighbors are located within a 5×5 square centered upon the site of interest; thus, Zmax = 24.
To survive decimation, any given site must have at least 3 occupied neighbors and if there is
at least one occupied neighbor to the right of the site of interest, there must be at least one
occupied neighbor to its left and vice versa.Similarly, if there is at least one occupied neighbor
above the site of interest, there must be at least one occupied neighbor below and vice versa.
We have undertaken simulations of this 3-core model, and find evidence that the transition

is discontinuous with a diverging correlation length. In fig. 1a, the fraction of occupied sites
in the spanning cluster, κ, is plotted as a function of p for different system lengths L. For each
L we observe that κ jumps from zero to κc(L) at some pc(L). For a continuous transition,
the jump κc(L) would decrease with L and vanish as L → ∞, but here κc(L) increases with
L. The size of the jump κc(L) appears to approach a nonzero limiting value of 0.374(1)
(solid triangles in the inset to fig. 1b). Furthermore, the transition point, pc(L), approaches
pc = 0.396(1) for L → ∞. To verify that unstable voids do not drive the transition to pc = 1,
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Fig. 1 – (a) The order parameter κ(p) for different system lengths L. Inset: scaling collapse for
L = 256 and larger. (b) Log-log plot of the width of the transition, W (solid circles) and the critical
point shift δpc (open squares) as a function of L with a power law fit (line) with ν = 1.52(2) for W
and ν = 1.53(1) for δpc. The inset shows the jump, κc, remains nonzero (solid triangles and right
axis) and that pc remains smaller than unity (open diamonds and left axis) as L → ∞.

we plot 1 − pc(L) vs. 1/ lnL as open diamonds in the inset to fig. 1b. We do not find linear
behavior with a y-intercept of zero, as predicted for pc = 1 [25].
We calculate the correlation length exponent from two different quantities (fig. 1b): 1) the

width of the transition defined byW = p+(L)−p−(L), where p±(L) are defined as the values of
p at which the probabilities of obtaining a spanning cluster are 0.25 and 0.75, respectively, and
2) the critical point shift δpc ≡ pc−pc(L). BothW and δpc scale as L−1/ν with ν = 1.52(2) and
1.53(1), respectively, as shown in fig. 1b. This exponent leads to scaling collapse of the order
parameter curves of fig. 1a, as shown in the inset to fig. 1a. Here, we assume the scaling form
κ(p, L) = κc(L)+L−β/νf((p− pc(L))L1/ν), with β = 1.0 (for optimal collapse). For ordinary
first-order transitions, finite-size scaling would predict a diverging length with an exponent
of 1/d [27], corresponding to 0.5 in d = 2. We obtain a very different exponent, strongly
suggesting a mixed transition. Analysis of a recently-proposed lattice model reaches a similar
conclusion [14]. Furthermore, a recent 1/d expansion of pure k-core percolation suggests that
the mixed nature of the mean-field transition may survive in finite dimensions [28].
While k-core percolation appears to capture the minimal physics needed to explain the

mixed transition found at Point J, it is not a complete description of jamming. This can
already be seen by comparing the exponents observed for the mixed transition of the d = 2
3-core model, β ≈ 1.0 and ν ≈ 1.5, with those found in the d = 2 and d = 3 jamming
simulations, β = 0.49 and ν = 0.24. In fact, k-core models do not include a very important
property of the jamming transition, namely isostaticity [17]. At Point J, the number of
overlapping neighbors jumps from zero to Zc = 2d, where d is the dimensionality. In k-core
percolation, on the other hand, Zc is not universal; it depends on k and Zmax. We find that
the global constraint of k-core percolation yields Zc > k, even though the local constraint
only requires k neighboring occupied sites per site.
Duxbury et al. [29] have proposed that the closely-related problem of rigidity percolation

can be mapped onto the k-core percolation problem in mean field by imposing the constraint
that the transition should occur when Zc satisfies the isostatic condition. Thus in their
formulation, the mean-field transition occurs above pc, at some pr at which Zc reaches its
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isostatic value. They therefore obtain an isostatic, ordinary first-order transition, while k-
core percolation yields a nonisostatic, mixed transition. Neither case properly applies to
the jamming transition, which appears to be both mixed and isostatic [12, 13]. We note
that a complementary theory by Wyart et al. [30, 31] starts with isostaticity at Point J and
successfully describes the behavior of the density of vibrational modes and predicts a diverging
length scale with exponent of 1/2, with much the same physical meaning as our ν# = 1/2.
In addition, a recent field-theoretical approach also starts with isostaticity and appears to
produce some of the same mean-field exponents that we find [32]. We speculate that a complete
theory of jamming would exhibit the same mean-field exponents as k-core percolation, but
different behavior in finite dimensions due to isostaticity; the latter effect suggests an upper
critical dimension of two [30,31].
We have argued that the physical constraint of requiring at least k = d + 1 overlapping

neighbors per particle in zero-temperature sphere packings leads to a transition resembling
the k-core percolation type. However, this analogy may have implications ranging beyond
sphere packings to glassforming liquids. This connection is suggested by the set of exponents
we find for mean-field k-core percolation, which is rare but has been seen in a few other models
that are known to exhibit glassy dynamics as the temperature is lowered. These include the
mode-coupling theory of glasses [33], mean-field theories of the p-component spin glass [5,34]
and kinetically-constrained spin models [7–10]. For the latter models, this is no coincidence
since they map onto k-core percolation and its variants [8–10]. Finally, we note that models
such as the 3-SAT spin glass are also variants of k-core percolation. Within this percolation
description it can be shown that in mean field, the unfrustration-frustration transition [35,36]
has the same mixed character as in k-core percolation, suggesting that the 3-SAT spin glass
may exhibit glassy dynamics.
It has been proposed [37,38] that the behavior of many jamming systems, including glasses,

suspensions, foams and granular materials, might be captured by “jamming phase diagrams,”
in the three-dimensional space of temperature T , applied shear stress σ, and packing density φ.
In this space, the boundary separating jammed from unjammed behavior is a “surface” whose
location is nebulous because it depends on the time scale of the observations, and Point J lies
underneath the jamming surface. Numerical simulation results [12,13] suggest that the entire
jamming surface of the jamming phase diagram is indeed controlled by Point J, the unique
point where a sharp transition occurs. Here, we have argued that the physics near Point J is
strongly suggestive of the k-core problem. The latter has a transition with unusual features
that mirror corresponding features found at Point J: a mixed first–second order transition
and the same exponents that characterize the continuous part. In contrast to earlier scenarios
of the glass transition based on avoided critical points, either at nonzero temperature [39]
or zero temperature [40, 41], the arguments of O’Hern et al. [12] evidently suggest a scenario
based on an avoided mixed transition at Point J. On the one hand, the first-order character of
the transition may explain the presence of strong system-specific features such as the degree
of fragility. On the other hand, the continuous component of the transition may explain the
many ubiquitous features in the phenomenology of jamming [38].
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