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Colligative Properties of Solutions:

II. Vanishing Concentrations
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We continue our study of colligative properties of solutions initiated in ref. 1.
We focus on the situations where, in a system of linear size L, the concentra-
tion and the chemical potential scale like c= ξ/L and h=b/L, respectively. We
find that there exists a critical value ξt such that no phase separation occurs
for ξ � ξt while, for ξ >ξt, the two phases of the solvent coexist for an interval
of values of b. Moreover, phase separation begins abruptly in the sense that a
macroscopic fraction of the system suddenly freezes (or melts) forming a crys-
tal (or droplet) of the complementary phase when b reaches a critical value.
For certain values of system parameters, under “frozen” boundary conditions,
phase separation also ends abruptly in the sense that the equilibrium droplet
grows continuously with increasing b and then suddenly jumps in size to sub-
sume the entire system. Our findings indicate that the onset of freezing-point
depression is in fact a surface phenomenon.

KEY WORDS: Freezing-point depression; phase separation; droplet transition;
Wulff construction; Ising model; canonical ensemble.

1. INTRODUCTION

1.1. Overview

In a previous paper (ref. 1, henceforth referred to as Part I) we defined a
model of non-volatile solutions and studied its behavior under the condi-
tions when the solvent undergoes a liquid–solid phase transition. A par-
ticular example of interest is the solution of salt in water at temperatures
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near the freezing point. In accord with Part I we will refer to the solute
as salt and to the two phases of solvent as ice and liquid water.

After some reformulation the model is reduced to the Ising model
coupled to an extra collection of variables representing the salt. The (for-
mal) Hamiltonian is given by

βH=−J
∑

〈x,y〉
σxσy −h

∑

x

σx +κ
∑

x

Sx

1−σx

2
. (1.1)

Here we are confined to the sites of the hypercubic lattice Z
d with d � 2,

the variable σx ∈{+1,−1} marks the presence of liquid water (σx =1) and
ice (σx =−1) at site x, while Sx ∈{0,1} distinguishes whether salt is present
(Sx =1) or absent (Sx =0) at x. The coupling between the σ ’s is ferromag-
netic (J >0), the coupling between the σ ’s and the S’s favors salt in liquid
water, i.e., κ > 0 – this reflects the fact that there is an energetic penalty
for salt inserted into the crystal structure of ice.

A statistical ensemble of direct physical – and mathematical – rele-
vance is that with fluctuating magnetization (grand canonical spin vari-
ables) and a fixed amount of salt (canonical salt variables). The principal
parameters of the system are thus the salt concentration c and the exter-
nal field h. As was shown in Part I for this setup, there is a non-trivial
region in the (c, h)-plane where phase separation occurs on a macroscopic
scale. Specifically, for (c, h) in this region, a droplet which takes a non-
trivial (i.e., non-zero and non-one) fraction of the entire volume appears
in the system. (For “liquid” boundary conditions, the droplet is actually
an ice crystal.) In “magnetic” terms, for each h there is a unique value of
the magnetization which is achieved by keeping part of the system in the
liquid, i.e., the plus Ising state, and part in the solid, i.e., the minus Ising
state. This is in sharp contrast to what happens in the unperturbed Ising
model where a single value of h (namely, h = 0) corresponds to a whole
interval of possible magnetizations.

The main objective of the present paper is to investigate the limit of
infinitesimal salt concentrations. We will take this to mean the following:
In a system of linear size L we will consider the above “mixed” ensemble
with concentration c and external field h scaling to zero as the size of the
system, L, tends to infinity. The goal is to describe the asymptotic proper-
ties of the typical spin configurations, particularly with regards to the for-
mation of droplets. The salt marginal will now be of no interest because
salt particles are so sparse that any local observable will eventually report
that there is no salt at all.
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The main conclusions of this work are summarized as follows. First,
in a regular system of volume V = Ld of characteristic dimension L,
the scaling for both the salt concentration and external field is L−1. In
particular, we should write h = bL−1 and c = ξL−1. Second, consider-
ing such a system with boundary condition favoring the liquid state and
with h and c enjoying the abovementioned scalings, one of three things
will happen as ξ sweeps from 0 to infinity:

(1) If b is sufficiently small negative, the system is always in the liquid
state.

(2) If b is of intermediate (negative) values, there is a transition, at
some ξ(b) from the ice state to the liquid state.

(3) Most dramatically, for larger (negative) values of b, there is a
region – parametrized by ξ1(b) < ξ < ξ2(b) – where (macroscopic) phase
separation occurs. Specifically, the system holds a large crystalline chunk
of ice, whose volume fraction varies from unity to some positive amount
as ξ varies from ξ1(b) to ξ2(b). At ξ = ξ2(b), all of the remaining ice sud-
denly melts.

We obtain analogous results when the boundary conditions favor the ice
state, with the ice crystal replaced by a liquid “brine pocket.” However,
here a new phenomenon occurs: For certain choices of system parame-
ters, the (growing) volume fraction occupied by the brine pocket remains
bounded away from one as ξ increases from ξ1(b) to ξ2(b), and then jumps
discontinuously to one at ξ2(b). In particular, there are two droplet tran-
sitions (see Fig. 1).

Thus, we claim that the onset of freezing point depression is, in fact,
a surface phenomenon. Indeed, for very weak solutions, the bulk behavior
of the system is determined by a delicate balance between surface order
deviations of the temperature and salt concentrations. In somewhat poetic
terms, the predictions of this work are that at the liquid–ice coexistence
temperature it is possible to melt a substantial portion of the ice via a
pinch of salt whose size is only of the order V 1− 1

d . (However, we make
no claims as to how long one would have to wait in order to observe this
phenomenon.)

The remainder of this paper is organized as follows. In the next sec-
tion we reiterate the basic setup of our model and introduce some further
objects of relevance. The main results are stated in Sections 2.1–2.3; the
corresponding proofs come in Section 3. In order to keep the section and
formula numbering independent of Part I; we will prefix the numbers from
Part I by “I.”
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Fig. 1. The phase diagram of the ice–water system with Hamiltonian (1.1) and fixed salt
concentration c in a Wulff-shaped vessel of linear size L. The left plot corresponds to the
system with plus boundary conditions, concentration c = ξ/L and field parameter h = b/L,
the plot on the right depicts the situation for minus boundary conditions. It is noted that
as ξ ranges in (0,∞) with b fixed, three distinct modes of behavior emerge, in the L → ∞
limit, depending on the value of b. The thick black lines mark the phase boundaries where
a droplet transition occurs; on the white lines the fraction of liquid (or solid) in the system
changes continuously.

1.2. Basic Objects

We begin by a quick reminder of the model; further details and motivation
are to be found in Part I. Let Λ⊂Z

d be a finite set and let ∂Λ denote its
(external) boundary. For each x ∈Λ, we introduce the water and salt vari-
ables, σx ∈{−1,+1} and Sx ∈{0,1}; on ∂Λ we will consider a fixed configu-
ration σ∂Λ ∈{−1,+1}∂Λ. The finite-volume Hamiltonian is then a function
of (σΛ,SΛ) and the boundary condition σ∂Λ that takes the form

βHΛ(σΛ, SΛ|σ∂Λ)=−J
∑

〈x,y〉
x∈Λ,y∈Z

d

σxσy −h
∑

x∈Λ

σx +κ
∑

x∈Λ

Sx

1−σx

2
. (1.2)

Here, as usual, 〈x, y〉 denotes a nearest-neighbor pair on Z
d and the

parameters J , κ and h represent the chemical affinity of water to water,
negative affinity of salt to ice and the difference of the chemical potentials
for liquid–water and ice, respectively.

The a priori probability distribution of the pair (σΛ,SΛ) takes the
usual Gibbs–Boltzmann form P

σ∂Λ

Λ (σΛ,SΛ) ∝ e−βHΛ(σΛ,SΛ|σ∂Λ). For rea-
sons explained in Part I, we will focus our attention on the ensemble with
a fixed total amount of salt. The relevant quantity is defined by
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NΛ =
∑

x∈Λ

Sx. (1.3)

The main object of interest in this paper is then the conditional measure

P
σ∂Λ,c,h
Λ (·)=P

σ∂Λ

Λ

( · ∣∣NΛ =�c|Λ|	), (1.4)

where |Λ| denotes the number of sites in Λ. We will mostly focus on the
situations when σ∂Λ ≡ +1 or σ∂Λ ≡ −1, i.e., the plus or minus boundary
conditions. In these cases we denote the above measure by P

±,c,h
Λ , respec-

tively.
The surface nature of the macroscopic phase separation – namely, the

cases when the concentration scales like the inverse linear scale of the sys-
tem – indicates that the quantitative aspects of the analysis may depend
sensitively on the shape of the volume in which the model is studied. Thus,
to keep this work manageable, we will restrict our rigorous treatment of
these cases to volumes of a particular shape in which the droplet cost is
the same as in infinite volume. The obvious advantage of this restriction
is the possibility of explicit calculations; the disadvantage is that the shape
actually depends on the value of the coupling constant J . Notwithstand-
ing, we expect that all of our findings are qualitatively correct even in rect-
angular volumes but that cannot be guaranteed without a fair amount of
extra work; see ref. 17 for an example.

Let V ⊂R
d be a connected set with connected complement and unit

Lebesgue volume. We will consider a sequence (VL) of lattice volumes
which are just discretized blow-ups of V by scale factor L:

VL ={x ∈Z
d: x/L∈V }. (1.5)

(The sequence of L× · · ·×L boxes (ΛL) from Part I is recovered by let-
ting V = [0,1)d .) The particular “shape” V for which we will prove the
macroscopic phase separation coincides with that of an equilibrium drop-
let – the Wulff-shaped volume – which we will define next. We will stay
rather succinct; details and proofs can be found in standard literature on
Wulff construction (refs. 2, 4, 5, 7, 8, 12 or the review 6). Readers famil-
iar with these concepts may consider skipping the rest of this section and
passing directly to the statements of our main results.

Consider the ferromagnetic Ising model at coupling J � 0 and zero
external field and let P

±,J
Λ denote the corresponding Gibbs measure in

finite volume Λ ⊂ Z
d and plus/minus boundary conditions. As is well

known, there exists a number Jc =Jc(d), with Jc(1)=∞ and Jc(d)∈ (0,∞)
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if d � 2, such that for every J >Jc the expectation of any spin in Λ with
respect to P

±,J
Λ is bounded away from zero uniformly in Λ⊂Z

d . The lim-
iting value of this expectation in the plus state – typically called the spon-
taneous magnetization – will be denoted by m� =m�(J ). (Note that m� =0
for J <Jc while m� >0 for J >Jc.)

Next we will recall the basic setup for the analysis of surface phe-
nomena. For each unit vector n ∈ R

d , we first define the surface free
energy τJ (n) in direction n. To this end let us consider a rectangular
box V (N,M) ⊂ R

d with “square” base of side N and height M oriented
such that n is orthogonal to the base. The box is centered at the origin.
We let Z

+,J
N,M denote the Ising partition function in V (N,M) ∩ Z

d with
plus boundary conditions. We will also consider the inclined Dobrushin
boundary condition which takes value +1 at the sites x of the boundary
of V (N,M)∩Z

d for which x ·n>0 and −1 at the other sites. Denoting the
corresponding partition function by Z

±,J,n
N,M , the surface free energy τJ (n) is

then defined by

τJ (n)=− lim
M→∞

lim
N→∞

1
Nd−1

log
Z

±,J,n
N,M

Z
+,J
N,M

. (1.6)

The limit exists by subadditivity arguments. The quantity τJ (n) determines
the cost of an interface orthogonal to vector n.

As expected, as soon as J > Jc, the function n �→ τJ (n) is uniformly
positive.(14) In order to evaluate the cost of a curved interface, τJ (n) will
have to be integrated over the surface. Explicitly, we will let J > Jc and,
given a bounded set V ⊂ R

d with piecewise smooth boundary, we define
the Wulff functional WJ by the integral

WJ (V )=
∫

∂V

τJ (n) dA, (1.7)

where dA is the (Hausdorff) surface measure and n is the position-
dependent unit normal vector to the surface. The Wulff shape W is the
unique minimizer (modulo translation) of V �→ W(V ) among bounded
sets V ⊂ R

d with piecewise smooth boundary and unit Lebesgue volume.
We let (WL) denote the sequence of Wulff-shaped lattice volumes defined
from V =W via (1.5).

2. MAIN RESULTS

We are now in a position to state and prove our main results. As indi-
cated before, we will focus on the limit of infinitesimal concentrations
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(and external fields) where c and h scale as the reciprocal of the linear
size of the system. Our results come in four theorems: In Theorem 2.1
we state the basic surface-order large-deviation principle. Theorems 2.2
and 2.3 describe the minimizers of the requisite rate functions for liquid
and ice boundary conditions, respectively. Finally, Theorem 2.4 provides
some control of the spin marginal of the corresponding Gibbs measure.

2.1. Large Deviation Principle for Magnetization

The control of the regime under consideration involves the surface-order
large-deviation principle for the total magnetization in the Ising model. In
a finite set Λ⊂Z

d , the quantity under considerations is given by

MΛ =
∑

x∈Λ

σx. (2.1)

Unfortunately, the rigorous results available at present for d � 3 do not
cover all of the cases to which our analysis might apply. In order to reduce
the amount of necessary provisos in the statement of the theorems, we will
formulate the relevant properties as an assumption:

Assumption A. Let d � 2 and let us consider a sequence of Wulff-
shape volumes WL. Let J >Jc and recall that P

±,J
WL

denotes the Gibbs state
of the Ising model in WL, with ±-boundary condition and coupling con-
stant J . Let m� =m�(J ) denote the spontaneous magnetization. Then there
exist functions M±,J : [−m�,m�]→ [0,∞) such that

lim
ε↓0

lim
L→∞

1
Ld−1

log P
±,J
L

(|ML −mLd | � εLd
)=−M±,J (m) (2.2)

holds for each m ∈ [−m�,m�]. Moreover, there is a constant w1 ∈ (0,∞)

such that

M±,J (m)=
(m� ∓m

2m�

) d−1
d

w1 (2.3)

is true for all m∈ [−m�,m�].

The first part of Assumption A – the surface-order large-deviation
principle (2.2) – has rigorously been verified for square boxes (and mag-
netizations near ±m�) in d = 2(8,12) and in d � 3.(5,7) The extension to
Wulff-shape domains for all m ∈ [−m�,m�] requires only minor modifica-
tions in d = 2.(16) For d � 3 Wulff-shape domains should be analogously
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controllable but explicit details have not appeared. The fact (proved in ref.
16 for d =2) that the rate function is given by (2.3) for all magnetizations
in [−m�,m�] is specific to the Wulff-shape domains; for other domains
one expects the formula to be true only when |m� ∓ m| is small enough
to ensure that the appropriately-sized Wulff-shape droplet fits inside the
enclosing volume. Thus, Assumption A is a proven fact for d = 2, and it
is imminently provable for d � 3.

The underlying reason why (2.2) holds is the existence of multiple
states. Indeed, to achieve the magnetization m ∈ (−m�,m�) one does not
have to alter the local distribution of the spin configurations (which is
what has to be done for m �∈ [−m�,m�]); it suffices to create a droplet of
one phase inside the other. The cost is just the surface free energy of
the droplet; the best possible droplet is obtained by optimizing the Wulff
functional (1.7). This is the content of (2.3). However, the droplet is con-
fined to a finite set and, once it becomes sufficiently large, the shape of
the enclosing volume becomes relevant. In generic volumes the presence
of this additional constraint in the variational problem actually makes the
resulting cost larger than (2.3) – which represents the cost of an uncon-
strained droplet. But, in Wulff-shape volumes, (2.3) holds regardless of the
droplet size as long as |m| � m�. An explicit formula for M±,J (m) for
square volumes has been obtained in d = 2(17); the situation in d � 3 has
been addressed in refs. 10 and 11.

On the basis of the above assumptions, we are ready to state our
first main result concerning the measure P

±,c,h
WL

with c∼ ξ/L and h∼b/L.
Using θ to denote the fraction of salt on the plus spins, we begin by intro-
ducing the relevant entropy function

Υ (m, θ)=−θ log
2θ

1+m
− (1− θ) log

2(1− θ)

1−m
. (2.4)

We remark that if we write a full expression for the bulk entropy, Ξ(m, θ; c),
see formula (3.5), at fixed m, c and θ , then, modulo some irrelevant terms,
the quantity Υ (m, θ) is given by (∂/∂c)Ξ(m, θ; c) at c = 0. Thus, when we
scale c∼ ξ/L, the quantity ξΥ (m, θ) represents the relevant (surface order)
entropy of salt with m and θ fixed. The following is an analogue of Theo-
rem I.2.1 from Part I for the case at hand:

Theorem 2.1. Let d � 2 and let J > Jc(d) and κ > 0 be fixed. Let
m� = m�(J ) denote the spontaneous magnetization of the Ising model.
Suppose that (2.2) in Assumption A holds and let (cL) and (hL) be two
sequences such that cL � 0 for all L and that the limits

ξ = lim
L→∞

LcL and b= lim
L→∞

LhL (2.5)
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exist and are finite. Then for all m∈ [−m�,m�],

lim
ε↓0

lim
L→∞

1
Ld−1

log P
±,cL,hL

WL

(|ML −mLd | � εLd
)

=−Q±
b,ξ (m)+ inf

|m′|�m�

Q±
b,ξ (m

′), (2.6)

where Q±
b,ξ (m)= inf θ∈[0,1] Q

±
b,ξ (m, θ) with

Q±
b,ξ (m, θ)=−bm− ξκθ − ξΥ (m, θ)+M±,J (m), (2.7)

Various calculations in the future will require a somewhat more
explicit expression for the rate function m �→ Q±

b,ξ (m) on the right-hand
side of (2.6). To derive such an expression, we first note that the minimizer
of θ �→Q±

b,ξ (m, θ) is uniquely determined by the equation

θ

1− θ
= 1+m

1−m
eκ. (2.8)

Plugging this into Q±
b,ξ (m, θ) tells us that

Q±
b,ξ (m)=−bm− ξg(m)+M±,J (m), (2.9)

where

g(m)= log
(

1−m

2
+ eκ 1+m

2

)
. (2.10)

Clearly, g is strictly concave for any κ >0.

2.2. Macroscopic Phase Separation – “Liquid” Boundary

Conditions

While Theorem I.2.1 of Part I and Theorem 2.1 above may appear for-
mally similar, the solutions of the associated variational problems are
rather different. Indeed, unlike the “bulk” rate function Gh,c(m) of Part I,
the functions Q±

b,ξ (m) are not generically strictly convex which in turns
leads to a possibility of having more than one minimizing m. We consider
first the case of plus (that is, liquid water) boundary conditions.
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Let d � 2 and let J >Jc(d) and κ >0 be fixed. To make our formulas
manageable, for any function φ : [−m�,m�]→R let us use the abbreviation

D�
φ = φ(m�)−φ(−m�)

2m�

(2.11)

for the slope of φ between −m� and m�. Further, let us introduce the
quantity

ξt = w1

2m�d

(
g′(−m�)−D�

g

)−1 (2.12)

and the piecewise linear function b2 : [0,∞)→R which is defined by

b2(ξ)=




− w1

2m�
− ξD�

g, ξ <ξt

− d−1
d

w1
2m�

− ξg′(−m�), ξ � ξt.
(2.13)

Our next result is as follows:

Theorem 2.2. Let d � 2 and let J > Jc(d) and κ > 0 be fixed. Let
the objects Q+

b,ξ , ξt and b2 be as defined above. Then there exists a
(strictly) decreasing and continuous function b1: [0,∞) → R with the fol-
lowing properties:

(1) b1(ξ) � b2(ξ) for all ξ � 0, and b1(ξ)=b2(ξ) iff ξ � ξt.

(2) b′
1 is continuous on [0,∞), b′

1(ξ)→−g′(m�) as ξ →∞ and b1 is
strictly convex on [ξt,∞).

(3) For b �=b1(ξ), b2(ξ), the function m �→Q+
b,ξ (m) is minimized by a

single number m=m+(b, ξ)∈ [−m�,m�] which satisfies

m+(b, ξ)






=m�, if b>b1(ξ),

∈ (−m�,m�), if b2(ξ)<b<b1(ξ),

=−m�, if b<b2(ξ).

(2.14)

(4) The function b �→ m+(b, ξ) is strictly increasing for b ∈
[b2(ξ), b1(ξ)], is continuous on the portion of the line b = b2(ξ) for
which ξ > ξt and has a jump discontinuity along the line defined
by b = b1(ξ). The only minimizers at b = b1(ξ) and b = b2(ξ) are the
corresponding limits of b �→m+(b, ξ).
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The previous statement essentially characterizes the phase diagram for
the cases described in (2.5). Focusing on the plus boundary condition we
have the following facts: For reduced concentrations ξ exceeding the crit-
ical value ξt, there exists a range of reduced magnetic fields b where a
non-trivial droplet appears in the system. This range is enclosed by two
curves which are the graphs of functions b1 and b2 above. For b decreasing
to b1(ξ), the system is in the pure plus – i.e., liquid – phase but, interest-
ingly, at b1 a macroscopic droplet – an ice crystal – suddenly appears in
the system. As b further decreases the ice crystal keeps growing to sub-
sume the entire system when b = b2(ξ). For ξ � ξt no phase separation
occurs; the transition at b = b1(ξ) = b2(ξ) is directly from m = m� to m =
−m�.

It is noted that the situation for ξ near zero corresponds to the Ising
model with negative external field proportional to 1/L. In two-dimen-
sional setting, the latter problem has been studied in ref. 16. As already
mentioned, the generalizations to rectangular boxes will require a non-triv-
ial amount of extra work. For the unadorned Ising model (i.e., c=0) this
has been carried out in great detail in ref. 17 for d = 2 (see also ref. 13)
and in less detail in general dimensions.(10,11)

It is reassuring to observe that the above results mesh favorably with
the corresponding asymptotic of Part I. For finite concentrations and
external fields, there are two curves, c �→h+(c) and c �→h−(c), which mark
the boundaries of the phase separation region against the liquid and ice
regions, respectively. The curve c �→h+(c) is given by the equation

h+(c)= 1
2

log
1−q+
1−q−

, (2.15)

where (q+, q−) is the (unique) solution of

q+
1−q+

= eκ q−
1−q−

, q+
1+m�

2
+q−

1−m�

2
= c. (2.16)

The curve c �→h−(c) is defined by the same equations with the roles of m�

and −m� interchanged. Since h±(0)=0, these can be linearized around the
point (0,0). Specifically, plugging b/L for h and ξ/L for c into h=h±(c)

and letting L→∞ yields the linearized versions

b± =h′
±(0)ξ (2.17)

of h+ and h−. It is easy to check that h′±(0) = −g′(±m�) and so, in the
limit ξ → ∞, the linear function b+ has the same slope as b1 while b−
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has the same slope as b2 above. Theorem 2.2 gives a detailed description
of how these linearized curves ought to be continued into (infinitesimal)
neighborhoods of size 1/L around (0,0).

2.3. Macroscopic Phase Separation – “Ice” Boundary Conditions

Next we consider minus (ice) boundary conditions, where the requisite liq-
uid water, phase separation and ice regions will be defined using the func-
tions b̃1 � b̃2. As for the plus boundary conditions, there is a value ξ̃t >0
where the phase separation region begins, but now we have a new phe-
nomenon: For some (but not all) choices of J and κ, there exists a non-
empty interval (ξ̃t, ξ̃u) of ξ for which two distinct droplet transitions occur.
Specifically, as b increases, the volume fraction occupied by the droplet
first jumps discontinuously at b̃2(ξ) from zero to a strictly positive value,
then increases but stays bounded away from one, and then, at b = b̃1(ξ),
jumps discontinuously to one; i.e., the ice surrounding the droplet sud-
denly melts.

For each J >Jc(d) and each κ, consider the auxiliary quantities

ξ1 = w1

2m�d

(
D�

g −g′(m�)
)−1 and ξ2 =− (d −1)w1

(2m�d)2g′′(m�)
. (2.18)

(Note that, due to the concavity property of g, both ξ1 and ξ2 are finite
and positive.) The following is a precise statement of the above:

Theorem 2.3. Let d � 2 and let J > Jc(d) and κ > 0 be fixed.
Then there exist two (strictly) decreasing and continuous functions b̃1, b̃2:
[0,∞)→R and numbers ξ̃t, ξ̃u ∈ (0,∞) with ξ̃t � ξ̃u such that the following
properties hold:

(1) b̃1(ξ) � b̃2(ξ) for all ξ � 0, and b̃1(ξ)= b̃2(ξ) iff ξ � ξ̃t.

(2) b̃2 is strictly concave on [ξ̃t,∞), b̃′
2(ξ)→−g′(−m�) as ξ →∞, b̃1

is strictly convex on (ξ̃t, ξ̃u) and, outside this interval,

b̃1(ξ)=





w1
2m�

− ξD�
g, ξ � ξ̃t,

d−1
d

w1
2m�

− ξg′(m�), ξ � ξ̃u.
(2.19)

(3a) If ξ1 � ξ2, then ξ̃t = ξ̃u = ξ1 and b̃′
2 is continuous on [0,∞).
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(3b) If ξ1 <ξ2 then ξ̃t <ξ1 <ξ̃u =ξ2 and neither b′
1 nor b′

2 is continuous
at ξ̃t. Moreover, there exists m0 ∈ (−m�,m�) such that, as ξ ↓ ξ̃t,

b′
1(ξ)→−g(m�)−g(m0)

m� −m0
and b′

2(ξ)→−g(m0)−g(−m�)

m0 +m�

. (2.20)

(4) For b �= b̃1(ξ), b̃2(ξ), the function m �→Q−
b,ξ (m) is minimized by a

single number m=m−(b, ξ)∈ [−m�,m�] which satisfies

m−(b, ξ)






=m�, if b> b̃1(ξ),

∈ (−m�,m�), if b̃2(ξ)<b< b̃1(ξ),

=−m�, if b< b̃2(ξ).

(2.21)

(5) The function b �→ m−(b, ξ) is strictly increasing in b for b ∈
[b̃2(ξ), b̃1(ξ)], is continuous on the portion of the line b = b̃1(ξ) for
which ξ � ξ̃u and has jump discontinuities both along the line defined
by b= b̃2(ξ) and along the portion of the line b= b̃1(ξ) for which ξ̃t <ξ <

ξ̃u. There are two minimizers at the points where b �→m−(b, ξ) is discon-
tinuous with the exception of (b, ξ)= (b̃1(ξ̃t), ξ̃t)= (b̃2(ξ̃t), ξ̃t) when ξ̃t <ξ̃u,
where there are three minimizers; namely, ±m� and m0 from part (3b).

As a simple consequence of the definitions, it is seen that the question
of whether or not ξ1 � ξ2 is equivalent to the question whether or not

g(m�)−2m�g
′(m�)+ d

d −1
(2m�)

2g′′(m�) � g(−m�). (2.22)

We claim that (2.22) will hold, or fail, depending on the values of the var-
ious parameters of the model. Indeed, writing ε = tanh(κ/2) we get

g(m)= log(1+ εm)+ const. (2.23)

Regarding the quantity εm as a “small parameter,” we easily verify that
the desired inequality holds to the lowest non-vanishing order. Thus, if m�

is small enough, then (2.22) holds for all κ, while it is satisfied for all m�

whenever κ is small enough. On the other hand, as κ tends to infinity,
g(m�) − g(−m�) tends to log 1+m�

1−m�
, while the various relevant derivatives

of g are bounded independently of m�. Thus, as m� → 1, which happens
when J → ∞, the condition (2.22) is violated for κ large enough. Evi-
dently, the gap ξ̃u − ξ̃t is strictly positive for some choices of J and κ, and
vanishes for others.
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Since b̃1(0)> 0, for ξ sufficiently small the ice region includes points
with b > 0. Let us also show that the phase separation region can rise
above b=0; as indicated in the plot on the right of Fig. 1. Clearly, it suf-
fices to consider b=0 and establish that for some J , κ and ξ , the absolute
minimum of m �→Q−

0,ξ
(m) does not occur at ±m�. This will certainly hold

if

(Q−
0,ξ

)′(m�)>0 and Q−
0,ξ

(−m�)>Q−
0,ξ

(m�), (2.24)

or, equivalently, if

d −1
d

w1

2m�

>ξg′(m�) and ξ
(
g(m�)−g(−m�)

)
>w1 (2.25)

are both true. Some simple algebra shows that the last inequalities hold
for some ξ once

d −1
d

(
g(m�)−g(−m�)

)
>2m�g

′(m�). (2.26)

But, as we argued a moment ago, the difference g(m�) − g(−m�) can be
made arbitrary large by taking κ � 1 and m� sufficiently close to one,
while g′(m�) is bounded in these limits. So, indeed, the phase separation
region pokes above the b=0 axis once κ �1 and J �1.

Comparing to the linear asymptotic of the phase diagram from
Part I, we see that in the finite-volume system with minus (ice) bound-
ary condition, the lines bounding the phase separation region are shifted
upward and again are pinched together. In this case it is the line b= b̃1(ξ)

that is parallel to its counterpart b=h′+(0)ξ for ξ > ξ̃u, while b= b̃2(ξ) has
the same asymptotic slope (in the limit ξ →∞) as the function b=h′−(0)ξ .

2.4. Properties of the Spin Marginal

On the basis of Theorems 2.1–2.4, we can now provide a routine charac-
terization of the typical configurations in measure P

±,cL,hL

WL
. The following

is an analogue of Theorem 2.2 of Part I for the cases at hand:

Theorem 2.4. Let d � 2 and let J >Jc(d) and κ > 0 be fixed. Sup-
pose that Assumption A holds and let (cL) and (hL) be two sequences
such that cL � 0 for all L and that the limits ξ and b in (2.5) exist and
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are finite. Let us define two sequences of Borel probability measures ρ±
L

on [−m�,m�] by putting

ρ±
L

(
[−1,m]

)=P
±,cL,hL

WL
(ML � mLd), m∈ [−1,1]. (2.27)

Then the spin marginal of the measure P
±,cL,hL

WL
can again be written as

a convex combination of the Ising measures with fixed magnetization; i.e.,
for any set A of configurations (σx)x∈ΛL

,

P
±,cL,hL

WL

(A×{0,1}WL
)=

∫
ρ±

L (dm)P
±,J
WL

(A∣∣ML =�mLd	). (2.28)

Moreover, any (weak) subsequential limit ρ± of measures ρ±
L is con-

centrated on the minimizers of m �→ Q±
b,ξ (m). In particular, for b �=

b1(ξ), b2(ξ) the limit ρ+ = limL→∞ ρ+
L exists and is simply the Dirac mass

at m+(b, ξ)—the quantity from Theorem 2.2 – and similarly for ρ− =
limL→∞ ρ−

L and b �= b̃1(ξ), b̃2(ξ).

On the basis of Theorems 2.1–2.4, we can draw the following conclu-
sions: For d-dimensional systems of scale L with the total amount of salt
proportional to Ld−1 (i.e., the system boundary), phase separation occurs
dramatically in the sense that all of a sudden a non-trivial fraction of
the system melts/freezes (depending on the boundary condition). In hind-
sight, this is perhaps not so difficult to understand. While a perturbation
of size Ld−1 cannot influence the bulk properties of the system with a sin-
gle phase, here the underlying system is at phase coexistence. Thus the cost
of a droplet is only of order Ld−1, so it is not unreasonable that a com-
parable amount of salt will cause dramatic effects.

It is worth underscoring that the jump in the size of the macroscopic
droplet at b = b1 or b = b̃2 decreases with increasing ξ . Indeed, in the
extreme limit, when the concentration is finite (nonzero) we know that
no macroscopic droplet is present at the transition. But, presumably, by
analogy with the results of ref. 4 (see also refs. 3 and 15), there will be
a mesoscopic droplet – of a particular scaling – appearing at the tran-
sition point. This suggests that a host of intermediate mesoscopic scales
may be exhibited depending on how cL and hL tend to zero with the
ratio hL/cL approximately fixed. These intermediate behaviors are cur-
rently being investigated.

3. PROOFS OF MAIN RESULTS

The goal of this section is to prove the results stated in Section 2. We
begin by stating a generalized large deviation principle for both magneti-
zation and the fraction of salt on the plus spins from which Theorem 2.1
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follows as an easy corollary. Theorem 2.2 is proved in Section 3.2; Theo-
rems 2.3 and 2.4 are proved in Section 3.3.

3.1. A Generalized Large-deviation Principle

We will proceed similarly as in the proof of Theorem I.3.7 from Part I.
Let Λ⊂Z

d be a finite set and let us reintroduce the quantity

QΛ =
∑

x∈Λ

Sx

1+σx

2
, (3.1)

which gives the total amount of salt on the plus spins in Λ. Recall
that E

±,J
Λ denotes the expectation with respect to the (usual) Ising mea-

sure with coupling constant J and plus/minus boundary conditions. First
we generalize a couple of statements from Part I:

Lemma 3.1. Let Λ⊂Z
d be a finite set. Then for any fixed spin con-

figuration σ̄ = (σ̄x) ∈ {−1,1}Λ, all salt configurations (Sx) ∈ {0,1}Λ with
the same NΛ and QΛ have the same probability in the conditional mea-
sure P

±,c,h
Λ (·|σ = σ̄ ). Moreover, for any S= (Sx)∈{0,1}Λ with NΛ =�c|Λ|	

and for any m∈ [−1,1],

P
±,c,h
Λ

(
S occurs, MΛ =�m|Λ|	)

= 1
ZΛ

E
±,J
Λ

(
eκQΛ(σ,S)+hMΛ(σ)1{MΛ(σ)=�m|Λ|	}

)
, (3.2)

where the normalization constant is given by

ZΛ =
∑

S′∈{0,1}Λ
1{NΛ(S′)=�c|Λ|	} E

±,J
Λ

(
eκQΛ(σ,S′)+hMΛ(σ)

)
. (3.3)

Proof. This is identical to Lemma I.3.3 from Part I.

Next we will sharpen the estimate from Part I concerning the total
entropy carried by the salt. Similarly to the object Aθ,c

L (σ ) from Part I,
for each spin configuration σ = (σx)∈{−1,1}Λ and numbers θ, c∈ [0,1], we
introduce the set

Aθ,c
Λ (σ )={

(Sx)∈{0,1}Λ : NL =�c|Λ|	, QL =�θc|Λ|	}. (3.4)

Clearly, the size of Aθ,c
Λ (σ ) is the same for all σ with a given value of

the magnetization; we will thus let A
θ,c
Λ (m) denote the common value
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of |Aθ,c
Λ (σ )| for those σ with MΛ(σ) = �m|Λ|	. Let S(p) = p log p + (1 −

p) log(1−p) and let us recall the definition of the entropy function

Ξ(m, θ; c)=−1+m

2
S

( 2θc

1+m

)
− 1−m

2
S

(2(1− θ)c

1−m

)
, (3.5)

cf. formula (I.2.7) from Part I. Then we have:

Lemma 3.2. For each η > 0 there exist constants C1 <∞ and L0 <

∞ such that for all finite Λ⊂Z
d with |Λ| � Ld

0 , all θ, c ∈ [0,1] and all m

with |m| � 1−η satisfying

2θc

1+m
� 1−η and

2(1− θ)c

1−m
� 1−η (3.6)

we have

∣∣∣∣
log A

θ,c
Λ (m)

|Λ| −Ξ(m, θ; c)

∣∣∣∣ � C1
log |Λ|

|Λ| . (3.7)

Proof. The same calculations that were used in the proof of
Lemma I.3.4 from Part I give us

A
θ,c
Λ (m)=

( 1
2 (|Λ|+MΛ)

QΛ

)( 1
2 (|Λ|−MΛ)

NΛ −QΛ

)
(3.8)

with the substitutions MΛ =�m|Λ|	 and QΛ =�θc|Λ|	. By (3.6) and |m| �
1 − η, both combinatorial numbers are well defined once |Λ| is suffi-
ciently large (this defines L0). Thus, we can invoke the Stirling approxi-
mation and, eventually, we see that the right-hand side of (3.8) equals
exp{|Λ|Ξ(m, θ; c)} times factors which grow or decay at most like a power
of |Λ|. Taking logs and dividing by |Λ|, this yields (3.7).

Our final preliminary lemma is concerned with the magnetizations
outside [−m�,m�] which are (formally) not covered by Assumption A.
Recall the sequence of Wulff shapes WL defined at the end of Section 1.2.
Note that WL contains, to within boundary corrections, Ld sites.

Lemma 3.3. Suppose that J > Jc and let cL and hL be such
that LcL and LhL have finite limits as L→∞. For each ε >0, we have

lim
L→∞

1
Ld−1

log P
±,cL,hL

WL

(|MWL
| � (m� + ε)Ld

)=−∞. (3.9)
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Proof. This is a simple consequence of the fact that, in the unadorned
Ising magnet, the probability in (3.9) is exponentially small in volume – cf.
Theorem I.3.1 – and that with LhL and LcL bounded, there will be at most
a surface-order correction. A formal proof proceeds as follows: We write

P
±,cL,hL

WL

(
QL =�θcLLd	, ML =�mLd	)= K̃L(m, θ)

YL

, (3.10)

where

K̃L(m, θ)=A
θ,cL

WL
(m) ehL�mLd	+κ�θcLLd	

P
±,J
WL

(
ML =�mLd	) (3.11)

and where YL is the sum of K̃L(m′, θ ′) over all relevant values of m′
and θ ′. Under the assumption that both hL and cL behave like O(L−1),
the prefactors of the Ising probability can be bounded between e−CLd−1

and eCLd−1
, for some C <∞, uniformly in θ and m. This yields

P
±,cL,hL

WL

(|MWL
| � (m� + ε)Ld

)
� eCLd−1 1

YL

P
±,J
WL

(|MWL
| � (m� + ε)Ld

)
.

(3.12)

The same argument shows us that YL can be bounded below by e−CLd−1

times the probability that MWL
is near zero in the Ising measure P

±,J
WL

. In
light of J >Jc, Assumption A then gives

lim inf
L→∞

1
Ld−1

log YL >−∞. (3.13)

On the other hand, by Theorem I.3.1 (and the remark that follows it) we
have that

lim
L→∞

1
Ld−1

log P
±,J
WL

(|MWL
| � (m� + ε)Ld

)=−∞. (3.14)

Plugging this into (3.12), the desired claim follows.

We will use the above lemmas to state and prove a generalization of
Theorem 2.1.
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Theorem 3.4. Let d � 2 and let J > Jc(d) and κ � 0 be fixed.
Let cL ∈ [0,1] and hL ∈R be two sequences such that the limits ξ and b in
(2.5) exist and are finite. For each m∈ [−m�,m�] and θ ∈ (−1,1), let B̃L,ε =
B̃L,ε(m, cL, θ) be the set of all (σ,S) ∈ {−1,1}WL × {0,1}WL for which the
bounds

|MWL
−mLd | � εLd and |QWL

− θcLLd | � εLd−1 (3.15)

hold. Then

lim
ε↓0

lim
L→∞

log P
±,cL,hL

WL
(B̃L,ε)

Ld−1
=−Qb,ξ (m, θ)+ inf

|m′|�m�

θ ′∈[0,1]

Qb,ξ (m
′, θ ′),

(3.16)

where Qb,ξ (m, θ) is as in (2.7).

Proof. We again begin with the representation (3.10)–(3.11) for the
choices hLLd ∼bLd−1 and cLLd ∼ ξLd−1. For m∈ [−m�,m�] the last prob-
ability in (3.11) can be expressed from Assumption A and so the only
thing to be done is the extraction of the exponential rate of A

θ,cL

WL
(m)

to within errors of order o(Ld−1). This will be achieved Lemma 3.2, but
before doing that, let us express the leading order behavior of the quan-
tity Ξ(m, θ; cL). Noting the expansion S(p)=p log p−p+O(p2) for p↓0
we easily convince ourselves that

Ξ(m, θ; cL) = −θcL

(
log

2θcL

1+m
−1

)

−(1− θ)cL

(
log

2(1− θ)cL

1−m
−1

)
+O(c2

L)

= cL − cL log cL + cLΥ (m, θ)+O(c2
L), (3.17)

where Υ (m, θ) is as in (2.4). (The quantity O(c2
L) is bounded by a con-

stant times c2
L uniformly in m satisfying |m| � 1 − η and (3.6).) Invoking

Lemma 3.2 and the facts that |WL|−Ld =O(Ld−1) and Lc2
L →0 as L→∞

we now easily derive that

A
θ,cL

WL
(m)= exp

{
rL +Ld−1ξΥ (m, θ)+o(Ld−1)

}
, (3.18)

where rL =−L|WL|cL log(cL/e) is a quantity independent of m and θ .
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Putting the above estimates together, we conclude that

K̃L(m, θ)= exp
{

rL −Ld−1Qb,ξ (m, θ)+o(Ld−1)
}

(3.19)

where o(Ld−1) is small – relative to Ld−1 – uniformly in m ∈ [−m�,m�]
and θ ∈ [0,1]. It remains to use this expansion to produce the leading order
asymptotics of P

±,cL,hL

WL
(B̃L,ε). Here we write the latter quantity as a ratio,

P
±,cL,hL

WL
(B̃L,ε)= K̃L,ε(m, θ)

YL

, (3.20)

where K̃L,ε(m, θ) is the sum of K̃L(m′, θ ′) over all relevant values of (m′, θ ′)
that can contribute to the event B̃L,ε , while, we remind the reader, YL is the
sum of K̃L(m′, θ ′) over all relevant (m′, θ ′)’s regardless of their worth.

It is intuitively clear that the rL-factors in the numerator and denom-
inator cancel out and one is left only with terms of order Ld−1, but to
prove this we will have to invoke a (standard) compactness argument. We
first note that for each δ > 0 and each (m, θ) ∈ [−m�,m�] × [0,1], there
exists an ε > 0 and an L0 <∞ – both possibly depending on m, θ and δ

– such that, for L � L0,

∣∣∣
1

Ld−1
log

(
K̃L,ε(m, θ)e−rL

)+Qb,ξ (m, θ)

∣∣∣ � δ. (3.21)

(Here we also used that Qb,ξ (m, θ) is continuous in both variables on
[−m�,m�] × [0,1].) By compactness of [−m�,m�] × [0,1], there exists a
finite set of (mk, θk)’s such that the above ε-neighborhoods – for which
(3.21) holds with the same δ – cover the set [−m�,m�] × [0,1]. In fact we
cover the slightly larger set

R= [−m� − ε′,m� + ε′]× [0,1], (3.22)

where ε′ >0. By choosing the ε’s sufficiently small, we can also ensure that
for one of the k’s, the quantity Qb,ξ (mk, θk) is within δ of its absolute min-
imum. Since everything is finite, all estimate are uniform in L � L0 on R.

To estimate YL we will split it into two parts, YL,1 and YL,2, according
to whether the corresponding (m′, θ ′) belongs to R or not. By (3.21) and
the choice of the above cover of R we have that 1

Ld−1 log YL,1 is within,
say, 3δ of the minimum of (m, θ) �→Qb,ξ (m, θ) once L is sufficiently large.
(Here the additional δ is used to control the number of terms in the cover
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of R.) On the other hand, Lemma 3.3 implies that YL,2 is exponentially
small relative to YL,1. Hence we get

lim sup
L→∞

∣∣∣
1

Ld−1
log

(
YLe−rL

)+ inf
|m′|�m�

θ ′∈[0,1]

Qb,ξ (m
′, θ ′)

∣∣∣ � 3δ. (3.23)

Plugging these into (3.20) the claim follows by letting δ ↓0.

Proof of Theorem 2.1. This is a simple consequence of the com-
pactness argument invoked in the last portion of the previous proof.

3.2. Proof of Theorem 2.2

Here we will prove Theorem 2.2 which describes the phase diagram for the
“liquid” boundary condition, see the plot on the left of Fig. 1.

Proof of part (1). Our goal is to study the properties of the func-
tion m �→Q+

b,ξ (m). Throughout the proof we will keep J fixed (and larger
than Jc) and write M(·) instead of M+,J (·). For m ∈ [−m�,m�], let us
define the quantity

Eξ(m)=−ξg(m)+M(m). (3.24)

Clearly, this is just Q+
b,ξ (m) without the b-dependent part, i.e., Q+

b,ξ (m)=
−bm + Eξ(m). Important for this proof will be the “zero-tilt” version of
this function,

Êξ (m)=Eξ(m)−Eξ(−m�)− (m+m�)D
�
Eξ

, (3.25)

where D�
Eξ

is the “slope of Eξ between −m� and m�”, see (2.11).
Clearly, Eξ and Êξ have the same convexity/concavity properties but Êξ

always satisfies Êξ (−m�)= Êξ (m�)=0.
Geometrically, the minimization of Q+

b,ξ (m) may now be viewed as
follows: Consider the set of points {(m, y) : y =Eξ(m)} – namely, the graph
of Eξ(m) – and take the lowest vertical translate of the line y =bm which
contacts this set. Clearly, the minimum of Q+

b,ξ (m) is achieved at the
value(s) of m where this contact occurs. The same of course holds for the
graph y = Êξ (m) provided we shift b by D�

Eξ
. Now the derivative Ê′

ξ (m)

is bounded below at m=−m� and above at m=m� (indeed, as m↑m� the
derivative diverges to −∞). It follows that there exist two values, −∞ <

b1(ξ) � b2(ξ) < ∞, such that m = m� is the unique minimizer for b >
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b1(ξ), m=−m� is the unique minimizer for b<b2(ξ), and neither m=m�

nor m=−m� is a minimizer when b2(ξ)<b<b1(ξ).
On the basis of the above geometrical considerations, the region

where b1 and b2 are the same is easily characterized:

b1(ξ)=b2(ξ) if and only if Êξ (m) � 0 ∀m∈ [−m�,m�]. (3.26)

To express this condition in terms of ξ , let us define T (m)=M′′(m)/g′′(m)

and note that E′′
ξ (m)>0 if and only if T (m)>ξ . Now, for some constant

C =C(J )>0,

T (m)=C(m� −m)−
d+1
d

(
m+ cot(κ/2)

)2
, (3.27)

which implies that T is strictly increasing on [−m�,m�) with T (m) →
∞ as m ↑ m�. It follows that either Êξ is concave throughout [−m�,m�],
or there exists a T −1(ξ) ∈ (−m�,m�) such that Êξ is strictly convex on
[−m�,T

−1(ξ)) and strictly concave on (T −1(ξ),m�]. Therefore, by (3.26),
b1(ξ) < b2(ξ) if and only if Ê′

ξ (−m�) < 0, which is readily verified to be
equivalent to ξ >ξt. This proves part (1) of the theorem.

Proof of parts (3) and (4). The following properties, valid for ξ >

ξt, are readily verified on the basis of the above convexity/concavity
picture:

(a) For all b2(ξ)<b<b1(ξ), there is a unique minimizer m+(b, ξ) of
m �→Q+

b,ξ (m) in [−m�,m�]. Moreover, m+(b, ξ) lies in (−m�,T
−1(ξ)) and

is strictly increasing in b.

(b) For b=b1(ξ), the function m �→Q+
b,ξ (m) has exactly two minimiz-

ers, m� and a value m1(ξ)∈ (−m�,T
−1(ξ)).

(c) We have b2(ξ)=E′
ξ (−m�).

(d) The non-trivial minimizer in (ii), m1(ξ), is the unique solution of

Eξ(m)+ (m� −m)E′
ξ (m)=Eξ(m�). (3.28)

Moreover, we have

b1(ξ)=E′
ξ

(
m1(ξ)

)
. (3.29)
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(e) As b tends to the boundaries of the interval (b1(ξ), b2(ξ)), the
unique minimizer in (a) has the following limits

lim
b↓b2(ξ)

m+(b, ξ)=−m� and lim
b↑b1(ξ)

m+(b, ξ)=m1(ξ), (3.30)

where m1(ξ) is as in (b). Both limits are uniform on compact subsets
of (ξt,∞).

Now, part (3) of the theorem follows from (a) while the explicit for-
mula (2.13) for b2(ξ) for ξ � ξt is readily derived from (c). For, ξ � ξt,
the critical curve ξ �→b2(ξ) is given by the relation Q+

b,ξ (m�)=Q+
b,ξ (−m�),

which gives also the ξ � ξt part of (2.13). Continuity of b �→ m+(b, ξ)

along the portion of b=b2(ξ) for ξ >ξt is implied by (e), while the jump
discontinuity at b = b1(ξ) is a consequence of (a) and (e). This proves
part (4) of the theorem.

Proof of part (2). It remains to prove the continuity of b′
1(ξ), iden-

tify the asymptotic of b′
1 as ξ → ∞ and establish the strict concavity

of ξ �→ b1(ξ). First we will show that the non-trivial minimizer, m1(ξ),
is strictly increasing with ξ . Indeed, we write (3.28) as Fξ (m) = 0,
where Fξ (m)=Eξ(m�)−Eξ(m)− (m� −m)E′

ξ (m). Now,

∂

∂ξ
Fξ (m)=g(m)−g(m�)+ (m� −m)g′(m), (3.31)

which is positive for all m∈ [−m�,m�) by strict concavity of g. Similarly,

∂

∂m
Fξ (m)=−E′′

ξ (m)(m� −m), (3.32)

which at m = m1(ξ) is negative because m1 lies in the convexity interval
of Eξ , i.e., m1(ξ)∈ (−m�,T

−1(ξ)). From (d) and implicit differentiation we
obtain that m′

1(ξ)>0 for ξ >ξt. By (3.29) we then have

b′
1(ξ)=−g(m�)−g(m1)

m� −m1
(3.33)

which, invoking the strict concavity of g and the strict monotonicity
of m1, implies that b′

1(ξ)>0, i.e., b1 is strictly convex on (ξt,∞).
To show the remaining items of (2), it suffices to establish the limits

lim
ξ↓ξt

m1(ξ)=−m� and lim
ξ→∞

m1(ξ)=m�. (3.34)
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Indeed, using the former limit in (3.33) we get that b′
1(ξ) → −g′(m�)

as ξ → ∞ while the latter limit and (c) above yield that b′
1(ξ) → b′

2(ξt)

as ξ ↓ ξt which in light of the fact that b1(ξ) = b2(ξ) for ξ � ξt implies
the continuity of b′

1. To prove the left limit in (3.34), we just note that, by
(3.28), the slope of Êξ at m=m1(ξ) converges to zero as ξ ↓ ξt. Invoking
the convexity/concavity picture, there are two points on the graph of m �→
Êξt(m) where the slope is zero: m� and the absolute maximum of Êξ .
The latter choice will never yield a minimizer of Q+

b,ξ and so we must
have m1(ξ) → m� as claimed. The right limit in (3.34) follows from the
positivity of the quantity in (3.31). Indeed, for each m ∈ [−m�,m�) we
have Fξ (m)>0 once ξ is sufficiently large. Hence, m1(ξ) must converge to
the endpoint m� as ξ →∞.

3.3. Remaining Proofs

Here we will prove Theorem 2.3, which describes the phase diagrams for
the “ice” boundary condition, and Theorem 2.4 which characterizes the
spin-sector of the distributions P

±,cL,hL

WL
.

For the duration of the proof of Theorem 2.3, we will use the func-
tions Eξ and Êξ from (3.24) to (3.25) with M=M+,J replaced by M=
M−,J . The main difference caused by this change is that the function m �→
Êξ (m) may now have more complicated convexity properties. Some level
of control is nevertheless possible:

Lemma 3.5. There are at most two points inside [−m�,m�] where
the second derivative of function m �→ Êξ (m) changes its sign.

Proof. Consider again the function T (m) = M′′(m)/g′′(m) which
characterizes Ê′′

ξ (m)>0 by T (m)>ξ . In the present cases, this function is
given by the expression

T (m)= M′′(m)

g′′(m)
=C(m� +m)−

d+1
d

(
m+ cot(κ/2)

)2 (3.35)

where C = C(J ) > 0 is a constant. Clearly, T starts off at plus infinity at
m = −m� and decreases for a while; the difference compared to the sit-
uation in Theorem 2.2 is that T now need not be monotone. Notwith-
standing, taking the obvious extension of T to all m � −m�, there exists
a value mT ∈ (−m�,∞) such that T is decreasing for m < mT while it is
increasing for all m > mT. Now two possibilities have to be distinguished
depending on whether mT falls in or out of the interval [−m�,m�):
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(1) mT � m�, in which case the equation T (m) = ξ has at most one
solution for every ξ and m �→ Êξ (m) is strictly concave on [−m�,T

−1(ξ))

and strictly convex on (T −1(ξ),m�]. (The latter interval may be empty.)

(2) mT <m�, in which case the equation T (m)= ξ has two solutions
for ξ ∈ (T (mT), T (m�)]. Then m �→ Êξ (m) is strictly convex between these
two solutions and concave otherwise. The values of ξ for which there is at
most one solution to T (m)= ξ inside [−m�,m�] reduce to the cases in (1).
(This includes ξ =T (mT).)

We conclude that the type of convexity of m �→ Êξ (m) changes at most
twice inside the interval [−m�,m�], as we were to prove.

The proof will be based on studying a few cases depending on the
order of the control parameters ξ1 and ξ2 from (2.18). The significance of
these numbers for the problem at hand will become clear in the following
lemma:

Lemma 3.6. The derivatives Ê′
ξ (m�) and Ê′′

ξ (m�) are strictly increas-
ing functions of ξ . In particular, for ξ1 and ξ2 as defined in (2.18), we
have

(1) Ê′
ξ (m�)<0 if ξ <ξ1 and Ê′

ξ (m�)>0 if ξ >ξ1.

(2) Ê′′
ξ (m�)<0 if ξ <ξ2 and Ê′′

ξ (m�)>0 if ξ >ξ2.

Proof. This follows by a straightforward calculation.

Now we are ready to prove the properties of the phase diagram for
minus boundary conditions:

Proof of Theorem 2.3. Throughout the proof, we will regard the
graph of the function m �→ Êξ (m) as evolving dynamically – the role of the
“time” in this evolution will be taken by ξ . We begin by noting that, in
light of the strict concavity of function g from (2.10), the value Êξ (m) is
strictly decreasing in ξ for all m∈ (−m�,m�). This allows us to define

ξ̃t = inf
{
ξ � 0: Êξ (m)<0 for some m∈ (−m�,m�)

}
. (3.36)

Now for ξ = 0 we have Êξ (m) > 0 for all m ∈ (−m�,m�) while for ξ > ξ1,
the minimum of Êξ over (−m�,m�) will be strictly negative. Hence, we
have 0<ξt � ξ1.

We will also adhere to the geometric interpretation of finding the mi-
mizers of m �→ Q−

b,ξ (m), cf. proof of part (1) of Theorem 2.2. In partic-
ular, for each ξ > 0 we have two values b̃1 and b̃2 with b̃2 � b̃1 such that
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the extremes −m� and m� are the unique minimizers for b<b̃2 and b>b̃1,
respectively, while none of these two are minimizers when b̃2 <b<b̃1. Here
we recall that b̃1 is the minimal slope such that a straight line with this
slope touches the graph of Êξ at m� and at some other point, but it never
gets above it, and similarly b̃2 is the maximal slope of a line that touches
the graph of Êξ at −m� and at some other point, but never gets above it.

As a consequence of the above definitions, we may already conclude
that (1) is true. (Indeed, for ξ � ξ̃t we have Êξ (m) � 0 and so the two
slopes b̃1 and b̃2 must be the same. For ξ > ξ̃t there will be an m for
which Êξ (m)< 0 and so b̃1 �= b̃2.) The rest of the proof proceeds by con-
sidering two cases depending on the order of ξ1 and ξ2. We begin with the
easier of the two, ξ1 � ξ2:

Case ξ1 � ξ2: Here we claim that the situation is as in Theorem 2.2
and, in particular, ξ̃t =ξ1. Indeed, consider a ξ >ξ2 and note that Ê′′

ξ (m�)>

0 by Lemma 3.6. Since Ê′′
ξ (m) is negative near m = −m� and positive

near m = m�, it changes its sign an odd number of times. In light of
Lemma 3.5, only one such change will occur and so [−m�,m�] splits into
an interval of strict concavity and strict convexity of m �→ Êξ (m). Now,
if ξ̃t is not equal ξ1, we may choose ξ between ξ̃t and ξ1 so that Ê′

ξ (m�)<

0. This implies that Êξ (m) > 0 for all m < m� in the convexity region;
in particular, at the dividing point between concave and convex behavior.
But then a simple convexity argument Êξ (m)>0 throughout the concavity
region (except at −m�). Thus Êξ (m)> 0 for all m∈ (−m�,m�) and so we
have ξ � ξ̃t. It follows that ξ̃t = ξ1.

Invoking the convexity/concavity picture from the proof of Theo-
rem 2.2 quickly finishes the argument. Indeed, we immediately have (4)
and, letting ξ̃u = ξ̃t, also the corresponding portion of (5). It remains to
establish the properties of b̃1 and b̃2 – this will finish both (2) and (3a).
To this end we note that b̃1 is determined by the slope of Eξ at m�, i.e.,
for ξ � ξ̃t,

b̃1(ξ)=E′
ξ (m�). (3.37)

This yields the second line in (2.19); the first line follows by taking the
slope of Eξ between −m� and m�. As for b̃2, here we note that an ana-
logue of the argument leading to (3.33) yields

b̃′
2(ξ)=−g(m1)−g(−m�)

m1 +m�

, ξ � ξ̃t, (3.38)

where m1 =m1(ξ) is the non-trivial minimizer at b= b̃2(ξ). In this case the
argument analogous to (3.31)–(3.32) gives m′

1(ξ)< 0. The desired limiting
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values (and continuity) of b̃′
2 follow by noting that m1(ξ) → m� as ξ ↓ ξ̃t

and m1(ξ)→−m� as ξ →∞.

Case ξ1 <ξ2: Our first item of business is to show that ξ̃t <ξ1. Con-
sider the situation when ξ =ξ1 and m=m�. By Lemma 3.6 and continuity,
the derivative Ê′

ξ1
(m�) vanishes, but, since we are assuming ξ1 <ξ2, the sec-

ond derivative Ê′′
ξ1

(m�) has not “yet” vanished, so it is still negative. The
upshot is that m� is a local maximum for m �→ Êξ1(m). In particular, look-
ing at m slightly less than m�, we must encounter negative values of Êξ1

and, eventually, a minimum of Êξ1 in (−m�,m�). This implies that ξ̃t <ξ1.
Having shown that ξ̃t <ξ1 <ξ2, we note that for ξ ∈ (ξ̃t, ξ2), the func-

tion m �→ Êξ (m) changes from concave to convex to concave as m increases
from −m� to m�, while for ξ � ξ2, exactly one change of convexity type
occurs. Indeed, Êξ is always concave near −m� and, when ξ < ξ2, it is
also concave at m�. Now, since ξ > ξ̃t, its minimum occurs somewhere
in (−m�,m�). This implies an interval of convexity. But, by Lemma 3.5,
the convexity type can change only at most twice and so this is all that
we can have. For the cases ξ > ξ2 we just need to realize that Êξ is now
convex near m=m� and so only one change of convexity type can occur.
A continuity argument shows that the borderline situation, ξ = ξ2, is just
like ξ >ξ2.

The above shows that the cases ξ � ξ2 are exactly as for ξ1 � ξ2 (or,
for that matter, Theorem 2.2) while ξ < ξ̃t is uninteresting by definition, so
we can focus on ξ ∈ [ξ̃t, ξ2). Suppose first that ξ > ξ̃t and let Iξ denote the
interval of strict convexity of Êξ . The geometrical minimization argument
then shows that, at b= b̃1, there will be exactly two minimizers, m� and a
value m1(ξ) ∈ Iξ , while at b = b̃2, there will also be two minimizers, −m�

and a value m2(ξ) ∈ Iξ . For b̃1 < b < b̃2, there will be a unique mini-
mizer m−(b, ξ) which varies between m2(ξ) and m1(ξ). Since Êξ is strictly
convex in Iξ , the map b �→m−(b, ξ) is strictly increasing with limits m1(ξ)

as b↑ b̃1(ξ) and m2(ξ) as b↓ b̃2(ξ). Both m1 and m2 are inside (−m�,m�)

so m− undergoes a jump at both b̃1 and b̃2. Clearly, m1(ξ) �= m2(ξ) for
all ξ ∈ (ξ̃t, ξ2).

At ξ = ξ̃t, there will be an “intermediate” minimizer, but now there
is only one. Indeed, the limits of m1(ξ) and m2(ξ) as ξ ↓ ξ̃t must be the
same because otherwise, by the fact that [m1(ξ),m2(ξ)] is a subinterval of
the convexity interval Iξ , the function Êξ̃t

would vanish in a whole inter-
val of m’s, which is impossible. Denoting the common limit by m0 we
thus have three minimizers at ξ = ξ̃t; namely, ±m� and m0. This proves
part (4) and, letting ξ̃u = ξ2, also part (5) of the theorem. As for the
remaining parts, the strict concavity of b̃1 and the limits (2.20) are again
consequences of formulas of the type (3.33) and (3.37–3.38) and of the
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monotonicity properties of m1 and m2. The details are as for the previous
cases, so we will omit them.

Proof of Theorem 2.4. As in Part I, the representation (2.28) is a
simple consequence of the absence of salt-salt interaction as formulated in
Lemma 3.1. The fact that any subsequential (weak) limit ρ± of ρ±

L has all
of its mass concentrated on the minimizers of Q±

b,ξ is a consequence of
Theorem 2.1 and the fact that m can only take O(L) number of distinct
values. Moreover, if the minimizer is unique, which for the plus boundary
conditions happens when b �= b1(ξ), b2(ξ), any subsequential limit is the
Dirac mass at the unique minimum (which is m+(b, ξ) for the plus bound-
ary conditions and m−(b, ξ) for the minus boundary conditions).
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