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Abstract: We study the classical version of the 120◦-model. This is an attractive nea-
rest-neighbor system in three dimensions with XY (rotor) spins and interaction such
that only a particular projection of the spins gets coupled in each coordinate direction.
Although the Hamiltonian has only discrete symmetries, it turns out that every constant
field is a ground state. Employing a combination of spin-wave and contour arguments we
establish the existence of long-range order at low temperatures. This suggests a mecha-
nism for a type of ordering in certain models of transition-metal compounds where the
very existence of long-range order has heretofore been a matter of some controversy.
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1. Introduction

1.1. Overview. For attractive classical spin systems with ground states related by an
internal symmetry, ordering usually occurs by one of two mechanisms: The existence
of surface tension between thermal perturbations of the ground states or condensation
of spin-wave deviations away from the ground states. The former is most common in
models where the internal symmetry is discrete, while the latter circumstances are best
exhibited in systems with continuous symmetries. This paper will be concerned with an
attractive spin system—the so-called 120◦-model—which displays characteristics rem-
iniscent of both phenotypes. A related model of this sort—the so-called orbital compass
model—will be the subject of a continuation of this paper [4]. A common feature of both
systems is that the presence/absence of long-range order is all but readily apparent.

To underscore the above (admittedly vague) allegations, let us introduce the formal
Hamiltonian of the 120◦-model:

H = J

2

∑

r

{(
S(â)

r − S
(â)
r+êx

)2 + (
S(b̂)

r − S
(b̂)

r+êy

)2 + (
S(ĉ)

r − S
(ĉ)
r+êz

)2
}
. (1.1)

Here r is a site on the cubic lattice Z
3, the Sr’s are the usual XY-spins, namely two-

dimensional vectors of unit length, and êx , êy and êz are the lattice unit vectors in the

three coordinate directions. To define the quantities S
(â)
r , S

(b̂)
r and S

(ĉ)
r , let â, b̂ and ĉ

denote three vectors on the unit circle evenly spaced by 120◦. Then S
(â)
r = Sr · â and

similarly for S
(b̂)
r and S

(ĉ)
r . We have J > 0 so the interaction is ferromagnetic.

As is manifestly obvious from (1.1), any constant spin field is a ground state and
since we are dealing with continuous spins, no contour-based argument readily suggests
itself. (As we shall see later, there are also other ground states, but these need not con-
cern us at the moment.) On the other hand, due to the directional bias of the coupling, a
naive spin-wave argument based on the use of infrared bounds [25, 20, 22, 23] results
in divergent momentum-space integrals. In particular, as we later show, the spherical
version of this model has a free energy that is analytic at all temperatures. Worse yet, the
rigorous version of a disorder-by-spin-wave argument, the Mermin-Wagner theorem,
requires the continuous symmetry to be present at the level of the Hamiltonian, which
here is simply not the case. Thus, the system in (1.1) is right on the margin.

The main goal of this paper will be to establish long-range order in this model. (Pre-
cise definitions will appear at the end of this section; precise statements of the theorems
will appear in the next section.) The mechanism for ordering involves the combination
of different aspects taken from both of the classic types of arguments. Specifically, on
the basis of a realistic spin-wave calculation we show that, for all intents and purposes,
most of the ground states are destabilized, leaving us with only a manageable number
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of contenders. Among the survivors, a surface tension (with some unusual features) is
established. Thereafter, via arguments which are relatively standard, the existence of
multiple states at low temperatures can be concluded.

The described reduction of the ground state degeneracy by accounting for the free
energy of the excitations is reminiscent of the problems analyzed previously in [16, 7,
29]. (In our cases, the role of excitations is taken by the spin waves.) However, the model
studied in this paper presents us with several novel features. For instance, unlike in [16,
7, 29] which focused on discrete spin systems with “stratified” ground states, here we are
dealing with a continuum of homogeneous ground states related by a continuous internal
symmetry. Incidentally, “stratified” ground states also exist in our systems, see Sect. 1.3.
Here these must be ruled out on the basis of a modified spin-wave calculation which
accounts for the free energy carried by deviations from inhomogeneous background.

Although the authors would have been proud to stake the claim of having concocted
a model system with such an esoteric mechanism of ordering, it turns out that interest in
the 120◦-model—as well as the closely related orbital compass model—is not entirely
academic. Indeed, both systems arise naturally in the study of transition-metal com-
pounds. Here magnetic order of some type has been firmly established by experimental
methods, but the nature and the mechanism for the order is unclear. The problem persists
up to the theoretical level; the question whether any interacting model based on the phys-
ics of transition-metal orbitals is capable of supporting long-range order has heretofore
been a matter of controversy. From the present paper we now know that, at the level
of finite-temperature classical spin systems, ordering indeed occurs for the 120◦-model.
This strongly suggests (but of course does not prove) that a similar ordering is exhibited
in the quantum and itinerant-electron versions of these models.

The rest of this paper is organized as follows. In Sect. 1.2 we describe the physi-
cal origins of these problems. A precise definition of the classical 120◦-model is given
and the ground states are discussed in Sect. 1.3. In Sect. 2.1 we state our main result
concerning the existence of phase transition in the 120◦-model while in Sect. 2.2 we
outline the principal ideas of the proof of long-range order. The actual proofs are given in
Sect. 3. The techniques we employ are contour methods based on chessboard estimates
but the infinite degeneracy of the ground states also requires us to perform some intricate
spin-wave calculations. These technical details are the subject of Sects. 4–6. Section 7
collects some observations concerning the spherical version of the model at hand.

1.2. Quantum origins. In the standard description of electrons in solids, it is often the
case that the accumulation of itinerant charges is heavily disfavored. This (presumably)
results in localized electrons which interact only via spin exchange. In the circum-
stances which are most often studied, only a single orbital is available at each site,
which produces an effective antiferromagnetic interaction. However, in transition-metal
compounds (e.g., vanadates, manganites, titanates, cuprates, etc.) there are multiple
essentially-degenerate orbitals any of which could be occupied. In particular, if the tran-
sition metal ion interacts with a local environment which is of octahedral symmetry,
the 3d-quintet of the transition-metal ion is split into a low-lying triplet—the t2g orbi-
tals—and a pair—the eg orbitals—of considerably higher energy.

In the absence of any other significant effects, one circumstance which is amenable
to further approximation is when there is but a single electronic degree of freedom per
site. The two obvious distinguished cases are the eg and t2g compounds. The former
will come about under two conditions: First, if the t2g orbitals are filled and there is one
extra electron per site to occupy the eg orbitals. Second, same as above but here there are
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three electrons (out of a possible total of four) in the eg orbitals and the role of the single
electronic degree of freedom is played by the hole. The latter cases, the t2g compounds,
occur if the eg orbitals are empty and there is a single electron or a hole in the t2g orbitals.
It appears that the situations leading to eg-type compounds are far more prevalent.

In any of the above circumstances, one can write down the inevitable itinerant elec-
tron model describing the spins and orbitals. After the standard superexchange calcu-
lation/approximation—analogous to that which relates the single-orbital models to the
Heisenberg antiferromagnets—we arrive at a problem which involves “only” quantum
spins. Of course, in these models there will be two types of quantum states. Namely,
those corresponding to the actual (electronic) spin degrees of freedom and those corre-
sponding to the occupation numbers of the dynamical orbitals. The resulting system is
described by the Kugel-Khomskii [34] Hamiltonian

H = J
∑

α

∑

r

(
π̂α

r π̂α
r+êα

− 1
2 π̂α

r − 1
2 π̂α

r+êα
+ 1

4

)(
σ r · σ r+êα

+ 1
)
. (1.2)

Here the interaction takes place at the neighboring sites of the cubic lattice Z
3 represent-

ing the positions of the transition-metal ions, the object σ r is the triple of the usual Pauli
matrices acting on the spin degrees of freedom at the site r and the π̂α

r are pseudospin
operators acting on the orbital degrees of freedom at the site r.As usual, the vectors êx , êy

and êz are the unit vectors in the principal lattice directions.
Depending on which of the orbitals play the seminal role, the two choices for the

orbital pseudospins are

π̂α
r =

{
1
4 (−σz ± √

3σx), if α = x, y,

1
2σz, if α = z,

(1.3)

for the eg-compounds, while

π̂α
r = 1

2σα, for α = x, y, z, (1.4)

for the t2g-compounds. The former choice gives rise to the 120◦-model and the latter to
the orbital compass model.

The question of obvious importance is to prove/disprove the case for ordering of the
spins or orbitals in these models. In this vein, it should be remarked that the orbital-
compass version of the Kugel-Khomskii Hamiltonian—if reformulated back in the lan-
guage of the itinerant-electron model—has some unapparent symmetries. For instance,
as pointed out by Harris et al [28], the total spin of electrons in α-orbitals at sites of any
plane orthogonal to the direction represented by α is a conserved quantity. On the basis
of these symmetries, a Mermin-Wagner argument has been used [28] to show that, in the
three-dimensional system, the spin variables represented by σ r in (1.2) cannot order.

Notwithstanding the appeal of this “no-go” result, we note that the absence of spin
order does not preclude the more interesting possibility of orbital ordering in these sys-
tems. Indeed, on the experimental/theoretical front, it appears that there is a reasonable
consensus “for” orbital ordering; the references [12, 11, 41, 9, 30, 21, 39] constitute
works which support this picture while the references [31, 35, 1, 46] offer arguments
that dispute or down-play the role of orbital order in the magnetic properties of tran-
sition-metal compounds. We refer to (slightly biased) review articles [47, 8] for more
information.
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In order to study the phenomenon of orbital ordering in the context of Kugel-Khomskii
models, the interactions are often further reduced. Neglecting all sorts of terms including
all terms pertaining to intrinsic spin, the resulting orbital-only model has the Hamiltonian

H = J
∑

α

∑

r

π̂α
r π̂α

r+êα
. (1.5)

Here, as before, π̂α
r are as in (1.3) for the 120◦-model and (1.4) for the orbital compass

model. Full physical justification of these approximations goes beyond the scope of
this paper.

Interestingly enough, the Hamiltonian (1.5) for the 120◦-case can be arrived at by
entirely different means. In particular, among the other “competing” mechanisms so far
omitted from the discussion is the Jahn-Teller effect which refers to further distortion
of octahedral geometry of the “crystal field” surrounding the transition-metal ions. On
the basis of symmetry considerations it has been argued [32] that, in the eg-compounds,
this will lead to an effective interaction among the nearby orbitals which turns out to be
exactly of the type (1.5). In the rare cases of the t2g-compounds with Jahn-Teller effects,
it turns out that yet another Hamiltonian emerges. In the t2g-cases the interplay of the
two interactions must be properly accounted for; in contrast to the eg-situations where,
no matter what, we get the 120◦-model. For these and other reasons—the latter mostly
concerning the “degree” of difficulty—the remainder of this paper will be focused on
the 120◦-model.

1.3. The classical models. The classical versions of the above orbital models can be
obtained from their quantum counterparts by replacing the operators π̂α

r by appropriate
projections of the classical spin variables Sr , which live on the unit sphere in R

n. A
standard justification for the classical approximation is via the “S → ∞” limit; cf [36,
45, 18] and also [19, 37, 38] for some results in this direction. As was the case for the
quantum systems, there are two major types of models under consideration: the classical
120◦-model and the classical orbital compass model. We proceed with formal definitions.

Let Z
3 denote the three-dimensional cubic lattice and let Sr , where r ∈ Z

3, be unit
vectors in R

2. We let â, b̂ and ĉ denote three evenly-spaced vectors on the unit circle, for
instance,

â = (1, 0), b̂ = (− 1
2 ,

√
3

2

)
and ĉ = (− 1

2 , −
√

3
2

)
, (1.6)

and define the projections S
(â)
r = Sr · â, where the dot denotes the usual dot product, and

similarly for S
(b̂)
r and S

(ĉ)
r . In this notation, the (formal) Hamiltonian of the 120◦-model

is given by

H = −J
∑

r

(
S(â)

r S
(â)
r+êx

+ S(b̂)
r S

(b̂)

r+êy
+ S(ĉ)

r S
(ĉ)
r+êz

)
, (1.7)

with again J > 0. For convenience we will sometimes label the lattice direction and the

spin direction with the same index; i.e., S
(α)
r , α = 1, 2, 3, meaning, e.g., S

(b̂)
r for α = 2,

etc. Then (1.7) can be written

H = −J
∑

r,α

S(α)
r S

(α)

r+êα
. (1.8)
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We remark in passing that (1.8) is also the form of the orbital compass Hamiltonian,
only in this case the Sr , r ∈ Z

3, are genuine (three-component) Heisenberg spins and
the upper index of the spin stands for its Cartesian component.

Remark 1. The 120◦-model (as well as its orbital compass counterpart) can be general-
ized to hypercubic lattices in other dimensions as well as to other graphs. For instance,
in four spatial dimensions the spins are from the unit sphere in R

3 and the interaction in
the various lattice directions is via the projections of the spins onto the vectors pointing
from the origin to the vertices of an appropriately centered tetrahedron. However, these
variant situations are fairly difficult geometrically and since they do not always corre-
spond to the structure of the original quantum-spin model, we will not consider them in
this paper.

The salient feature of the 120◦-model (as well as the orbital compass model) is that
the ground-state space of the Hamiltonian is infinitely degenerate. This is manifest if we
write the Hamiltonian in the form (1.1) which follows immediately from (1.7) by the
fact that for any Sr from the unit circle in R

2,

[S(â)
r ]2 + [S(b̂)

r ]2 + [S(ĉ)
r ]2 = 3

2
. (1.9)

It is now apparent that any constant vector field receives the minimum possible energy—
namely zero—from the Hamiltonian in (1.1).

Unfortunately, as we remarked before, the ground state situation is further compli-
cated by the fact that the constant configurations are certainly not the only minimum-
energy states available in this system. For instance, it is easy to verify that, starting from
a constant configuration, the reflection of all spins in an xy-plane “through” vector ĉ
preserves the overall energy. (Here, the ĉ-projection is not affected by this procedure
and the â and b̂-projections just swap their roles.) Hence, plenty of other ground states
can be obtained from the constant ones by reflecting all spins in a collection of parallel
lattice planes; see Fig. 1 for some examples. Notwithstanding, as will be proved later,
these non-translation invariant ground states are disfavored by the onslaught of positive
temperatures.

Remark 2. The ground state situation is yet more intricate in the orbital compass model
which is foremost among the reasons that our analysis of this system was postponed.

1.4. Gibbs measures. The (still formal) Hamiltonian in (1.1) can be used to define the
Gibbs measures for the corresponding spin system. Explicitly, let � ⊂ Z

3 be a finite
set and let ∂� denote the set of sites in Z

3 \ � that have an edge with one endpoint
in �. Given a spin configuration S� in � and a boundary condition S∂� on ∂�, we
let H�(S�|S∂�) be the restriction of the sum in (1.1) to r and α such that r ∈ �

or r + êα ∈ � (or both). Then the finite-volume Gibbs measure in � with boundary
condition S∂� is a measure on the configurations S� = (Sr)r∈� given by

µ
(S∂�)
� (dS�) = e−βH�(S�|S∂�)

Z
S∂�

�,β

∏

r∈�

�(dSr). (1.10)

Here � is the Lebesgue measure on the unit circle (in other words, � is the a priori spin
distribution) and Z

S∂�

�,β is the corresponding normalization constant.
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Fig. 1. A picture demonstrating the discrete symmetries of the ground states in the 120◦-model on a
cube with one spin fixed. Here the horizontal and vertical directions correspond to the y and z-axes,
respectively; the front face of the cubes is perpendicular to the x-axis. The upper-left cube is simply the
homogeneous ground state, the upper-right cube has a spin reflection in the â-direction as one moves in the
êx -direction across the yz-midplane. The bottom cubes have analogous b̂ and ĉ-reflections. The structure
of any (global) ground state is demonstrated by checking for consistency between all neighboring cubes

Regarding these measures as the so-called specifications, the DLR-formalism can
be used to define the infinite-volume Gibbs measures (aka Gibbs states). Explicitly,
the latter are probability measures on configurations Sr for r ∈ Z

d , whose conditional
probability in a finite volume given a boundary condition S∂� is the measure (1.10), for
almost every S∂�. We refer to [26] for a comprehensive treatment of these concepts. To
adhere with mathematical-physics terminology, we will denote expectation with respect
to the infinite-volume Gibbs measures by 〈−〉.

2. Main Results

Here we state the main theorem of this paper and provide heuristic reasoning for the
existence of long-range order in the system at hand. We also provide some more dis-
cussion and remarks on literature concerning the related problems that have previously
been studied.

2.1. Long-range order in the 120-degree model. Let ŵτ , τ = 1, 2, . . . , 6, denote the six
vectors on the unit circle in R

2 corresponding to the six sixth-roots of unity. Explicitly,
we define

ŵτ = (
cos(π

3 τ), sin(π
3 τ)

)
, τ = 1, 2, . . . , 6. (2.1)

The principal result of this paper is then as follows:
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Theorem 2.1. Consider the 120◦-model with a fixed coupling constant J > 0. Then
there exits a number β0 ∈ (0, ∞) and a function β 	→ ε(β) ∈ [0, 1) with ε(β) → 0
as β → ∞ such that the following is true: For all β ≥ β0 there exist six distinct,
infinite-volume, translation-invariant Gibbs states 〈−〉τβ,J , with τ = 1, 2, . . . , 6, such
that

〈ŵτ · Sr〉τβ,J ≥ 1 − ε(β), τ = 1, 2, . . . , 6, (2.2)

is valid for all r ∈ Z
3.

We note that once 〈ŵτ · Sr〉τβ,J �= 0, we must have that 〈Sr〉τβ,J �= 0. Consequently,
(2.2) implies the existence of a long-range order because at β � 1, the standard high-
temperature expansions (or Dobrushin uniqueness techniques, see [44, Theorem V.1.3]),
imply that 〈Sr〉β,J = 0 in any Gibbs state 〈−〉β,J . Moreover, as β → ∞, the measure
corresponding to 〈−〉τβ,J gets increasingly concentrated around ŵτ .

Theorem 2.1 is proved in Sect. 3.2 subject to some technical claims whose proof is
postponed to Sect. 6.3.

2.2. Spin-wave heuristics. Here we provide a heuristic outline of the spin-wave reason-
ing which ultimately leads to the proof of the above theorem. The precise version of the
argument is given in Sects. 4 and 5.

The starting point of our analysis differs in perspective from the usual sort of spin-
wave arguments which have previously been the subject of mathematical theorems. In
the standard approaches, one attempts to rewrite the full Hamiltonian as a “spin-wave”
Hamiltonian, carry out a calculation and control the errors later (if at all). An extreme
example of this is the spherical model whose working definition is “the spin system for
which the spin-wave approximation is exact.” However, as alluded to previously, this
sort of spin-wave approximation is inadequate to capture the essential features of the
problem at hand. (See Sect. 7 for more details.)

The present perspective, which is standard in condensed matter physics but has not
yet been the subject of detailed mathematical analysis, can be summarized as follows:
We will collect the important excitations about the various ground states into spin-wave
modes. These modes form the basis of an approximate low-temperature expansion which
via the standard arguments yields the existence of several low-temperature states.

Let us start by expressing all spins in terms of angular variables, i.e., let Sr =
(cos θr, sin θr). The (homogeneous) ground states are then just θr = const = θ�. We
define ξr = θr −θ� so that, in the x direction, the interaction is given by 1

2 (βJ )[cos(θ�+
ξr)−cos(θ�+ξr+êx

)]2 with analogous formulas in the y and z directions. Thus, to leading
order in ξr’s, we have

βJ

2

(
S(â)

r − S
(â)
r+êx

)2 ≈ βJ

2
sin2(θ�)(ξr − ξr+êx

)2 (2.3)

and, similarly,

βJ

2

(
S(b̂)

r − S
(b̂)

r+êy

)2 ≈ βJ

2
sin2(120◦ − θ�)(ξr − ξr+êy

)2,

βJ

2

(
S(ĉ)

r − S
(ĉ)
r+êz

)2 ≈ βJ

2
sin2(120◦ + θ�)(ξr − ξr+êz

)2.

(2.4)
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We will encode the θ�-dependence into effective coupling parameters: q1 = sin2(θ�),
q2 = sin2(θ� −120◦) and q3 = sin2(θ� +120◦). Then the effective interaction for devi-
ations about the θ�-state can be written as

βH (θ�)
eff (ξ) = βJ

2

∑

α

∑

r

qα(ξr − ξr+êα
)2. (2.5)

Therefore, in some approximate sense, the partition function for deviations about the
state where the spins are pointing in the direction θ� can be written as

ZL,β(θ�) ≈
∫

dξ e−βH (θ�)
eff (ξ), (2.6)

where dξ denotes the product Lebesgue measure.
As we will see, the integral is, as it stands, somewhat ill defined because the Ham-

iltonian provides no decay for the zero Fourier mode of ξ . However, it is recalled that
for the above derivation to be meaningful, the ξr’s had to be fairly small. So, one way
out—which is what we will do in our proofs—is to restrict the integration measure in
(2.6) only to (the Cartesian product of) small intervals centered at zero. Another way
out, which leads to more transparent calculations, is to define the full object ZL,β(θ�) as
the partition function constrained to configurations where, say, the average spin equals
(cos θ�, sin θ�). (As we will see, inserting the appropriate δ-function on the right-hand
side of (2.6) permits us to integrate the ξr’s over all real values.) In this language, the
said constraint reads

∑
r ξr = 0, i.e., no “zero mode.” For future reference, we denote

the right-hand side of (2.6) with this constraint enforced by

( 2π

βJ

)L3/2
e−L3FL(θ�). (2.7)

The reason for the prefactor will become clear momentarily.
The translation-invariant structure of the effective Hamiltonian (and the constraint)

prompts us to use the Fourier-transformed variables,

ξ̂k = 1

L3/2

∑

r

ξr eik·r, (2.8)

where k takes values in T
�
L = {2πL−1(n1, n2, n3) : −L/2 ≤ n1, n2, n3 ≤ L/2} which

is known as the reciprocal volume (or the Brillouin zone). In terms of these variables,
and the various other quantities defined, an appropriate spin-wave Hamiltonian can be
constructed:

βHSW(̂ξ) = βJ

2

∑

k∈T
�
L�{0}

|̂ξk |2
(∑

α

qα|1 − eikα |2
)

, (2.9)

where we have made explicit the absence of the contribution from the “zero mode.”
The calculation is now standard and we get

( 2π

βJ

)L3/2
e−L3FL(θ�) =

∏

k∈T
�
L�{0}

[ 2π

βJ
∑

α qα|1 − eikα |2
]1/2

. (2.10)
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Thus, taking logs and letting L → ∞, we arrive at the limiting version of FL,

F(θ�) = 1

2

∫

[−π,π ]3

dk
(2π)3 log

{∑

α

qα|1 − eikα |2
}
. (2.11)

This is the spin-wave free energy for fluctuations about the direction θ�.
It is apparent that θ� 	→ F(θ�) is invariant under the shift θ� → θ� + 60◦. Far

less obvious (but nevertheless true) is the fact that the absolute minima of F occur at
θ� = 0◦, 60◦, 120◦, . . . , 300◦. Thus we must conclude that, when finite temperature
effects are accounted for, six ground states are better off than any of the others. Sec-
tions. 4–5 will be devoted to a rigorous proof of this heuristic. A similar calculation
allows us to estimate the spin-wave free energy for the inhomogeneous ground states
and show that these are always less favorable than the homogeneous ones.

Notwithstanding the appeal of the spin-wave heuristic, the above is just one step of
the proof. In order to make use of spin-wave calculations, we resort to some (rather stan-
dard) contour estimates. Informally, we partition the “world” (by which we mean the
torus) into blocks and mark those blocks where the spin configuration either features too
much energy or has the characteristics of an environment without enough entropy. By
adjusting the block scale we can make the penalty for marked blocks sufficient to carry
out a Peierls argument. The principal tool for decoupling the correlations between var-
ious boxes is provided by the chessboard estimates (which allow, via Cauchy-Schwarz
type inequalities, to estimate the probabilities of various block events by their associated
constrained partition functions). Explicit details are to be found in Sect. 6.

Remark 3. It is noted that if the reader is willing to preaccept the forthcoming treatment
as fact, an interesting feature concerning the surface tension is bound to arise. Indeed, let
us imagine that the system is forced, e.g., via boundary conditions, to exhibit two favored
states in the same vessel. The price for these circumstances will be the region—the inter-
facial region—where spins are bad. If β � 1, the energetic form of “badness” can be
ruled out a fortiori, but now we emphasize that the free energy difference between the
most and least favored states is independent of the temperature indicating that the cost
of the interface will be temperature independent. Hence we anticipate that the stiffness
(and also the correlation length) stays uniformly bounded away from zero and infinity
as β → ∞.

2.3. Discussion. The model under consideration exhibits infinitely many ground states,
a problem which for mathematical physics has surfaced but a few times in the past. When
these situations arise, the finite-temperature fate of each ground state is typically decided
by its capacity to harbor excitations. Here, the dominant excitations are exactly the spin
waves from the last section—the spin-wave calculation shows that only a finite number
from the initial continuum of ground states survive at positive temperatures. Unfortu-
nately, an extra complication arises due to the inhomogeneous ground states discussed
in Sect. 1.3. Here chessboard estimates allow us to bound the relevant spin-wave contri-
bution by the spin-wave free energy against a periodic background. We remark that there
are systems for which the spin-wave analysis featured herein may be performed without
the complication of inhomogeneous ground states. One such example is the subject of
the forthcoming paper [3].

As already noted, the “entropic-selection” mechanisms for long-range order are not
new. Indeed, there have been some previous studies of the ANNNI models and other
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systems exhibiting infinite degeneracy of the ground state [16, 7, 29]. However, the
techniques involved in [16, 7, 29] are based on the premise that there is a substantial
gap in the energy spectrum which separates the excitations resolving the ground state
degeneracy from the remaining ones. Due to the continuous nature of the spins, and the
symmetry of the ground states, no such gap is of course present for the 120◦-model.
Instead, a decisive contribution to the entropic content comes from long wave-length
excitations, i.e., the aforementioned spin waves.

Another set of problems which are related to the present paper are the models with
continuous spins studied in [17, 49]. There the spins are a priori Gaussian random
variables with covariance given by the inverse lattice Laplacian and with an on-site (an-
harmonic) potential. However, this potential is required to have only a finite number
of nearly-quadratic minima (all of which have a uniformly positive curvature) which
necessarily implies only a finite number of low temperature states. Notwithstanding,
the work in [17, 49] exemplifies situations where a ground state degeneracy is lifted
by spin-wave-like excitations resulting in a reduced number of Gibbs states at positive
temperatures. It is quite possible that the Pirogov-Sinai techniques used in [16, 7, 29,
17, 49] can after some work be adapted to our cases. However, at present the arguments
via chessboard estimates seem considerably easier.

As noted in Sect. 1.2, the motivation to study these systems comes from the observed
magnetic behavior of transition metal compounds. A complete understanding of these
systems may therefore require a full quantum-mechanical treatment. We expect a sim-
ilar mechanism for ordering to be present also in the quantum-mechanical version of
the 120◦-model (as well as the orbital compass model). However, the only method of
proof that seems promising in this context is the Pirogov-Sinai expansion of some sort.
A general theory of these expansions for quantum systems exists, both for the situations
with [15, 33] or without [14, 6] infinite degeneracy of the ground state. But, as is the
case for the classical systems, some fairly non-trivial generalizations of the existing tools
would probably be necessary.

3. Proofs of Main Results

In this section we will give the proof of our main theorem, subject to some technical
results which will be proved later. In particular, in Sect. 3.1 we define the notion of a
“bad” box and state without a proof the principal bound concerning the simultaneous
occurrence of several bad boxes; see Theorem 3.1. This will be sufficient material for
the proof of Theorem 2.1. The proof of Theorem 3.1 is the subject of Sects. 4-6; the
actual proof comes in Sect. 6.3.

3.1. Good and bad events. Here we will provide some mathematical foundations for
our notions of the stable states and the contours that separate them. We will need three
different scales—two of them spin-deviation scales and one a scale for the blocks which
will be the setting of our various events.

We will start with the fundamental spin-deviation scale which we denote by �. Here
we are seeking a � (which is small) such that if all neighboring pairs of spins are within
a distance � of each other, the harmonic approximation is “good” while if a neighboring
pair violates this condition the energetic cost is drastic. On the basis of naive Taylor
expansions—which is ultimately all we will do—it is clear that the latter is achieved if
β�2 � 1 and the former if β�3 � 1. Thus, of course, we need β to be large and we
can envision � to scale as any inverse power of β between 1/3 and 1/2.
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The second deviation scale will be denoted by κ and will serve to define sets of con-
figurations which are effectively in one of the stable ground states. The third scale is the
number B which will be used to define the spatial size of our block events. For fixed κ , it
appears that the only necessary requirement is that β�2 � log B which will always hold
eventually. Unfortunately, there is some spurious interplay between the parameters B,
κ and � which could, in principle, be removed in a more refined analysis. But, for this
work, we will keep the “smallness” of κ in the realm of the existential and require B to
get large, but only very slowly, as β goes to infinity.

In order to make our main technique, the chessboard estimates, available we have
to confine ourselves to systems with periodic boundary conditions. Let thus TL denote
the three-dimensional torus of scale L, i.e., TL = Z

3/(LZ)3. In general, we will be
dealing with certain events taking place in blocks of a specific scale B and we will be
using the chessboard estimates to bound probabilities of these events. These blocks will
be translates of the block �B ⊂ TL which we define as the cube of (B + 1)3 sites with
the “lowest left-most” site at the origin. It will be convenient (although presumably not
strictly necessary) to assume that the linear scale of our finite-volume system, L, when
divided by B results in a power of two.

Now we are ready to state the definition of a “good” block:

Definition 3.1. Let B denote a positive integer and let κ > 0 and � > 0 be sufficiently
small. We will say that the spin configuration in the block �B (or the block itself) is good
if the following two conditions are met:

(a) For each α ∈ {1, 2, 3} and any neighboring pair r and r + êα in �B ,

|S(α)
r − S

(α)

r+êα
| < �. (3.1)

(b) All spins in �B make an angle which is less than 2κ from one of the preferred
six directions. Explicitly, if Sr = (cos θr, sin θr) then, for some τ = 1, . . . , 6, we
have |θr − 2π

3 τ | < 2κ for all r ∈ �B . Here, of course, θr is only determined
modulo 2π .

We denote by G = GB,κ,� the event that the block �B is good. The complementary
event, marking the situation when the block is bad, will be denoted by inevitable B. Our
goal will be to bound various probabilities involving bad events. The main tool for these
bounds will be the chessboard estimates whose basic setup and principal result we will
now describe.

Let PL,β and 〈−〉L,β denote the (Gibbs) probability measure, respectively, the corre-
sponding expectation according to the Hamiltonian (1.1) at inverse temperature β on TL.
Let t denote a vector with integer coefficients identified modulo L/B—in formal nota-
tion, t ∈ TL/B—and let B be an event discussed above. Then we let ϑt (B) denote the
event B translated by the vector Bt . (For general events A defined on the configurations
in �B we will need an enhanced definition of ϑt (A); cf. the definition prior to Theo-
rem 6.2.) Note that if ϑt (B) and ϑt ′(B) are “neighboring” translates of B, then these two
events both depend on the spin configuration on the shared face of the corresponding
translates of �B .

The principal result of this section, which is the starting point for all subsequent
results of this work, is the following theorem:

Theorem 3.1. Consider the 120◦-model as defined by (1.10). For each sufficiently small
κ > 0 and each η ∈ (0, 1) there exist L0 ∈ (0, ∞) and β0 ∈ (0, ∞) and, for any



Long-Range Order in 120◦-Model 265

β ≥ β0, there exist numbers � ∈ (0, 1) and B ∈ (0, ∞) such that the following holds:
If B is the event—defined using κ , � and B—that the configuration in �B is bad and
t1, . . . , tm are distinct vectors from TL/B , then for any L ≥ L0,

PL,β

(
ϑt1(B) ∩ · · · ∩ ϑtm(B)

) ≤ ηm. (3.2)

This result provides a way to estimate the probability of simultaneous occurrence
of several bad events. The non-trivial part of the proof of Theorem 3.1 boils down to
the spin-wave calculations outlined in Sect. 2.2. The rigorous version of these calcula-
tions requires some substantive estimations and the actual proof is therefore deferred to
Sect. 6.3.

3.2. Proof of long-range order. Now we are ready to prove our main theorems. We
note that there are six disjoint ways to exhibit a good block for the 120◦-model, each
corresponding to one of the vectors ŵτ . We will denote the corresponding events by Gτ ,
with τ = 1, 2, . . . , 6. Explicitly,

Gτ = G ∩ {
S : Sr · ŵτ > cos(2κ), r ∈ �B

}
. (3.3)

The core of the proof is the following (almost direct) consequence of Theorem 3.1:

Lemma 3.2. Consider the 120◦-model on TL and suppose that κ � 1. There exists a
function h : [0, 1) → [0, ∞) satisfying h(η) → 0 as η ↓ 0, such that for each suffi-
ciently small η > 0 and each β, � and B as allowed by Theorem 3.1 the following is
true: For any t1, t2 ∈ TL/B and any type of goodness τ , we have

PL,β

(
ϑt1(Gτ ) ∩ ϑt2(Gc

τ )
) ≤ h(η), (3.4)

provided L ≥ L0, where L0 = L0(κ, η) is as in Theorem 3.1.

Proof. Noting that Gτ ∩ Gc
τ = ∅, let us assume that t1 �= t2. Now, for the intersection

ϑt1(Gτ ) ∩ ϑt2(Gc
τ ) to occur, either the block at Bt2 is bad, which has probability at

most η, or it is good but not of the type τ . We claim that, in the latter case, there must be
a “surface” consisting of bad blocks which separates the block at Bt1 from that in Bt2.
Indeed, let S ∈ ϑt1(Gτ ) and consider the connected component, C , of good blocks
in TL/B containing the block at Bt1. We claim that the type of goodness is constant
throughout C , i.e., it is of type τ . To see this, suppose that a block in C has the type
of goodness which is distinct from τ . By the fact that C is connected, there must exist
a pair of neighboring blocks with distinct types of goodness. But neighboring blocks
share the sites on their separating face and (since κ � 1) the spins on this face cannot
simultaneously be in the 2κ-neighborhood of two ŵτ ’s—that is, not without the spins
busting apart. Hence, on ϑt1(Gτ ) ∩ ϑt2(Gc

τ ), the block at Bt2 is not part of C and we
have it separated from Bt1 by a (∗-connected) “surface” of bad blocks.

To estimate the probability of such a “surface” we will use Theorem 3.1: The proba-
bility that a “surface” involving altogether m given bad blocks occurs is bounded by ηm.
The rest of the proof parallels the standard Peierls argument which hinges upon the fact
that the number Nm of ∗-connected “surfaces” comprising m blocks and containing a
given block grows only exponentially with m, i.e., Nm ≤ cm for some c ∈ (1, ∞). To
count the number of ways how to choose the particular block in the “surface,” we have to
be a bit cautious about the toroidal geometry: If m < L/B, then the “surface” encloses
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either the block at Bt1 or that at Bt2 on all sides and there are at most 2m ways to
choose one particular block. On the other hand, if m ≥ L/B, then the surface can be
topologically non-trivial but, since TL/B is a finite graph, the number of choices of one
particular block is at most (L/B)3 ≤ m3. This shows that (3.4) holds with

h(η) = η + 2
∑

m≥6

m3(cη)m, (3.5)

uniformly in L ≥ L0. Clearly, h(η) → 0 as η ↓ 0. ��
Now we are ready to prove the existence of long-range order in 120◦-model, subject

to the validity of Theorem 3.1:

Proof of Theorem 2.1. Let η > 0 and let β0 and L0 be as in Theorem 3.1. Fix a β ≥ β0
and choose B and � accordingly. For finite L ≥ L0, it follows by (3.2) that, with prob-
ability exceeding 1 − η, any given block is in a good state. Since the distinct types of
goodness are disjoint and related by symmetry, we have

PL,β

(
ϑt (Gτ )

) ≥ 1

6
(1 − η) (3.6)

for any t ∈ TL/B and any τ = 1, 2, . . . , 6. Next, we may condition the block farthest
from the origin (i.e., the one at the “back” of the torus) to be of a particular type of good-
ness, say Gτ . The resulting measure still satisfies the DLR-condition in any subset of the
torus not intersecting the far-away block. Passing to the thermodynamic limit along some
sequence of L’s, we arrive at an infinite-volume Gibbs state for the interaction (1.1).

Clearly, by (3.6) and Lemma 3.2, we have the uniform bound

PL,β

(
ϑt1(Gc

τ )
∣∣ϑt2(Gτ )

) ≤ 6
h(η)

1 − η
. (3.7)

Hence, if η � 1, we have constructed six infinite-volume Gibbs states in the 120◦-model
which are distinguished by the statistical properties of any individual spin. In particular,
the bound (2.2) holds with ε(β) directly related to η, h(η) and κ . Of course, it is not
automatically the case that the resulting states are translation-invariant; however, this is
easily handled by considering a translation average of the abovementioned and noting
that the “distinctness” of the states via the single spin observables is preserved by this
averaging. ��

4. Spin-Wave Analysis

This section provides rigorous justification for the heuristic spin-wave calculations from
Sect. 2.2. Beyond the fact that these calculations settle the pertinent questions concern-
ing long-range order at the non-rigorous level, such results, as refined here, serve as
the cornerstone for the proof of Theorem 3.1. The principal results of this section are
Theorems 4.1 and 4.5.

4.1. Homogeneous ground states. Our goal is to evaluate the free energy of the spin
configurations where all spins are more or less aligned with a given vector on the unit
circle. Let us represent all of the spins S = (Sr) by their corresponding angle variables
θ = (θr)—vis-a-vis the usual Sr = (cos θr, sin θr)—and let θ� denote the particular
direction towards which we wish the spins to align. Let χ�,L(θ) be the indicator of the
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event that |θr − θ�| < �, with the difference θr − θ� interpreted modulo 2π , holds for
all r ∈ TL. Here � is closely related to the quantity � from Sect. 3.1.

In this representation we define the constrained free energy by the formula

F
(�)
L,β (θ�) = −1

2
log

βJ

2π
− 1

L3 log
∫

e−βHL(θ)χ�,L(θ)
∏

r∈TL

dθr, (4.1)

where HL(θ) denotes the torus Hamiltonian expressed in terms of the angle variables θ
and where the first term on the right-hand side has been added for later convenience.
Our goal is to show that, under specific conditions, F

(�)
L,β (θ�) can be well approximated

by the function F defined in (2.11). (As is easy to check, the integral in (2.11) converges
for all θ�.)

Recall the abbreviations q1 = sin2(θ�), q2 = sin2(θ� − 2π
3 ) and q3 = sin2(θ� + 2π

3 )

from Sect. 2.2. The precise statement concerning the above approximation is as follows:

Theorem 4.1. For each ε > 0 there exists a number δ = δ(ε) > 0 such that if βJ and �

obey

(βJ )�2 ≥ 1/δ and (βJ )�3 ≤ δ, (4.2)

then

lim sup
L→∞

∣∣F (�)
L,β (θ�) − F(θ�)

∣∣ ≤ ε (4.3)

for all θ� ∈ [0, 2π).

As the first step of the proof, we will pass to the harmonic approximation of the
Hamiltonian, which is given by

IL(θ) = βJ

2

∑

r∈TL

∑

α

qα(θr − θr+êα
)2. (4.4)

The next lemma provides an estimate of the error in this approximation.

Lemma 4.2. There exists a constant c1 ∈ (0, ∞) such that for all β ∈ (0, ∞), all
� ∈ (0, 1), all L ≥ 1 and all θ� ∈ [0, 2π) the following holds: If χ�,L(θ) = 1, then

∣∣βHL(θ) − IL(θ)
∣∣ ≤ c1(βJ )�3L3. (4.5)

Proof. Let us first consider the nearest-neighbor bond (r, r + ê1) and note that S
(1)
r =

cos θr . Since |θr − θ�| ≤ �, Taylor’s Theorem gives us the bound
∣∣S(1)

r − S
(1)

r+ê1
+ sin(θ�)(θr − θr+ê1)

∣∣ ≤ �2. (4.6)

But |θr − θr+ê1 | ≤ 2� and thus (S
(1)
r −S

(1)

r+ê1
)2 and q1(θr − θr+ê1)

2 differ by less than a

numerical constant times �3. The situation in the other directions is similar, one just has
to note that S

(2)
r = cos(θ − 2π

3 ) and S
(3)
r = cos(θ + 2π

3 ). Adding up the contribution of
all three components, multiplying by βJ and summing over r ∈ TL, the result directly
follows. ��
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Having converted the Boltzmann weight e−βHL(S) into the Gaussian weight e−IL(θ)

in (4.1), our next task is to estimate the effect of the indicator χ�,L. Let

Q
(θ�,β)
L,� =

(βJ

2π

)L3/2
∫

e−IL(θ)χ�,L(θ)
∏

r∈TL

dθr . (4.7)

Then we have:

Lemma 4.3. For all β ∈ (0, ∞), all � ∈ (0, 1) and all θ� ∈ [0, 2π),

lim sup
L→∞

log Q
(θ�,β)
L,�

L3 ≤ −F(θ�). (4.8)

Proof. We will use the exponential Chebyshev inequality. Let λ > 0. Then the indica-
tor χ�,L is bounded via

χ�,L(θ) ≤ e
1
2 λ(βJ )�2L3

exp
{
−1

2
λ(βJ )

∑

r∈TL

(θr − θ�)2
}
. (4.9)

Plugging the right-hand side into (4.7) instead of χ�,L, we get a Gaussian integral
with L3-dimensional covariance matrix C = (βJ )−1(λ1 + D̂)−1, where 1 is the unit
matrix and D̂ is a generalized Laplacian implicitly defined by (4.4). Integrating out the
variables θ and invoking Fourier transform to diagonalize C, we get

log Q
(θ�,β)
L,�

L3 ≤ 1

2
λ(βJ )�2 − 1

2

1

L3

∑

k∈T
�
L

log
{
λ +

∑

α

qα|1 − eikα |2
}
, (4.10)

where T
�
L denotes the reciprocal volume (or the Brillouin zone). Passing to the limit

L → ∞, we find out that the left-hand side of (4.8) is bounded by 1
2λ(βJ )�2−F(θ�, λ),

where

F(θ�, λ) = 1

2

∫

[−π,π ]3

dk
(2π)3 log

{
λ +

∑

α

qα|1 − eikα |2
}
. (4.11)

But the integrand is a monotone function of λ, and so the Monotone Convergence The-
orem guarantees that F(θ�, λ) ↓ F(θ�) as λ ↓ 0. Thence the result follows by taking λ

to zero. ��
Let F(θ�, λ) be the quantity defined in (4.11). The lower bound is then as follows:

Lemma 4.4. For all β ∈ (0, ∞), all � ∈ (0, 1), all θ� ∈ [0, 2π), and all λ > 0
satisfying (βJ )�2λ > 1,

lim inf
L→∞

log Q
(θ�,β)
L,�

L3 ≥ −F(θ�, λ) + log
(

1 − 1

βJ�2

1

λ

)
. (4.12)
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Proof. Let λ > 0 and consider the Gaussian measure Pλ given by

Pλ(dθ) = 1

QL,θ�

(βJ

2π

)L3/2
exp

{
−IL(θ) − 1

2
λ(βJ )

∑

r∈TL

(θr − θ�)2
} ∏

r∈TL

dθr,

(4.13)

where QL,θ� is the corresponding normalization factor, which modulo the “log” and the
factor L3 equals the final term on the right-hand side of (4.10). Let us use Eλ to denote
the corresponding expectation. Then

Q
(θ�,β)
L,� = QL,θ� Eλ(χ�,L). (4.14)

Now χ�,L is simply the product of indicators of the type 1{|θr−θ�|<�}. We claim that

Eλ(χ�,L) = Eλ

( ∏

r∈TL

1{|θr−θ�|<�}
)

≥
∏

r∈TL

Pλ

(|θr − θ�| < �
)
. (4.15)

This follows from the fact that the moduli of these sorts of Gaussian fields are FKG-
positively correlated, see e.g. [5]; an alternative proof is based on the “esoteric” version
of reflection positivity (using reflections between sites), which is described at the begin-
ning of Sect. 6.1. The estimate thus boils down to a lower bound on the probability of
|θr − θ�| < �.

Now, let us note that the Fourier components θ̂k of the fields θr −θ� have Eλ(θ̂k) = 0
and, for k′ �= ±k, the random variables θ̂k and θ̂k′ are independent with

Eλ

(|θ̂k |2) = 1

βJ

(
λ +

∑

α

qα|1 − eikα |2
)−1 ≤ 1

βJλ
. (4.16)

Thus, invoking the Chebyshev inequality the complementary probability is bounded by

Pλ

(|θr − θ�| ≥ �
) ≤ Eλ(|θr − θ�|2)

�2 = 1

L3

∑

k∈T
�
L

Eλ(|θ̂k |2)
�2 ≤ 1

βJ�2

1

λ
. (4.17)

Combining (4.14–4.15) with (4.17), invoking the explicit expression for QL,θ� and pass-
ing to the limit L → ∞, the desired bound is proved. ��

Now we are ready to prove the error bound in (4.3):

Proof of Theorem 4.1. By the Monotone Convergence Theorem we have that F(θ�, λ) ↓
F(θ�) as λ ↓ 0. Moreover, the continuity of θ� 	→ F(θ�) and the fact that the unit circle
in R

2 is compact imply that this convergence is actually uniform in θ�. Hence, for each
ε > 0, there exists a number λ > 0 such that

∣∣F(θ�, λ) − F(θ�)
∣∣ ≤ ε

3
(4.18)

for θ� ∈ [0, 2π). Let c1 be the constant from Lemma 4.2 and choose δ such that
c1δ ≤ ε/3. Suppose also that δ < λ and

log
(

1 − δ

λ

)
≥ −ε

3
. (4.19)



270 M. Biskup, L. Chayes, Z. Nussinov

Fix an angle θ� ∈ [0, 2π). Lemma 4.2 along with our choice of δ imply

lim sup
L→∞

∣∣∣
log Q

(θ�,β)
L,�

L3 + F
(�)
L,β (θ�)

∣∣∣ ≤ ε

3
. (4.20)

On the other hand, Lemmas 4.3–4.4, the choice of λ in (4.18) and our choice of δ ensure
that

lim sup
L→∞

∣∣∣
log Q

(θ�,β)
L,�

L3 + F(θ�)

∣∣∣ ≤ 2

3
ε. (4.21)

Combining these two estimates, the bound (4.3) is proved. ��

4.2. Stratified ground states. As mentioned previously, constant configurations are only
the overture for the set of all possible ground states. As a consequence, the knowledge of
the spin-wave free energy about homogeneous background configurations is not suffi-
cient for the proofs of our main results. Fortunately, as we shall see in Sect. 6, the chess-
board estimates allow us to reduce the (potentially quite large) number of remaining
cases to configurations which are translation-invariant in two directions and alternating
in the third direction.

To avoid parity problems, throughout this section we will assume that L is an even
integer. Fix an index α ∈ {1, 2, 3}, pick a direction θ� ∈ [0, 2π) and let θ̃ � denote the
reflection of θ� through the αth of the vector â, b̂ or ĉ. Consider again the angle vari-
ables θr and let χ̃�,L be the indicator that |θr − θ�| < � for r ∈ TL with an even αth

component while for r with an odd α-component we require that |θr − θ̃ �| < �. Let

F̃
(�,α)
L,β (θ�) = −1

2
log

βJ

2π
− 1

L3 log
∫

e−βHL(θ)χ̃�,L(θ)
∏

r∈TL

dθr . (4.22)

The quantity F̃
(�,α)
L,β (θ�) represents the spin-wave free energy for (period-two) stratified

states perpendicular to direction α and spins alternating between directions θ� and θ̃ �.
As before, our goal is to approximate F̃

(�,α)
L,β (θ�) by an appropriate momentum-space

integral. For α ∈ {1, 2, 3}, let us abbreviate

Eα = Eα(k) = |1 − eikα |2 and E�
α = E�

α(k) = |1 + eikα |2, (4.23)

where kα is the αth component of the vector k ∈ [−π, π ]3, and recall, once again, the
meaning of the quantities qα (cf. Sect. 2.2). We will define three 2 × 2-matrices �α(k),
α = 1, 2, 3. First let α = 1 and abbreviate q+ = 1

2 (q2 +q3) and q− = 1
2 (q2 −q3). Then

�1(k) =
(

q1E1 + q+(E2 + E3) q−(E2 − E3)

q−(E2 − E3) q1E
�
1 + q+(E2 + E3)

)
. (4.24)

The quantities �2 and �3 are defined by cyclically permuting the roles of E1, E2 and E3
and similarly for the qα’s. (In the physically relevant quantities, q− will appear only in
terms of its square, so the order used for the definition of this quantity is for all intents
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and purposes arbitrary.) Then we define a function F̃α assigning to each θ� ∈ [0, 2π)

and each α ∈ {1, 2, 3} the value

F̃α(θ�) = 1

4

∫

[−π,π ]3

dk
(2π)3 log det �α(k). (4.25)

The fact that now we have a quarter in front of the integral comes from the fact that the
determinant actually represents the combined contribution of two k-modes.

The main result of this section concerning the 120◦-model is now as follows:

Theorem 4.5. For each ε > 0 there exists a number δ = δ(ε) > 0 such that if βJ and �

obey

(βJ )�3 ≤ δ, (4.26)

then

lim inf
L→∞

F̃
(�,α)
L,β (θ�) ≥ F̃α(θ�) − ε (4.27)

for all θ� ∈ [0, 2π) and all α ∈ {1, 2, 3}.
As we have seen in the previous sections, the first step is to pass to the quadratic

approximation of the torus Hamiltonian. Let θ = (θr) be a configuration of angle vari-
ables. Then we define

ĨL,α(θ) = βJ

2

∑

r∈TL

∑

γ=1,2,3

q(α)
γ,r(θr − θr+êγ

)2. (4.28)

Here q
(α)
γ,r is the usual qγ if the αth component of r is even while for the complementary r

we have to interchange the roles of the two qγ ′ with γ ′ �= α. (In particular, q
(α)
α,r = qα

for all r.)
Our first item of concern is the error caused by this approximation:

Lemma 4.6. There exists a constant c2 ∈ (0, ∞) such that for all β ∈ (0, ∞), all
� ∈ (0, 1), all L ≥ 1 and all θ� ∈ [0, 2π ) the following holds: If χ̃�,L(θ) = 1 and if
θ̃ = (θ̃r) is the configuration obtained by reflecting θr through the αth of the vectors â,
b̂ or ĉ for r with an odd α-component, then

∣∣βHL(θ) − ĨL,α(θ̃)
∣∣ ≤ c2(βJ )�3L3. (4.29)

Proof. Once we have accounted for the inhomogeneity of the setup, the proof is essen-
tially identical to that of Lemma 4.2. Without much loss of generality, let us focus on
the case α = 1. Let θ be such that χ̃�,L(θ) = 1 and let θ̃ be as described.

We will concentrate on the interaction of two spins in the y-coordinate direction.
If the α-component of r is even, then the expansion around θr = θ̃r ≈ θ� gives that
cos(θr − 2π

3 ) is well approximated by cos(θ� − 2π
3 )−sin(θ� − 2π

3 )(θ̃r −θ�). Accounting
better for the errors we thus get

∣∣S(2)
r − S

(2)

r+ê2
+ sin

(
θ� − 2π

3

)
(θ̃r − θ̃r+ê2)

∣∣ ≤ �2. (4.30)
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On the other hand, for r with an odd αth component we have −θr = θ̃r ≈ θ� which
means that S

(2)
r = cos(−θ̃r − 2π

3 ) = cos(θ̃r + 2π
3 ) and thus

∣∣S(2)
r − S

(2)

r+ê2
− sin

(
θ� + 2π

3

)
(θ̃r − θ̃r+ê2)

∣∣ ≤ �2. (4.31)

After plugging into HL(θ), the θr in the even r planes are coupled by q2 while in the
odd r planes they are coupled by q3, in accord with (4.28).

A completely analogous argument handles the case of two sites in the z-coordinate
direction. In the x-direction the reflection has no effect because the minus sign from
sin(−θ�) disappears after we take the square. The ensuing errors are estimated exactly
as in the proof of Lemma 4.2. ��

Since χ̃�,L(θ) = χ�,L(θ̃), where θ and θ̃ are related as in Lemma 4.6, a simple
change of variables shows that the proper analogue of the quantity from (4.7) for the
present setup is

Q̃
(θ�,α)
L,�,β =

(βJ

2π

)L3/2
∫

e−ĨL,α(θ)χ�,L(θ)
∏

r∈TL

dθr . (4.32)

Note that here the inhomogeneity of the domain of integration in (4.22) has now been
moved to the Gaussian weight. Next we apply:

Lemma 4.7. For all β ∈ (0, ∞), all � ∈ (0, 1), all θ� ∈ [0, 2π) and all α ∈ {1, 2, 3},

lim sup
L→∞

log Q̃
(θ�,α)
L,�,β

L3 ≤ −F̃α(θ�). (4.33)

Proof. Fix α and let λ > 0. The proof again commences by invoking the exponen-
tial Chebyshev inequality in the form of (4.9). The resulting L3-dimensional Gaussian
integral has covariance matrix Cα = (βJ )(λ1 + D̂(α)), where 1

2βJD̂(α) is the matrix
corresponding to the quadratic form (4.28) in the variables θr . The difference compared
to Lemma 4.3 is that now D̂(α) is no longer translation-invariant in the αth direction,
but only periodic with period two. As a result, the k and k + π êα modes will mix
together and the Fourier transform of Cα will result in 2 ×2-block-diagonal matrix. The
blocks are parametrized by pairs of momenta (k, k + π êα). (Note that, since L is even,
k + π êα ∈ T

�
L whenever k ∈ T

�
L.)

A calculation—which is best performed by taking the Fourier transform of ĨL,α—
reveals that the block corresponding to the pair (k, k + π êα) is exactly �α(k). Hence
we get

log Q̃
(θ�,α)
L,�,β

L3 ≤ 1

2
λ(βJ )�2 − 1

4

1

L3

∑

k∈T
�
L

log det
(
λ1 + �α(k)

)
, (4.34)

where 1 is the 2 × 2-unit matrix and where the usual factor 1/2 in front of the sum is
replaced by a 1/4 to account for the fact that k and k + π êα are treated as independent
entities in the sum. (We are using the k ↔ k + π êα symmetry of the determinant.)
Passing to limits L → ∞ and λ ↓ 0, the bound (4.33) is proved. ��
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Proof of Theorem 4.5. By Lemma 4.6 and the definition of F̃
(�,α)
L,β (θ�) we know that

F̃
(�,α)
L,β (θ�) ≥ −

log Q̃
(θ�,α)
L,�,β

L3 − c2(βJ )�3. (4.35)

Hence, if δ is such that c2δ ≤ ε, (4.27) follows by taking L → ∞ and invoking
Lemma 4.7. ��

5. Spin-Wave Free Energy Minima

The purpose of this section is to show that the spin-wave free energy F(θ�), which
emerges from the analysis in Sect. 4.1, is minimized in the “directions” as stated in
Theorems 2.1. Similarly, we will also show that the free energy F̃α(θ�) corresponding to
the inhomogeneous ground states is always strictly larger than its homogeneous coun-
terpart F(θ�), unless θ� is “aligned” (or “antialigned”) with the αth of the vectors â, b̂
or ĉ. These findings constitute the essential ingredients for the proof of Theorem 3.1
in Sect. 6.3. The principal estimates are based on Jensen’s inequality combined with a
non-trivial bit of “function analysis.”

5.1. Homogeneous ground states. Our task is to identify the minima of the function
θ� 	→ F(θ�) defined in (2.11). However, noting that the product structure of the mea-
sure dk/(2π)3 makes the random variables |1 − eikα |2 independent, we might as well
analyze an entire class of functions of this type.

Let X be a random variable taking values in [−1, 1] and, for any triple of numbers
(a, b, c), define the function

F(a, b, c) = E

(
log

(
a2(1 − X1) + b2(1 − X2) + c2(1 − X3)

))
, (5.1)

where X1, X2 and X3 are independent copies of X. Suppose in addition that the distri-
bution µ of X has the following properties:

(1) µ has a density with respect to the Lebesgue measure, µ(dx) = f (x)dx.
(2) f (x) = f (−x) for all x ∈ [−1, 1].
(3) f (x) is strictly increasing on [0, 1].

Then we have the following general result:

Theorem 5.1. Let a, b, c 	→ F(a, b, c) be as above with X satisfying the properties
(1–3). Then for any nonzero κ ∈ R and any a, b, c satisfying

a + b + c = 0 and a2 + b2 + c2 = 2κ
2, (5.2)

we have

F(a, b, c) ≥ F(0, κ, −κ). (5.3)

Moreover, the inequality is strict whenever a, b, c �= 0 and F(0, κ, −κ) > −∞.

The particular case of the 120◦-model can now be easily extracted:
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Corollary 5.2. The function θ� 	→ F(θ�) achieves its minimum only at the points

θ� = π

3
τ, τ = 1, 2, . . . , 6. (5.4)

Proof. We just have to identify the quantities a, b, c and the random variable X in the
case of the 120◦-model. First, since |1 − eikα |2 = 2(1 − cos kα), we let X be the random
variable distributed as cos k in measure dk/(2π) on [−π, π ].A simple calculation shows
that X has a density f (x) = (1 − x2)−1/2/(2π) with respect to the Lebesgue measure
on [−1, 1], which manifestly satisfies the requirements (2–3) above.

Now, setting a = √
2 sin(θ�), b = √

2 sin(θ� − 2π
3 ) and c = √

2 sin(θ� + 2π
3 ), we

have that F(a, b, c) = 2F(θ�). Moreover, a trivial calculation shows that a+b+c = 0,
while a2 + b2 + c2 = 3 and (5.2) thus holds with κ

2 = 3/2. As a consequence,
θ� 	→ F(θ�) is minimized only by θ� such that one of the numbers a, b, c vanishes.
This is easily checked to give just the values in (5.4) ��

The rest of this section is devoted to the proof of Theorem 5.1. The proof is based on
two observations: First, a lemma due to Pearce [40]:

Lemma 5.3. Let X be a random variable on [−1, 1] satisfying properties (1-3) above.
For each λ ∈ R, let 〈−〉λ denote the expectation with respect to the probability mea-
sure ωλ(dx) = Nλf (x)eλxdx, where f is the probability density of X and Nλ is an
appropriate normalization constant. Then the function λ 	→ 〈X〉λ is strictly concave on
[0, ∞).

Proof. See [40]. It is worth noting that the conditions (1–3) represent one of the general
situations in which one can prove the GHS inequality in lattice spin systems, see [44,
Theorem II.13.5(iii)]. ��

The second observation is that the constraints (5.2) reproduce themselves, rather
unexpectedly, at the level of quartic polynomials in a, b and c:

Lemma 5.4. Let a, b, c be numbers satisfying (5.2). Then

a4 + b4 + c4 = 2κ
4. (5.5)

Proof. Since a = −(b + c), eliminating a from the second constraint in (5.2) results in

b2 + c2 + bc = κ
2. (5.6)

Squaring we get

b4 + c4 + b2c2 + 2b2c2 + 2bc(b2 + c2) = κ
4, (5.7)

which can be recast into the form

2b4 + 2c4 + 6b2c2 + 4b3c + 4bc3 = 2κ
4. (5.8)

Splitting off the term b4 + c4, the rest of the left-hand side is clearly (b + c)4 = a4. ��
With these lemmas in hand, the proof of Theorem 5.1 is relatively straightforward:

Proof of Theorem 5.1. Since we can scale a, b and c by any constant at the cost of
changing F(a, b, c) only by an additive κ-dependent factor, let us suppose without loss
of generality that κ = 1/

√
2. Moreover, if one of a, b, c is zero, say a = 0, then



Long-Range Order in 120◦-Model 275

b = −c = ±κ and (5.3) is trivial. Hence, we only need to focus on the situations when
a, b, c �= 0.

The first step of the proof is to convert the expectation of the logarithm into the
expectation of an exponential. This can be done for instance by invoking the identity

− log(1 − x) =
∫ 1

0
dt

∫ ∞

0
ds

e−s

t
(estx − 1), x < 1, (5.9)

where the double integral on the right-hand side is well defined because everything is
positive. Let us now plug in a2X1 + b2X2 + c2X3 for x and take the expectation with
respect to X1, X2 and X3. Applying Fubini’s theorem (and the fact that, almost surely,
a2X1 + b2X2 + c2X3 < 1), the result is

F(a, b, c) =
∫ 1

0
dt

∫ ∞

0
ds

e−s

t

(
1 − G(st; a, b, c)

)
, (5.10)

where

G(λ; a, b, c) = E
(
eλ(a2X1+b2X2+c2X3)

)
. (5.11)

We will show that G(λ; a, b, c) < G(λ; 0, 1/
√

2, −1/
√

2) once λ > 0 and a, b, c �= 0,
from which (5.3) and the ensuing conclusion directly follow.

Consider the function λ 	→ R(λ) defined by

R(λ) = log
G(λ; a, b, c)

G(λ; 0, 1/
√

2, −1/
√

2)
. (5.12)

Our goal is to prove that R(λ) < 0 whenever λ > 0. First we note that R(0) = 0 so it
suffices to show that R′(λ) < 0 for all λ > 0. Invoking the independence of X1, X2 and
X3, we have

R′(λ) = a2〈X〉λa2 + b2〈X〉λb2 + c2〈X〉λc2 − 〈X〉λ/2, (5.13)

where we adhere to the notation from Lemma 5.3. Now, by Lemma 5.3 and our assump-
tions on the random variable X, the function λ 	→ 〈X〉λ is strictly concave. Since
a2 +b2 + c2 = 1 and, as guaranteed by Lemma 5.4, also a4 +b4 + c4 = 1/2, the bound
R′(λ) < 0 for λ > 0 is a direct consequence of Jensen’s inequality. ��

Remark 4. The previous proof has one (arguably) unnatural feature; namely, the con-
version “from logs to exponentials” via the identity (5.9). It would of some interest (at
least for the authors) to see whether a more direct argument can be constructed.

5.2. Stratified ground states. Having identified the absolute minima of the spin-wave
free energies for homogeneous background configurations we turn our attention to the
free energies corresponding to inhomogeneous ground states. Specifically, we will show
that (truly) stratified states have always worse free energy than the corresponding homo-
geneous ones.

Let F(θ�) denote the spin-wave free-energy from Sect. 4.1 and let F̃α(θ�) be the
corresponding quantity for the stratified states as defined in Sect. 4.2. Then we have:
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Theorem 5.5. For each κ > 0 there exists a constant c3 = c3(κ) > 0 such that if α ∈
{1, 2, 3} and if the angle between θ� ∈ [0, 2π) and the αth of the vectors â, b̂ and ĉ is
in (κ, π − κ), then

F̃α(θ�) ≥ F(θ�) + c3. (5.14)

Proof. Recall the notations Eα = |1 − eikα |2, E�
α = |1 + eikα |2 and q1 = sin2(θ�),

q2 = sin2(θ − 2π
3 ) and q3 = sin2(θ + 2π

3 ) and the definition of �α(k) in (4.25). We
will write det �α(k) as a convex combination of two terms each of which produces the
same free energy. Without loss of generality, let us assume that α = 1. We claim that for
all k ∈ [−π, π ]3, the quantity �1(k) admits the decomposition

det �1(k) = 1

2

(
q1E1 + q2E2 + q3E3

)(
q1E

�
1 + q3E2 + q2E3)

+ 1

2

(
q1E1 + q3E2 + q2E3

)(
q1E

�
1 + q2E2 + q3E3

)
. (5.15)

To prove this let us abbreviate q± = 1
2 (q2 ± q3) and E± = E2 ± E3. Focusing on the

first term on the right-hand side, we write

q1E1 + q2E2 + q3E3 = q1E1 + q+E+ + q−E−,

q1E
�
1 + q3E2 + q2E3 = q1E

�
1 + q+E+ − q−E−,

(5.16)

and similarly for the other two terms. Multiplying these two lines tells us that the first
term on the right-hand side of (5.15) equals a half of

(q1E1 + q+E+)(q1E
�
1 + q+E+) − q2

−E2
− + q1q−(E�

1 − E1)E−. (5.17)

The sole effect of the second product on the right-hand side of (5.15) is to cancel the very
last term of (5.17)—note that the sign of q− changes when q2 and q3 are interchanged.
Now the first two terms in (5.17) is exactly the determinant of �1(k). Hence (5.15)
follows.

If we plug in any of the four linear factors in E1, E2, E3 on the right-hand side of
(5.15) into the logarithm in (4.25), integrate and apply the symmetries of the measure dk,
the result will be 1

2F(θ�). Suppose now that θ� �= 0◦, 180◦ and note that this implies
that q2 �= q3. Then q2E2 +q3E3 �= q3E2 +q2E3 on a set of positive measure dk. Hence,
the two terms on the right-hand side of (5.15) are not equal almost surely which by the
strict concavity of the logarithm and Jensen’s inequality implies that F̃1(θ

�) > F(θ�).
But both functions are continuous in θ�, and so F̃1(θ

�) − F(θ�) is uniformly positive
on any compact subset of the unit circle not containing 0◦ and 180◦. The existence of a
desired c3 follows. ��

6. Probabilities of Bad Events

Our goal here is to prove the estimate in Theorem 3.1 concerning the probability of a
simultaneous occurrence of several bad events. While some of the details may still appear
to be rather intricate, the principal input into the forthcoming argument has already been
established in Sects. 4–5.
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6.1. Reflection positivity and chessboard estimates. In this section we will glean from
the classic theory of reflection positivity those items that are needed at hand. Recall our
notation PL,β for the Gibbs probability measure on TL defined by the Hamiltonian (1.1)
at inverse temperature β. Reflection positivity is a property of the measure PL,β with
respect to reflections of the torus which are defined as follows: Suppose that L is even and
let us split the torus symmetrically into the “left” and “right” parts, T

−
L and T

+
L , such that

the two reflection-symmetric halves either share two planes of sites (reflections “through
sites”) or not (reflections “through bonds”). Let P be the formal notation for the “plane
of reflection” and let F+

P , resp., F−
P denote the σ -algebra of events that depend only on

the portion of the configuration in T
+
L , resp., T

−
L . Introduce the reflection operator ϑP

on configurations in TL, which induces a corresponding map ϑP : F+
P → F−

P . Then
we have:

Lemma 6.1 (Reflection positivity). Consider the plane P , the σ -algebra F+
P and the

measure PL,β as specified above. Let EL,β denote the expectation with respect to PL,β .
Then the following holds for all bounded F+

P -measurable random variables X and Y :

EL,β

(
XϑP (Y )

) = EL,β

(
YϑP (X)

)
(6.1)

and

EL,β

(
XϑP (X)

) ≥ 0. (6.2)

Here ϑP (Y ) denotes the random variable Y ◦ ϑP , and similarly for ϑP (X).

Proof. This is the standard reflection positivity proved in [24, 22, 23], which for reflec-
tions “through sites” follows simply by the fact that the interaction is exclusively via
nearest neighbors, while for reflections “through bonds” it follows from this and the fact
that the coupling is both quadratic and attractive. ��

Remark 5. We remark that in the present work we use only the more robust version of
reflection positivity—poor man’s RP—which only requires nearest-neighbor interac-
tions. (An exception to this “rule” is perhaps the argument leading to (4.15); but there
we also offer an alternative approach via [5].)

Our use of reflection positivity will come through the so-called chessboard esti-
mates. To motivate the forthcoming definitions, let us briefly recall the principal idea.
Using the expression on the left-hand side of (6.2), one can define an inner product on
the F+

P -measurable functions, which then satisfies the Cauchy-Schwarz inequality

PL,β

(A ∩ ϑP (A′)
)2 ≤ PL,β

(A ∩ ϑP (A)
)
PL,β

(A′ ∩ ϑP (A′)
)
, (6.3)

for any A, A′ ∈ F+
P . The interpretation of this inequality is that two given events, one

on the “left” and the other on the “right” of TL, can be separated within the expecta-
tion at the cost of reflecting both of them through P . Iterating this bound further one
can eventually disseminate each event all over the torus. The resulting quantity is often
amenable to further analysis.

To state the chessboard estimates formally, let us consider a rectangular box V ⊂ R
3

of dimensions a1 × a2 × a3, where the ai’s are positive integers. For simplicity, here
and throughout this work, we assume that all of the ai are related to L by powers of
two, i.e., ai = 2−mi L for some integers mi . Consider the tiling of the (continuous) torus
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with dimensions L × L × L by translates of V . We will parametrize these translates by
vectors t ∈ T̃, where T̃ is the (discrete) torus with dimensions L/a1 × L/a2 × L/a3.

Let A be an event which depends only on configurations in V ∩ TL. First we note
that the event A can be reflected (multiply) through the various midplanes of V , leading
to seven new ostensibly different versions of the event A. [Labeling the resulting events
by σ = (σ1, σ2, σ3) ∈ {0, 1}3, where σα = 1 denotes whether the reflection in the αth

direction is implemented, we thus have altogether eight events: one A000 = A, three
order-1 reflections A100, A010 and A001 through the midplanes of V orthogonal to x, y

and z lattice directions, respectively, three order-2 reflections A110, A101, A011 and one
order-3 reflection A111.] Now if t ∈ T̃, let us define ϑt (A), the appropriate notion of
“translation by t ,” as follows: For t’s with all even coordinates, this is simply the usual
translation by t . For t’s with some odd coordinates, we select from the other seven ver-
sions of A the one with reflections corresponding to all the odd coordinates of t ; the
event ϑt (A) is then the translation by t of that version of A.

Let ZL,β(A) denote the constrained partition function defined by

ZL,β(A) = ZL,β

〈 ∏

t∈T̃

1ϑt (A)

〉

L,β
, (6.4)

where ZL,β is the usual partition function on TL and 1ϑt (A) denotes the indicator func-
tion of event ϑt (A). We are now ready for:

Theorem 6.2 (Chessboard estimate). Let the eventsA1, . . . ,Am and the partition func-
tions ZL,β and ZL,β(Ak) be as above and let t1, . . . , tm be distinct vectors of the type
described. Then

PL,β

( m⋂

k=1

ϑtk (Ak)
)

≤
m∏

k=1

(ZL,β(Ak)

ZL,β

)1/|T̃|
, (6.5)

where |T̃| is the volume of the factor torus T̃.

Proof. This is the standard chessboard estimate proved in [24, 22, 23], see also [43].
These estimates follow, in general, whenever the interaction is reflection positive—here
using both reflections through sites and bonds depending on whether the corresponding
coordinate of the side of V is integer of half-integer. ��

Remark 6. We observe that due to the self-imposed evenness constraint on the dimen-
sions of the tori, the objects ZL,β(A) and ZL,β(ϑt (A)) are identical for all t . This will
reduce the need for various provisos in the future derivations.

In the forthcoming derivations the estimate (6.5) will be used to bound the prob-
ability of a single bad event but, more importantly, to decouple various bad events.
However, it will not be always advantageous to estimate ZL,β(Ak) directly—often we
will have to further decompose Ak into smaller events. Then we will use the well-known
subadditivity property:

Lemma 6.3 (Subadditivity). Consider the events A and (Ak)k∈K that depend only on
configurations in a box V ∩ TL, where V is as specified above. If A ⊂ ⋃

k∈K Ak , then

ZL,β(A) ≤
( ∑

k∈K

ZL,β(Ak)
1/|T̃|

)|T̃|
. (6.6)
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Proof. The claim is (presumably) standard; we provide a short proof for reader’s conve-
nience. Clearly, ZL,β(A) is equal to the ZL,β -multiple of the expectation of

∏
t∈T̃

1ϑt (A).
Now, using the bound 1ϑt (A) ≤ ∑

k∈K 1ϑt (Ak) we get

ZL,β(A) ≤ ZL,β

∑

(kt )

〈 ∏

t∈T̃

1ϑt (Akt )

〉

L,β
, (6.7)

where the collection (kt )t∈T̃
∈ K T̃ provides the assignment of a kt ∈ K for each of

the translates of the A-events and where the sum is over all such assignments. Applying
Theorem 6.2, ZL,β times the expectation on the right-hand side of (6.7) is bounded by

the product of ZL,β(Akt )
1/|T̃| over all t ∈ T̃. But then each kt can be independently

summed over whereby the desired relation (6.6) follows. ��

6.2. Distinct types of badness. The estimate of the probability of bad events—defined
right after Definition 3.1 in Sect. 3.1—will require partitioning this event into further
categories. A priori, we will distinguish two types of badness according to which viola-
tion of the aforementioned conditions in Definition 3.1 is highlighted. Specifically, we
define the events

BE = {
S : |S(α)

r − S(α)
r+êα

| ≥ � for some r, r + êα ∈ �B
}

(6.8)

and

BSW = B \ BE. (6.9)

Here �B is the cube of (B + 1)3 sites with the “lowest left-most” site at the origin (this
is where the prototype bad event B was defined). The idea behind this splitting is that
for the configurations in BE there is an energetic “disaster” while for those in BSW the
spin-wave approximation is still good but we are not particularly close to any free-energy
minimum.

Unfortunately, the event BSW is still too complex to be estimated directly because
after dissemination all over the torus, the resulting partition function ZL,β(BSW) does
not end up being the type featured in Sects. 4–5. This is directly related to the fact—
eluded to earlier—that there are a myriad of ground states in these models. Thus we will
have to work a bit in order to parcel BSW into events which after eventual dissemination
over the torus lead to partition functions of a type discussed in the previous sections.

In order to motivate the forthcoming definitions, let us categorize, somewhat more
precisely than in Sect. 1.3, the ground states of the model (1.1). To avoid intricacies due
to boundary conditions, we will restrict ourselves to toroidal geometry. First, all constant
spin configurations minimize the energy. Second, more ground states can be generated
from a homogeneous configuration by picking a lattice direction, α, and a sequence of
planes orthogonal to êα , and reflecting all spins in these planes through αth of the vec-
tors â, b̂, ĉ. These statements are more or less fully justified by Proposition 6.5 below.
Of course, when we split BSW into the homogeneous and inhomogeneous parts, we will
not try to keep track of all planes of reflection that can occur—one will be sufficient (this
is the basis of the event B(i)

α,j below).
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The decomposition of the event BSW will involve all of our basic scales: For a
given κ > 0, � > 0 and B > 0 we let

� = 12B�

κ
. (6.10)

(As we will see in Sect. 6.3, this will be the � for which we will use the results of spin-
wave analysis from Sect. 4.) Let us parametrize the spins using the angle variables θr .
Fix an integer s > 1 and let θ�

1 , . . . , θ�
s be s points uniformly spaced on the unit circle.

The first part we want to identify from BSW are the nearly homogenous configurations:
For each i ∈ {1, . . . , s}, let B(i)

0 denote the event that the block �B is bad and that
|θr − θ�

i | < � holds for all r ∈ �B .
The complementary part of BSW will feature a particular kind of inhomogeneity: Fix

an α ∈ {1, 2, 3} and let j ∈ {1, 2, . . . , B} and let Hj denote the plane in TL where all r
have the αth component equal to j . Fix i ∈ {1, . . . , s}. If the angle between θi and the αth

of the vectors â, b̂, ĉ is within (−κ, κ) or (π − κ, π + κ), then we set B(i)
α,j = ∅. For the

other i we let B(i)
α,j denote the set of all configurations S ∈ BSW such that |θr − θ�

i | < �

holds for all r ∈ �B ∩ Hj−1 and |θr − θ̃ �
i | < � for all r ∈ �B ∩ Hj . Here θ̃ �

i denotes
the angle θ�

i reflected through the αth of the vectors â, b̂ and ĉ.

Remark 7. Let us reiterate that, by definition, we have B(i)
0 ⊂ B for all i and B(i)

α,j = ∅ for

all i whose θi is too “near” the αth of the vectors â, b̂, ĉ. These facts will be useful when
we estimate the associated partition functions ZL,β(B(i)

0 ) and ZL,β(B(i)
α,j ) in Sect. 6.3.

It remains to show that the union of these events contains all of BSW:

Theorem 6.4. Consider the 120◦-model and let the events BSW, B(i)
0 and B(i)

α,j be as

defined above. Suppose that �, κ , B and s are such that B
√

� � κ � 1 and s� > 4π .
Then

BSW ⊆
s⋃

i=1

(
B(i)

0 ∪
⋃

α=1,2,3

B⋃

j=1

B(i)
α,j

)
. (6.11)

Remark 8. In the above and in what is to follow (and to a certain extent retroactively) we
employ the symbol “�” in our hypotheses according to the standard fashion: “if a � b

. . . ” means “if the ratio a/b is bounded by a sufficiently small numerical constant which
is uniform in any of the other parameters mentioned . . . .”

Remark 9. The inclusion (6.11) justifies our previous claim that the only spin-wave cal-
culations we need to do are against either homogeneous or stratified background. Indeed,
by Lemma 6.3, to estimate the probability of BSW we will only need to estimate the con-
strained partition functions ZL,β(B(i)

0 ) and ZL,β(B(i)
α,j ). The former leads directly to

homogeneous spin-wave calculations from Sect. 4.1; the latter will require further di-
semination of the pair of (j − 1, j)th planes in the α-direction which results in exactly
the stratified background configuration treated in Sect. 4.2. See Lemmas 6.9 and 6.10
for details.
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The proof of Theorem 6.4 commences by considering an elementary cube in TL,
say K = {0, 1}3, and classifying all spin configurations on K that are “nearly” a ground
state but which are not near any of the six “privileged” directions ŵτ ; see (2.1) for the
corresponding definition. The precise statement is as follows:

Proposition 6.5. Let � and κ be such that
√

� � κ � 1. Let θ = (θr) be a configu-
ration of angle variables on K such that the corresponding spins Sr satisfy the energy
constraints (3.1) for all pairs of nearest neighbors on K but such that not all of the spins
are within angle κ of one particular ŵτ . Let r ∈ K. Then (exactly) one of the following
is true:

(1) |θr′ − θr | < 4�/κ for all r′ ∈ K.
(2) There exists an α ∈ {1, 2, 3} such that |θr′ − θr | < 4�/κ holds for all r′ ∈ K with

r − r′ ⊥ êα , while for the remaining r ∈ K we have |θr′ − θ̃r | < 4�/κ , where θ̃r is
obtained from θr by reflection through the αth of the vectors â, b̂, ĉ.

Remark 10. Setting � = 0 (and κ = 0) in this statement justifies Fig. 1, which shows
four examples of ground state configurations on an elementary cube. The reason why
we explicitly exclude the “almost” constant configurations which point near one of ŵτ

is that, for these situations, the energy constraint would permit fluctuations that are of
order

√
�.

The proof of Proposition 6.5 will involve a couple of lemmas. First, let us characterize
the consequence of the energy constraint (3.1) for a single bond:

Lemma 6.6. Let α ∈ {1, 2, 3} and consider a nearest-neighbor bond (r, r′) parallel
to êα . Let θr and θr′ be two angle variables such that the corresponding spins satisfy
|S(α)

r − S
(α)

r′ | < �. Then either |θr − θr′ | < π
√

�/2 or |θr − θ̃r′ | < π
√

�/2, where θ̃r′

is obtained from θr′ by reflection through the αth of the vectors â, b̂, ĉ.

Proof. Without loss of generality, we will assume that α = 1. Now, if θ, θ ′ ∈ [0, π ]
are two angles with |θ − θ ′| = ε, then the trig identity | cos θ − cos θ ′| = 2| sin( θ−θ ′

2 )|
sin( θ+θ ′

2 ) and some optimization show that

| cos θ − cos θ ′| ≥ 2 sin2( ε
2 ) ≥ 2ε2/π2, (6.12)

where we used that ε/2 ∈ [0, π/2]. But the left-hand side is exactly |S(1)
r −S

(1)

r′ | which by
assumption is less than �. A simple algebra now shows that then ε = |θ −θ ′| ≤ π

√
�/2.

This proves the claim in the case when both θ and θ ′ have the same sign; the opposite
case is handled by reflection through the x axis. ��

Next we will extend this to a similar control of lattice plaquettes:

Lemma 6.7. Let L be a lattice plaquette and let C = 6π/
√

2. Let � � 1 and let θr′ , r′ ∈
L denote angle variables such that the energy constraint (3.1) holds for all four bonds.
Then, for any particular r ∈ L, either all θr′ , r′ ∈ L, are within C

√
� from θr or one

neighbor of r satisfies this condition while, on the other side of the plaquette, the other
two spins are within C

√
� from the corresponding reflection of θr .
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Proof. The proof is based on Lemma 6.6. To make the reference to this lemma easier, let
us say that a reflection occurs for the pair (r, r′) if the latter possibility in Lemma 6.6
applies. Let L be a lattice plaquette. Since permutations of coordinate directions can be
matched with permuting the roles of â, b̂, ĉ, we can as well assume that L is an xy-pla-
quette, i.e., L = {r, r+êx, r+êy, r+êx+êy}. The analysis proceeds by checking various
cases of increasing level of complexity. To simplify the formulas, let us abbreviate the
error constant from Lemma 6.6 by ζ = π

√
�/2.

Case 1. No reflection occurs for both of the bonds emanating from r. Lemma 6.6 then
implies that both θr+êx

and θr+êy
are within ζ from θr . Now if a reflection does not

occur on either of the two remaining bonds, then the spin at r + êx + êy is within 2ζ

of θr and we are done. The remaining possibility would be a reflection on both of these
bonds. But then θr+êx+êy

is within 2ζ of both −θr and (− 2π
3 − θr) which is impossible

once 4ζ < 2π
3 .

Case 2. Reflection occurs for exactly one bond emanating from r, say the horizontal
bond from r. The only case we need to consider is when reflection occurs for the “other”
vertical bond and does not for the “other” horizontal bond. But then θr+êx+êy

is within 2ζ

of both θr and (− 2π
3 + θr) which is again impossible once 4ζ < 2π

3 .

Case 3. Reflection occurs for both bonds emanating from r. Clearly, following the path
through r + êx tell us that θr+êx+êy

is within 2ζ of either −θr or (− 2π
3 + θr) while the

passage through r + êy tells us that θr+êx+êy
is within 2ζ of ±( 2π

3 + θr). Checking the

cases shows that, if 4ζ < 2π
3 , this is only possible when reflection occurs for all bonds

around the plaquette and when θr is within 2ζ of one of the angles 0, π
3 , π or 4π

3 . Let us
check the case when θr ≈ 0. Then θr+êx

is within 5ζ of θr and both θr+êy
and θr+êx+êy

are within 6ζ from (− 2π
3 − θr). A similar argument handles the remaining cases.

Inspecting the above derivations, we see that the worst-case fluctuation from one
of the two situations described in the statement of the lemma is by 6ζ = C

√
�. This

finishes the proof. ��
Now we are ready to characterize the “near” ground states on elementary cubes:

Proof of Proposition 6.5. Lemma 6.7 immediately implies that any configuration S sat-
isfying the energy constraints (3.1) on K is one of the types featured in the statement of
the proposition (resp., Fig. 1) to within errors C′√� for some numerical constant C′.
Indeed, either all angle variables are within C′√� of some particular angle or not. If not,
then there must be a pair of nearest neighbors (r, r′), say parallel to ê1, where a reflection
occurred. Then θr′ is within C

√
� of −θr . Moreover, choosing C′ � C allows us to

assume that both |θr | and |π−θr | exceed 2C
√

� and thus both plaquettes in K containing
the bond (r, r′) will have to be of a “mixed” type. But, again by Lemma 6.7, the two per-
pendicular yz-plaquettes cannot be of a “mixed” type. This implies the characterization
in the statement of the proposition with the errors bounded by C′√�.

It remains to show that the errors are in fact only proportional to � (cf. Remark 9).
Here we will use the following refinement of Lemma 6.6: If θ, θ ′ ∈ [0, π) satisfy the
energy constraint | cos θ − cos θ ′| < � but are not within angle κ � 1 of the x-ground
states, then

|θ − θ ′| < �/κ. (6.13)
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Indeed, the Mean Value Theorem gives us that | cos θ − cos θ ′| = 2 sin(θ ′′)(θ − θ ′),
where θ ′′ lies between θ and θ ′. Hence sin(θ ′′) ≥ sin κ which for κ � 1 exceeds κ/2.
Using that | cos θ − cos θ ′| < �, the bound (6.13) directly follows.

The improved error bound is now a simple consequence of (6.13). Let us first con-
sider the “nearly” homogeneous situations. Since all angle variables are to be away
from the ground state, (6.13) implies that for each bond the θr’s will differ only by at
most �/κ . Hence, all θr’s on the cube must be within 3�/κ of one of them which proves
the claim in this case. The “mixed” configurations whose types both point away from
any of the ground states are handled analogously, so we only have to consider the case
when each type is within angle 2κ of a different ground state. A generic situation of this
kind is when the “bottom” xy-plaquette of K is occupied by a configuration θ ≈ 0 while
the “top” xy-plaquette is occupied by a configuration θ ≈ 2π

3 . Then the observation
(6.13) constrains the size of the fluctuations to less than �/κ along the following bonds:
The êy-bonds in the “bottom” xy-plaquette, all of the vertical bonds and the êx-bonds
in the “top” xy-plaquette. It is easy to check that, from r, one can get to all sites of K

in at most four steps, so all θr′ are within less than 4�/κ of θr or the corresponding
reflection. ��

Finally, we are ready to prove Theorem 6.4:

Proof of Theorem 6.4. Consider a spin configuration S on �B such that BSW occurs and
let θr be the corresponding angle variables. Suppose first that one of the θr’s makes an
angle at least 2κ with all of the ŵτ , τ = 1, . . . , 6. Applying Lemma 6.6 along with
the fact that B

√
� � κ , we find out that all θr’s will make an angle at least κ with

any of the ŵτ . Proposition 6.5 then guarantees that any elementary cube has a layered
structure with the θr’s more or less constant in both layers. Since the maximal fluctuation
in each elementary cube is at most 4�/κ , it is not more than 3B-times that—i.e., � in
(6.10)—for any pair of spins in �B .

Now the bound s� > 4π ensures that the consecutive θ�
i (which we used to define

the events B(i)
0 and B(i)

α,j ) are within less than �/2 from each other. Thus, if all spins
point in about the same direction they must all be within � of some θ�

i —which implies

that S ∈ B(i)
0 —or there are two consecutive layers, say j − 1 and j , in the αth lattice

direction where a reflection from θ�
i to θ̃ �

i occurs. In the latter case we have S ∈ B(i)
α,j.

This proves (6.11) for those S ∈ BSW for which at least one of the spins is farther than 2κ

(in the angular distance) from any of the six preferred directions ŵτ .
It remains to deal with the situations in which all spins are within 2κ of some ŵτ

(possibly different τ for different spins). Clearly, the latter cannot be the same for all
spins because of the inclusion BSW ⊂ B, and so there must be a pair of spins where the
type of ground state is different at the endpoints. But then we can still use Proposition 6.5
for the elementary cubes containing this bond, and then the cubes next to these and so
on. In this way we conclude that the endpoints of this bond belong to two parallel planes
of sites where the spins do not fluctuate by more than 2B times 4�/κ about a single
direction in one plane and its reflection in the other. Hence S belongs to one of the B(i)

α,j ’s.
��

6.3. Proof of Theorem 3.1. We begin with an estimate of the partition function for
event BE.
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Lemma 6.8. Let κ > be fixed. There exist constants c4 ∈ (0, ∞) and δ > 0 such that if
βJ , � = 12B�/κ and δ satisfy the bounds (4.2) then

lim sup
L→∞

(ZL,β(BE)

ZL,β

)(B/L)3

≤ B3(c4βJ )B
3/2e− 1

2 βJ�2
. (6.14)

Proof. We will derive an upper bound ZL,β(BE) and a lower bound on ZL,β . The former
is essentially an immediate consequence of the definition of BE. Indeed, on BE at least
one of the pairs of nearest neighbors in �B contributes at least 1

2 (βJ )�2 to the total
energy. Thus, after dissemination of BE all over the torus, the spin configurations are
constrained to satisfy

βHL(S) ≥ 1

2
(βJ)�2

(L

B

)3
. (6.15)

It follows that

ZL,β(BE)(B/L)3 ≤ 6B3(2π)B
3
e− 1

2 βJ�2
, (6.16)

where the factor 6B3 bounds the number of places where the “excited” bond can occur
within �B and (2π)B

3
is the total “phase volume” of all configurations in �B .

Next we need to derive a lower bound on ZL,β . Here we will write the partition
function as an integral of e−βHL ; a lower bound can then be obtained by inserting the
indicator that all angle variables are within � of 0◦. This yields

ZL,β ≥
( 2π

βJ

)L3/2
e
−L3F

(�)
L,β (0◦)

, (6.17)

where F
(�)
L,β (0◦) is the quantity from (4.1). Choosing ε > 0 and letting δ be such that

Theorem 4.1 holds, we thus get

lim inf
L→∞

(ZL,β)1/L3 ≥
( 2π

βJ

)1/2
e−F(0◦)−ε, (6.18)

where F denotes the spin-wave free energy (2.11). Combining (6.15) and (6.18) and let-
ting c4 absorb all factors independent of B and βJ , the desired bound (6.14) is proved.
��

Remark 11. Since the event BE depends only on �, the appearance of κ in the assump-
tions of Lemma 6.8 may seem unnecessary. However, some conditions on �, B and βJ

are still needed to derive the lower bound in (6.18) and the advantage of the present
form is that now all lemmas in this section are proved under more or less the same
assumptions.

Next we will attend to the event BSW. In light of Theorem 6.4 and Lemma 6.3, we
can focus directly on the events B(i)

0 and B(i)
α,j . We will begin with the former of the two:

Lemma 6.9. Let κ > 0 be fixed. There exist numbers ρ1(κ) > 0 and δ > 0 such that
if βJ and � = 12B�/κ satisfy the bounds (4.2) with this δ and if B� � κ � 1, then

lim sup
L→∞

(ZL,β(B(i)
0 )

ZL,β

)1/L3

≤ e−ρ1(κ), i = 1, . . . , s. (6.19)
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Proof. To summarize the situation, on B(i)
0 , all angle variables θr in the block �B are

within � of θ�
i . If we now consider the multiply reflected event associated with B(i)

0 , the
same will be true about all spins on TL. Let ε > 0 and let δ > 0 be as in Theorem 4.1.
Then

lim sup
L→∞

ZL,β(B(i)
0 )1/L3 ≤

( 2π

βJ

)1/2
e−F(θ�

i )+ε . (6.20)

Using (6.18) we thus conclude

lim sup
L→∞

(ZL,β(B(i)
0 )

ZL,β

)1/L3

≤ e−F(θ�
i )+F(0◦)+2ε . (6.21)

It remains to adjust ε so that the exponent is negative. Here we first note that B(i)
0 is

empty unless θ�
i is at least κ away from any of the ground state (indeed, otherwise the

configuration fails to be in B, which by definition contains B(i)
0 ). Applying Corollary 5.2,

F(θ�) exceeds F(0◦) by a uniformly positive amount, denoted by 2ρ1(κ), whenever θ�

is at least κ away from the minimizing angles. Now choose ε ≤ 1
2ρ1(κ) and let δ be the

corresponding quantity from Theorem 4.1. Then the right-hand side of (6.21) is indeed
less than e−ρ1(κ), proving the desired claim. ��

Similarly, we have to derive a corresponding bound for the events B(i)
α,j :

Lemma 6.10. Let κ > 0 be fixed. There exist numbers ρ2(κ) > 0 and δ > 0 such that
if βJ and � = 12B�/κ satisfy the bound (4.26) with this δ and if B� � κ � 1, then

lim sup
L→∞

(ZL,β(B(i)
α,j )

ZL,β

)1/L3

≤ e−ρ2(κ)/B, (6.22)

holds for all α ∈ {1, 2, 3}, all j ∈ {1, 2, . . . , B} and all i ∈ {1, . . . , s}.
Remark 12. We assure the reader that the 1/B in the exponent is no cause for alarm; in
accord with (6.6), the relevant object from Lemma 6.10 is the right-hand side raised to
power B3.

Proof of Lemma 6.10. Recall that, on B(i)
α,j , all θr for r in the plane �B ∩Hj−1 are within

a constant times B�/κ of θ�
i , while those in the neighboring plane �B ∩ Hj are within

the same distance of the reflected angle θ̃ �
i . After dissemination over the torus, which is

what gives rise to the quantity ZL,β(B(i)
α,j ), the same will be true about the spins in the

entire planes Hj−1, resp., Hj , and also about their translates by integer multiples of B in
the orthogonal direction. However, we cannot yet use the spin-wave calculation; instead,
we have to use Theorem 6.2 again to disseminate the two-plane alternating pattern all
over the torus. This yields

ZL,β(B(i)
α,j )

ZL,β

≤
(

ZL,β(B̃(i)
α,j )

ZL,β

)2/B

, (6.23)

where B̃(i)
α,j is the event in �B that the θr are within � of θ�

i in even translates of Hj−1

and of θ̃ �
i in odd translates of Hj−1.
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Now the partition function can be estimated using Theorem 4.5 and we thus get

lim sup
L→∞

(
ZL,β(B̃(i)

α,j )

ZL,β

)1/L3

≤ e−[F̃α(θ�
i )−F(0◦)−2ε]. (6.24)

But Theorem 5.5 shows that F̃α(θ�
i )−F(0◦) ≥ c3 > 0 for some c3 = c3(κ) for all i for

which θ�
i is at least κ-away from any of the minimizing angles associated with “strati-

fication” direction α, while, by definition, B(i)
α,j = ∅ for those i that fail this condition.

Hence, if we choose ε > 0 so small that ρ2(κ) = 2(c3 − 2ε) > 0 and let δ be the cor-
responding constant from Theorem 4.5, then (6.23) and (6.24) imply (6.22) as desired.
��
Proof of Theorem 3.1. Let κ > 0 and let δ > 0 be the minimum of the corresponding num-
bers from Lemmas 6.8–6.10. Fix an η ∈ (0, 1).We claim that for each sufficiently large β,
there exist numbers B and � such that the bounds (4.2) and (4.26) for � = 12B�/κ

hold, the inequality B
√

� � κ can be achieved and the bound

B3(c4βJ )B
3/2e− 1

2 βJ�2 + 8π

�
e−B3ρ1(κ) + 24πB

�
e−B2ρ2(κ) < η (6.25)

is true. Indeed, we can for instance take B = log β and � = β− 5
12 and note that, for

these choices, the left-hand side will eventually decrease with β.
Now choose s such that s� > 4π but s� < 8π . Then the definitions (6.8–6.9)

of events BE and BSW, the decomposition of BSW from Theorem 6.4, the chessboard
estimate and the (subadditivity) Lemma 6.6 imply that PL,β(ϑt1(B)∩· · ·∩ϑtm(B)) will
be bounded by ηm

L , where

ηL =
(ZL,β(BE)

ZL,β

)(B/L)3

+
s∑

i=1

(ZL,β(B(i)
0 )

ZL,β

)(B/L)3

+
s∑

i=1

∑

α=1,2,3

B∑

j=1

(ZL,β(B(i)
α,j )

ZL,β

)(B/L)3

. (6.26)

By Lemmas 6.8–6.10, the fact that s < 8π/� and (6.25), it follows that lim supL→∞ ηL <

η. Hence there exists a number L0 ∈ (0, ∞) such that ηL ≤ η for all L ≥ L0. But
for L ≥ L0, the probability PL,β(ϑt1(B) ∩ · · · ∩ ϑtm(B)) is bounded by ηm uniformly
in m and the choice of the vectors t1, . . . , tm. This proves the desired claim and thus
also finishes the proof of our main result (Theorem 2.1). ��

7. Spherical Models

Here we present the proof that the spherical version of the 120◦-model has no phase tran-
sition at any positive temperature. This demonstrates the failure of the naive spin-wave
arguments and, particularly, the infrared bounds.

Spherical models, very popular in the 1950–60, were conceived of by Berlin-Kac [2]
as convenient approximations of the statistical mechanical systems which are more ame-
nable to explicit computations. (On the mathematics side, the topic received a new wave
of interest in the 1980’s through the rigorous versions of 1/n expansion.) To construct
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a spherical version of a given spin system, we use the same Hamiltonian but ascribe
different meaning to the spin variables. In particular, the local a priori constraints on the
spin variables are relaxed and are replaced by a global constraint. For instance, for the
Ising model with Hamiltonian H = −∑

r,r′ σrσr′ we have σr = ±1 and thus σ 2
r = 1

for all r. The spherical version has the same interaction Hamiltonian but now we only
require that (1/N)

∑
r σ 2

r = 1, where N denotes the total number of spins.
Often enough, these models are further simplified by stipulating that the constraint

only needs to be satisfied in the mean and may thus be enforced by Langrange multipli-
ers. The latter type is often referred to as the mean spherical model. This version usually
turns out to be pretty much the same in most aspects, see [27] for some discussion. Here
we will go the mean-spherical route partially because the resulting analysis is simpler,
but also because the analogy to pure spin-wave theory is more pronounced in this case.
We refer to [44, Sect. II.11] for more references and further discussion.

Thus, we will take (1.10) as our basic Hamiltonian along with an additional term
to enforce the required constraints. However now it is understood that the spin vari-
ables are no-longer constrained to the unit circle; the integration takes place over all
of R

2. The constraining term reads −µ
∑

r,α(S
(α)
r )2 but now (unfortunately) S

(α)
r refers

to the Cartesian component of the spin. This means that we will have to rewrite the
Hamiltonian in terms of the Cartesian components of S.

The key to the mean-spherical approximation is that for arbitrary µ > 0 the partition
function can be solved exactly by translations to spin-wave variables. Then µ is sup-
posed to be adjusted so that the relevant constraint is enforced. As we shall see, if there
is an infrared divergence, this adjustment is easy and everything is analytic in β. In the
opposite case, there may be a condensation at large β and if so, one may conclude—with
a lot of apologies—that a phase transition has occurred. The primary conclusion of this
section is that the latter possibility does not materialize in the model at hand.

Now we are ready to describe the spherical version of the 120◦-model. The Hamil-
tonian on torus TL is given by

βHL =βJ

2

∑

r∈TL

{(
S(x)

r − S
(x)

r+êx

)2 +
[(√

3
2 S

(y)
r − 1

2S(x)
r

)−(√
3

2 S
(y)

r+êy
− 1

2S
(x)

r+êy

)]2

+
[(√

3
2 S

(y)
r + 1

2S(x)
r ) − (√

3
2 S

(y)

r+êz
+ 1

2S
(x)

r+êz

)]2
}
, (7.1)

where S
(x)
r and S

(y)
r are now unrestricted real variables a priori distributed according to

the Lebesgue measure on R. The constraint is represented by the quantity

NL =
∑

r∈TL

(
(S(x)

r )2 + (S
(y)
r )2). (7.2)

The associated Gibbs measure is given in terms of the Radon-Nikodym derivative
with respect to the Lebesgue measure on (R2)TL , which is simply a properly normal-
ized e−βHL−µNL . We will denote the expectation with respect to the resulting thermal
state by 〈−〉L,β,µ.

Theorem 7.1. Consider the spherical 120◦-model with the Hamiltonian (7.1) and let
〈−〉L,β,µ denote the corresponding thermal state for the chemical potential µ. Then there
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exists a positive, real-analytic function µ� : [0, ∞) → (0, ∞) such that for each β ∈
(0, ∞)—and µ set to µ�(β)—the following is true: The constraint is satisfied on average,

lim
L→∞

1

L3 〈NL〉L,β,µ�(β) = 1, (7.3)

there is no long range order,

lim
L→∞

〈∣∣∣
1

L3

∑

r∈TL

Sr

∣∣∣
2
〉

L,β,µ�(β)

= 0, (7.4)

and the limiting measure exhibits a clustering property,

lim
|r−r′|→∞

lim
L→∞

〈S(α)
r S

(α′)
r′ 〉L,β,µ�(β) = 0, (7.5)

for any α, α′ ∈ {x, y}. Moreover, the limiting free energy is a (real) analytic function
of β.

Proof. As usual, our first goal will be to calculate the limiting free energy as a function
of β and µ. Let ZL(β, µ) denote the integral of e−βHL−µNL with respect to the Lebesgue
measure on (R2)TL . In order to compute ZL(β, µ) we transform to the Fourier modes in
which case the spin-wave Hamiltonian (including the constraint) is seen to be given by

βHL + µNL =βJ

2

∑

k∈T
�
L

{
|Ŝ(x)

k |2[E1 + 1
4 (E2 + E3) + λ

]

+ |Ŝ(y)

k |2[ 3
4 (E2 + E3) + λ

] +
√

3
4

(
Ŝ

(x)
k Ŝ

(y)

−k + Ŝ
(x)
−k Ŝ

(y)

k

)
[E2 − E3]

}
.

(7.6)

Here Ŝ
(α)
−k is just the complex conjugate of Ŝ

(α)
k , the symbol Eα abbreviates the usual

Eα(k) = |1 − eikα |2 and λ is defined by βJλ/2 = µ. In terms of the two-component
variable (Ŝ

(x)
k , Ŝ

(y)

k ), the right-hand side (without the βJ/2 prefactor, of course) can be
written as a quadratic form with matrix λ1 + �(k), where

�(k) =
(

E1 + 1
4 (E2 + E3)

√
3

2 (E2 − E3)√
3

2 (E2 − E3)
3
4 (E2 + E3)

)
. (7.7)

In this notation the integrals are readily performed with the limiting free energyF(β, λ)—
which to within a sign is the limit limL→∞ L−3 log ZL(β, βJλ/2)—given by

F(β, λ) = log
βJ

2π
+ 1

2

∫

[−π,π ]3

dk
(2π)3 log det[λ1 + �(k)]. (7.8)

Here the integral converges as long as λ > 0.
Our next goal is to find the function µ� for which (7.3) holds. Using the standard

relation between free energy and expectation, the constraint equation becomes

∂

∂λ
F(β, λ) = βJ

2

∫

[−π,π ]3

dk
(2π)3 SSP(k) = βJ

2
, (7.9)
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where

SSP(k) = lim
L→∞

〈|Ŝk|2〉L,β,µ = (βJ )−1Tr[λ1 + �(k)]−1 (7.10)

is the so-called structure factor. As long as λ > 0, the derivative ∂
∂λ

F (β, λ) is finite
and independent of β and thus (7.9) defines a function λ 	→ β�(λ). A moment’s thought
shows that this function is strictly decreasing and hence locally invertible. However,
before we plug the inverse back into (7.8), we need to establish the range of values
that β�(λ) can take. In particular, we ask whether β�(λ) diverges as λ ↓ 0.

Examining the constraint equation in detail, the crucial issue boils down to conver-
gence/divergence of the momentum-space integral of the structure factor

SSP(k) ∝ E1 + E2 + E3

E1E2 + E1E3 + E2E3
. (7.11)

It turns out that the integral of SSP(k) diverges although this is not apparent by naive
power counting. Indeed, the primary source of the divergence is not the origin but the
coordinate axes. This is seen by an easy lower bound on SSP(k): Fix k3 to a non-zero
number and note that we can discard the E1 and E2 from the numerator. Second, the
term E1E2 in the denominator is bounded above by a constant times E1 + E2. Hence,
the calculations boil down to the integral of (E1 + E2)

−1 with respect to k2 and k3,
which is manifestly divergent.

The above reasoning shows that λ 	→ β�(λ) takes all positive real values as λ sweeps
through the positive real line and hence the inverse β 	→ λ�(β) is defined for all β ∈
[0, ∞). Moreover, for λ > 0 the function λ 	→ β�(λ) is analytic in a small neigh-
borhood of the real line and hence so is β 	→ λ�(β). The desired function then arises
by setting µ�(β) = βJλ�(β)/2, which satisfies (7.3) by construction. Furthermore,
plugging λ�(β) for λ in F(λ, β) proves that the free energy is real analytic in β. In
order to prove also (7.4–7.5), we just need to note that (7.6) implies that the corre-

lator 〈Ŝ(α)
−k Ŝ

(α′)
k 〉L,β,µ is exactly the (α, α′)th matrix element of (βJ )−1[λ1 + �(k)]−1.

But then
〈∣∣∣∣

1

L3

∑

r∈TL

Sr

∣∣∣∣
2
〉

L,β,µ�(β)

= 2

βJλ�(β)L3 −→
L→∞

0, (7.12)

while

lim
L→∞

〈S(α)
r S

(α′)
r′ 〉L,β,µ�(β) =

∫

[−π,π ]3

dk
(2π)3

1

βJ

( 1

λ�(β)1 + �(k)

)

αα′e
ik·(r−r′),

(7.13)

which by the Riemann-Lebesgue lemma and the fact that λ�(β) is strictly positive for
any β ∈ [0, ∞) tends to zero as |r − r′| → ∞. ��

Remark 13. The last expression of the proof indicates that the correlations decay (at
least) exponentially fast. However, as is seen from (7.11), the angular dependence of the
resulting correlation length is fairly complicated. In particular, there may be directions
in which the quadratic approximation of �(k) vanishes in which case more than one
pole in the “complex |k|” plane (instead of the usual single pole) jointly contribute to
the integral.
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We conclude with a remark concerning the relation of these findings to the actual
systems of interest. For the spherical model, the so-called structure factor SSP(k) =
〈|Ŝk|2〉β,µ can explicitly be computed, cf. (7.10). As was established in [25, 22, 23] for
a general class of nearest-neighbor ferromagnetic systems (including the one discussed
in the present work) the spherical rendition of the structure factor with µ = 0 pro-
vides a bound on the structure factor SA(k) (namely, the two-point correlation function
in k-representation) of the actual system,

SA(k) ≤ SSP(k)
∣∣
µ=0. (7.14)

This is the basis of the infrared-bound technology which uses the convergence of the
integrated bound to establish long-range order at low temperatures.

Here, the low momentum behavior of the spherical structure factor together with the
rigorous as well as non-rigorous results relating SSP to SA (including in particular [28])
strongly suggest a disordering due to long wave-length fluctuations. It is usually the case
that these are reliable indicators for the behavior of the actual system. Evidently, as the
results of this work show, the present cases are exceptional.
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