
Large Deviation Analysis for Layered
Percolation Problems on the Complete
Graph*

Lincoln Chayes, S. Alex Smith
Department of Mathematics, University of California at Los Angeles, Los Angeles,

California; e-mail: lchayes@math.ucla.edu

Received 3 June 2008; accepted 16 September 2010; received in final form 24 June 2011
Published online 23 November 2011 in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/rsa.20387

ABSTRACT: We analyze the large deviation properties for the (multitype) version of percolation on
the complete graph – the simplest substitutive generalization of the Erdős-Rènyi random graph that
was treated in article by Bollobás et al. (Random Structures Algorithms 31 (2007), 3–122). Here the
vertices of the graph are divided into a fixed finite number of sets (called layers) the probability of
{u, v} being in our edge set depends on the respective layers of u and v. We determine the exponential
rate function for the probability that a giant component occupies a fixed fraction of the graph, while
all other components are small. We also determine the exponential rate function for the probability
that a particular exploration process on the random graph will discover a certain fraction of vertices
in each layer, without encountering a giant component. © 2011 Wiley Periodicals, Inc. Random Struct.
Alg., 40, 460–492, 2012
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1. INTRODUCTION

The principle object of study in this paper is a generalized version of the Erdős-Rènyi
random graph. Here, instead of a percolation process occurring homogeneously throughout
the graph, the vertex set is first divided into a finite number of differing types. Then edges are
placed randomly and independently with a probability that depends on the types of vertices it
might connect (and an overall scaling by the inverse of the total number of vertices). Models
of this form were treated in [6] where some preliminary results were derived. Moreover,
this model is a special case of the general systems defined in [3] – specifically Example 4.3
– where more detailed properties were obtained.
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From our perspective (which is slightly different than that of the above mentioned) the
differing types correspond to layers which, by analogy with spin–systems, are physically
displaced copies of some regular infinite lattice. The scaling of the interaction/edge proba-
bilities is the mean–field approximation and, in the context of this approximation, for various
reasons the interaction might be non–homogeneous relative to the layers of the constituents.

The subject of layered mean–field spin–systems is rather ancient (see, e.g., [5]). While it
is unlikely that a complete mathematical treatment of these models has ever been enacted,
it is still regarded as a reliable guide for the behavior of systems in thin geometries (see,
e.g., [7]). For the layered problems, as in the homogenous cases, the mean–field analysis is
greatly facilitated by the construction of a free energy function: In general one may write
down, explicitly or implicitly what amounts to the large deviation rate for the probability
of observing a particular magnetization fraction (or other general order–parameter) in each
layer. This function is then minimized whereupon quantities of interest e.g., the actual
limiting magnetization profile, are obtained. Such an approach was taken in [4] for the
standard Erdős-Rènyi random graph and was, to some extent, a facet in the study of the
random cluster model on the complete graph [2].

While the strategic philosophy that we follow in this work has some of its roots in
[4], the multiple layers represent additional dimensions to the problem. Thus, to find the
paramount large deviation rates, we must optimize over trajectories in a density–parameter
space which, at the discrete level are generated by the systematic removal of clusters. This
leads to a constrained variational problem the (semi-explicit) solution of which provides
the desired rates.

We close this section with the basic notations we will be using and, in the next section,
we will state our main results. Proofs will emerge in Sections 3–5.

1.1. Notation

For the purposes of this paper, we define a layered set to be a set in which each element
v has an associated integer, which we designate by layer(v). We similarly define a layered
graph to be a graph whose vertex set is a layered set. Since we think of layer(v) as having
something to do with the position of v, we will freely use language such as “v is in the ith

layer” to mean that layer(v) = i. If S is a layered set, we let S� = {v ∈ S : layer(v) = �} be
the set of elements of S in layer �. If G is a layered graph with vertex set V , we let G� be
the subgraph of G restricted to V�.

We will typically use L to indicate the number of layers in a graph and we will use the
hat symbol (ˆ ) to indicate vectors with L components. If η̂ is such a vector, we will let |η̂| be
the L 1 norm on η̂. If S is a set or a graph, we let |S| be the number of elements or vertices
in S, respectively. We will let 〈S〉 be the vector of dimension L whose �th component is |S�|.
We will also use the componentwise partial ordering on vectors, so (for example) η̂ > 0
will mean that η̂ ∈ (0, ∞)L. If v is a vertex in a graph G, we will let C(v) = CG(v) be the
component of G containing v.

We now introduce the main model of the paper: Let L ∈ N and n̂ ∈ N
L be given, and

consider the layered vertex set

V = {(�, k) : 1 ≤ � ≤ L, 1 ≤ k ≤ n̂L}, (1.1)

where layer((�, k)) = �. Then given probabilities (pij)i,j∈{1,...,L} with pij = pji for all i and j,
let E be the (random) edge set so that each edge {u, v} appears (or not) in E independently,
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and P({u, v} ∈ E ) = player(u)layer(v), so that the probability that an edge exists between given
vertices in layers i and j is pij. In this paper we will restrict ourselves to the case in which
the number of vertices in each layer scales proportionally to the number of vertices in every
other layer; so let us for the remainder of the paper take n̂ = (�ρ̂1n�, . . . , �ρ̂Ln�) for some
ρ̂ ∈ (0, ∞)L and n > 0. Additionally, let us take A = (αij) to be a symmetric, non-negative,
irreducible L × L matrix, and let pij = αij

n . We will generally consider L and A to be fixed
throughout the paper, and therefore we designate the resulting random graph by G (n, ρ̂)

and the corresponding probability measure by Pn,ρ̂ – although we will allow n and ρ̂ to be
implicit when it is clear from context. We let En,ρ̂ indicate expectation with respect to Pn,ρ̂ .

Throughout this note we shall, emphatically, not adhere to the summation convention
(concerning repeated indices) as this would be a cause for much confusion.

2. MAIN RESULTS

2.1. Background

Here we shall summarize various properties of the model which will be needed later. The
vast majority of these have been proved in [3] and [6], often by comparison to branching
processes. The seminal result, stated below, can now be derived by the alternative method
of minimizing the appropriate free energy/rate function.

Theorem 2.1. Let θ̂ (r, n, ρ̂) be the (random) portion of sites in each layer of G (n, ρ̂)

which are in components of size greater than r (that is to say θ̂k = ρ̂k× the fraction of sites
satisfying the above clause).

Then there exists a θ̂ �(ρ̂) so that

lim
ε→0

lim
n→∞ θ̂ (εn, n, ρ̂) = θ̂ �(ρ̂) (2.1)

in the sense of convergence in distribution. Furthermore, θ̂ �(ρ̂) is the maximum solution to
the system of equations given by

θ̂k = ρ̂k

[
1 − exp

(
−

L∑
i=1

αik θ̂i

)]
(2.2)

Remark . This is a special case of Theorem 3.1 in [3] where, as explained therein,
“maximal” actually turns out to be a well defined concept as will be described in the next
lemma. The above was also obtained as Eq. (7) – and Theorem 1 – of [6] for the particular
model at hand.

Lemma 2.2. The system of equations given by (2.2) has a maximal solution in R
L for

all ρ̂ > 0, which is either zero or strictly positive. This maximal solution is an increasing
function of ρ̂. Moreover, if a strictly positive solution to (2.2) exists, it is unique.

The proof of Lemma 2.2 can be found in the proofs Theorems 6.1 and 6.2 of [3] and is
adequately discussed in [6]. It also is discussed in [1] (and references therein) in the context
of Theorem 8.

In the first two citations, the critical condition for the model on G (n, ρ̂) is also spelled
out. This, in our language, is described as follows:
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We will say that ρ̂ is a supercritical density if θ̂ �(ρ̂) is nonzero, a subcritical density if
there is a neighborhood of ρ̂ in (0, ∞)L on which θ̂ � is zero, and a critical density otherwise.
In order to characterize these three regions of density further, we introduce an attachment-
susceptibility matrix, whose ijth entry is the expected number of edges from a vertex in layer
i to vertices in layer j (up to O(1/n) corrections):

Bρ̂ =




α11ρ̂1 α12ρ̂2 · · · α1Lρ̂L

α21ρ̂1 α22ρ̂2 · · · α2Lρ̂L

...
...

. . .
...

αL1ρ̂1 αL2ρ̂2 · · · αLLρ̂L


 . (2.3)

We then have:

Lemma 2.3. Let κ0(ρ̂) be the maximal eigenvalue of Bρ̂ . Then ρ̂ is subcritical if κ0(ρ̂) < 1,
critical if κ0(ρ̂) = 1, and supercritical if κ0(ρ̂) > 1.

We omit a formal proof since results of this form have appeared previously (c.f. the
Remark below).

The behavior above, below and at criticality is described by the following:

Proposition 2.4. Let L, A, and ρ̂ > 0 be given. Suppose that for each n, a vertex is chosen
uniformly – so that Pn,ρ̂ (layer(v) = i) = |ρ̂|−1ρ̂i. Then if ρ̂ is subcritical,

lim
n→∞ En,ρ̂[〈C(v)〉] = (

I − BT
ρ̂

)−1 ρ̂

|ρ̂| . (2.4)

If ρ̂ is critical then

lim
n→∞ En,ρ̂[|C(v)|] = ∞, (2.5)

but

lim
n→∞ Pn,ρ̂ (|C(v)| > εn) = 0 (2.6)

for all ε > 0. If ρ̂ is supercritical then there is some ε > 0 such that

lim inf
n→∞ Pn,ρ̂ (|C(v)| > εn) > 0. (2.7)

Remark . The critical and supercritical results here and in Lemma 2.3 are part of the
main theorem (Theorem 3.1) in [3] and in various places in [6]. The subcritical result is not
readily found in these references. The proof is not particularly difficult: As in [3] Section 7
(see also [6]) we may compare to a relevant branching process as described in their Sections
5 and 6 and in [1]. In sub–critical instance the desired result is readily obtained [1] since
the process dies out at an exponential rate.

It may be of slight concern (or interest) to see the transpose of Bρ̂ playing the seminal
rôle in the subcritical – as well as the critical – cases. We demonstrate by direct appeal to
the above mentioned branching process; note that this is peculiar to the uniform selection
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of the vertex. Let Xij denote the matrix element which represents the average number of
vertices of type j attached to the root when it is a single vertex of type i. Then, as one would
expect,

Xij = δij +
L∑

k=1

BikXkj. (2.8)

But, defining

Vij := ρ̂i

|ρ̂|Xi,j

we have

Vij = ρ̂i

|ρ̂|δi,j +
L∑

k=1

ρ̂i

|ρ̂|BikXkj. (2.9)

By the special attribute of uniform selection – as opposed to some other definition of Vij –
we see

ρ̂i

|ρ̂|BikXkj = ρ̂i

|ρ̂|Aikρ̂kXkj = BT
ikVkj.

Thus, multiplying (2.9) on the right by a vector with unity in each component we obtain

L∑
j=1

Vij =: v̂i = ρ̂i

|ρ̂| +
L∑

k=1

BT
ik v̂k (2.10)

which is equivalent to (2.4). It is noted that if for fixed ρ̂ 
= 0 a solution to (2.4) has been
acquired with v̂i ≥ 0 then it can be concluded that the model defined by Bρ̂ is subcritical.
Indeed, since Bρ̂ is irreducible, by the Perron–Frobenius theorem, the maximum eigenvalue
corresponds to a one–dimensional space and therefore cannot be orthogonal to ρ̂. It follows
e.g., from the version of the above exhibited in (2.4) that the maximum eigenvalue of Bρ

(or BT
ρ ) is strictly less than 1.

2.2. Main Theorems

To state the first theorem, we let S be the entropy function given by

S(η̂, ρ̂) =
L∑

k=1

(ρ̂k log ρ̂k − η̂k log η̂k − (ρ̂k − η̂k) log(ρ̂k − η̂k)), (2.11)

and let


(η̂) =
L∑

k=1

η̂k log
(

1 − e−∑L
i=1 αik η̂i

)
. (2.12)

With these, we can calculate the large deviation rate of large components existing in
G (n, ρ̂):
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Theorem 2.5. Let L, A, and ρ̂ be given, and for each n let v be a random vertex of G (n, ρ̂)

chosen by any distribution desired which is independent from E . Also let S ⊂ ∏
i[0, ρ̂i] be

a set of densities which is open in
∏

i[0, ρ̂i]. Then

lim
n→∞

1

n
log Pn,ρ̂

(
1

n
〈C(v)〉 ∈ S

)
= sup

η̂∈S

[S(η̂, ρ̂) + 
(η̂) − η̂TA(ρ̂ − η̂)]. (2.13)

We are also interested in the rate of G (n, ρ̂) not having large components:

Theorem 2.6. Let L, A, and ρ̂ > 0 be given. We define the continuous function

�(ρ̂) =
{∑L

i=1

[
ρ̂i log ρ̂i

ρ̂�
i

− 1
2

(
ρ̂i − ρ̂�

i

) (
1 + ∑L

j=1 αijρ̂j

)]
if ρ̂ is supercritical

0 otherwise
,

(2.14)

where for ρ̂ supercritical, ρ̂� is the unique critical density such that (I − BT
ρ̂� )(ρ̂ − ρ̂�) = 0.

Then if Sr is the event that all components in G (ρ̂, n) are of size smaller than r, we have

lim
r→∞ lim

n→∞
1

n
log Pn,ρ̂ (Sr) = lim

ε→0
lim

n→∞
1

n
log Pn,ρ̂ (Sεn)

= �(ρ̂). (2.15)

Moreover, the convergence is uniform for ρ̂ bounded above.

As a kind of combination of Theorem 2.5 and Theorem 2.6, we find the exponential rate
of θ̂ taking a specified value:

Theorem 2.7. Let L, A, and ρ̂ > 0 be given, and let S ⊂ ∏
i[0, ρ̂i] be a set of densities

open in
∏

i[0, ρ̂i]. Then

lim
ε→0

lim
n→∞

1

n
log P(θ̂(εn, n, ρ̂) ∈ S ) = sup

η̂∈S

[S(η̂, ρ̂) + 
(η̂) + �(ρ̂ − η̂) − η̂TA(ρ̂ − η̂)].
(2.16)

Finally, we supplement the results in [3] (Theorems 3.1 and 3.6) concerning the
uniqueness of the giant component:

Theorem 2.8. Let L, A, ρ̂ > 0, and δ > 0 be given. Let Qε be the event that G (n, ρ̂) has
two or more components of size at least εn. Then

lim sup
n→∞

1

n
log Pn,ρ̂ (Qε | θ̂ (εn, n, ρ̂) ∈ [δ, 1]L) < 0. (2.17)

Thus the giant component is unique with exponential probability.
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3. ALL SITES CONNECTED

The goal of this section is to prove Theorem 2.5 and the following:

Theorem 3.1. Let L and A be given, and let Km be the event that G (n, ρ̂) has m or fewer
components. Then for each m ≥ 1 and ρ̂ > 0,

lim
n→∞

1

n
log Pn,ρ̂ (Km) = 
(ρ̂), (3.1)

and the convergence is uniform for ρ̂ bounded above and bounded away from zero.

Notice that if m is chosen to be 1, Theorem 3.1 gives the exponential rate of G (n, ρ̂)

being connected.
In order to prove Theorem 3.1, we will convert the problem into an equivalent problem

for directed graphs. To this end, for all vertex sets U and W , and all directed edge sets 
E ,
let F(U , W , 
E ) be the event that for every vertex in U there is a path of (strictly) positive
length in 
E to a vertex in W .

Lemma 3.2. Let vertex sets U and W , and (pv ∈ [0, 1])v∈U ∪W be given with∑
v∈U ∪W pv = 1. Let (ωv)v∈U be i.i.d. random elements of U ∪ W with

P(ωv = u) = pu. (3.2)

Then let 
E be the random edge set 
E = {(v, ωv) : v ∈ U }. Then

P[F(U , W , 
E )] =
∑
v∈W

pv. (3.3)

Proof. Given our construction of 
E (in which each vertex has an outgoing edge), we have
that

F(U , W , 
E ) = F(U \ W , W , 
E ). (3.4)

Indeed, in the left hand event each vertex in W is either directly connected to W , or is indi-
rectly connected to W through U \W . Thus we may assume without loss of generality that
U and W are disjoint. We will proceed by induction on |U |; the size of W is unimportant.
(Indeed the system is manifestly equivalent to the one where W = {w} with pw given by
the right hand side of Eq. (3.3)). The case with |U | = 1 is trivial, so we assume that the
lemma holds for |U | ≤ N , and take |U | = N + 1. Let u ∈ U , and note that if ωu = u then
F(U , W , 
E ) does not occur. On the other hand – that is, if ωu 
= u – we let

ω′
v =

{
ωu if ωv = u
ωv otherwise

, (3.5)

for each v ∈ U \ {u}, and let 
E ′ = {(v, ω′
v) : v ∈ U \ {u}}. Then every path in 
E

which does not start or end with u has a naturally corresponding path in 
E ′: simply remove
all instances of u from the path. By this correspondence, we see that F(U \ {u}, W , 
E ′)
occurs if and only if F(U , W , 
E ) occurs. We note further that in the case ωu ∈ W we
have P(ω′

v ∈ W ) = pu + ∑
y∈W py for v ∈ 
U \ {u}.
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Thus we have

P[F(U , W , 
E )] =
∑
y∈W

pyP
[
F(U \ {u}, W , 
E ′)

∣∣ωu = y
]

+
∑

y∈U \{u}
pyP[F(U \ {u}, W , 
E ′) | ωu = y]. (3.6)

Since (ω′
v)v∈U \{u} are i.i.d. once ωu is conditioned upon, our induction assumption gives that

P[F(U \ {u}, W , 
E ′)
∣∣ωu = y] =

{
pu + ∑

v∈W pv if y ∈ W∑
v∈W pv if y ∈ U \ {u} . (3.7)

Substituting these into (3.6) gives the result for |U | = N + 1, and completes the inductive
step of the proof.

Lemma 3.3. Let L, A, and ρ̂ > 0 be given, and let 
E be the random directed edge
set on vertex set V so that each directed edge (u, v) appears (or not) in 
E independently
with P((u, v) ∈ 
E ) = player(u)layer(v). Then, letting Pn,ρ̂ be the probability measure associated
with 
E , we have

lim
n→∞

1

n
log Pn,ρ̂[F(V , {v}, 
E )] = 
(ρ̂) = lim

n→∞ Pn,ρ̂[F(V , V , 
E )]1/n (3.8)

for all v ∈ V . Moreover, if ρ̂ is bounded above and bounded away from zero, the convergence
is uniform.

Proof. We will prove the lemma by showing

lim
n→∞ Pn,ρ̂[F(V , {v}, 
E )]1/n = lim

n→∞ Pn,ρ̂[F(V , V , 
E )]1/n. (3.9)

Indeed, once this is established, the existence and value of the mutual limit is clear. In
particular, the event on the right hand side is the event that each vertex in V has an outgoing
edge in 
E ; for finite n this may be calculated explicitly:

Pn,ρ̂[F(V , V , 
E )] =
L∏

k=1

(
1 −

L∏
i=1

(
1 − αik

n

)�ρ̂in�
)�ρ̂k n�

. (3.10)

and the value of the limit follows.
We turn to the substantive task which is to establish Eq. (3.9). First, note that since

F(V , W , 
E ) is increasing in W , in the sense that F(V , W , 
E ) ⊂ F(V , U , 
E ) whenever
W ⊂ U . In particular, we have

Pn,ρ̂[F(V , {v}, 
E )] ≤ Pn,ρ̂[F(V , V , 
E )]. (3.11)

To get a lower bound, we let 
F be a subset of 
E gotten by discarding all but one outgoing
edge (randomly selected) from each vertex. Then let P̃(·) = Pn,ρ̂[·|F(V , V , 
E )], and note
that since F(V , {v}, 
E ) is an increasing event with respect to 
E , we have

P̃[F(V , {v}, 
E )] ≥ P̃[F(V , {v}, 
F )]. (3.12)
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We also note that under the measure P̃, the set 
F contains exactly one outgoing edge for
each vertex. We let

bij = lim
n→∞ P̃[(x, y) ∈ 
F for some y ∈ Vj] (3.13)

where x ∈ Vi. Then, as is readily estimated using the limiting Poisson statistics,

bij ≥ [1 − e−αij ρ̂j ]e−∑
k 
=j αik ρ̂k

1 − e−∑
k αik ρ̂k

. (3.14)

Specifically, if the probability of x having an edge in 
E to a given layer is uniformly bounded
away from zero, the probability of x having such an edge in 
F is also uniformly bounded
away from zero.

We will now use induction on L to show that

P̃[F(V , {v}, 
F )] = c/n + o(1/n), (3.15)

for some constant c > 0 depending on L, A, and ρ̂. If L = 1, this is a straightforward
application of Lemma 3.2. We then assume that (3.15) holds for L ≤ M and take L = M +1.
Assume without loss of generality that v is not in layer M + 1 and apply Lemma 3.2 to
conclude

P̃

[
F

(
VM+1,

M⋃
i=1

Vi, 
F
)]

= 1 − b(M+1)(M+1) + o(1). (3.16)

Here the fact that A is irreducible (and ρ̂ > 0) implies that 1 − b(M+1)(M+1) > 0. Next, if
F(VM+1,

⋃M
i=1 Vi, 
F ) occurs, we let 
F ′ be a copy of 
F in which the edges terminating in

VM+1 are remapped to edges terminating in
⋃M

i=1 Vi á la the proof of Lemma 3.2. The rates
of connections in 
F ′ are given by (b′

ij), where b′
ij = bij + bi(M+1)b(M+1)j for i, j ≤ M. Once

again A being irreducible implies (b′
ij) must be as well. Thus we may use our inductive

assumption to prove that (3.15) holds for all L.
Now using (3.12) and taking limits we have

lim
n→∞ Pn,ρ̂[F(V , {v}, 
E )]1/n ≥ lim

n→∞ Pn,ρ̂[F(V , V , 
E )]1/n, (3.17)

which proves (3.9); and since nonzero bij are uniformly bounded away from zero for ρ̂

bounded above and bounded away from zero, we have uniform convergence.

We will also use Lemma 3.2 from [4], which we reproduce here (with slightly modified
notation):

Lemma 3.4. For a collection of vertices W = {1, . . . , n} with an associated set of edge
probabilities (pkl)1≤k<l≤n, let G be the inhomogeneous undirected random graph over W .
Similarly, let 
G denote the inhomogeneous directed graph with the restriction that the two
possible (directed) edges between k and l occur independently, each with probability pkl.
Letting 
E 
G be the edge set of 
G , we have P(G is connected) = P(F(W \ {1}, {1}, 
E 
G )).
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Proof of Theorem 3.1. For a vertex set W , let E +(W ) be the complete set of edges on W .
We then note for n ≥ m

Km =
⋃

W ⊂V|W |=m

{G (n, ρ̂) ∪ E +(W ) is connected}, (3.18)

and thus

Pn,ρ̂ (Km) = nO(m) sup
W ⊂V|W |=m

Pn,ρ̂ (G (n, ρ̂) ∪ E +(W ) is connected). (3.19)

Moreover, since the vertices are a priori interchangeable within a given layer, we need only
consider a finite number of W in the supremum. Thus we will have proved the theorem
once we have shown that 1

n log Pn,ρ̂ (G (n, ρ̂) ∪ E +(W ) is connected) converges uniformly
to 
(ρ̂) for ρ̂ bounded above and bounded away from zero. Thus let us fix S ⊂ V with
|S | = m, and let v ∈ S . Since adding an edge (a, b) to G (n, ρ̂) is equivalent to setting
pab = 1, and since F(V \ {v}, {v}, 
E ∪ 
E +(S )) = F(V \ S , S , 
E ) – where 
E + is the full
set of directed edges on S – Lemma 3.4 shows that

Pn,ρ̂ (G (n, ρ̂) ∪ E +(S ) is connected) = Pn,ρ̂[F(V \ S , S , 
E )]. (3.20)

Then we note

F(V , S , 
E ) = F(V \ S , S , 
E )
⋂

F(S , V , 
E ). (3.21)

and point out that events on the right hand side are independent. Since the rightmost event
occurs with (uniform) probability of order unity and the event on the left hand side is
bounded between F(V , {v1}, 
E ) and F(V , V , 
E ), we can use Lemma 3.3 to conclude

lim
n→∞

1

n
log Pn,ρ̂[F(V \ S , S , 
E )] = 
(ρ̂). (3.22)

Since this holds for all choices of S , and the convergence is uniform, we use (3.20)
and (3.19) to finish the proof.

Corollary 3.5. Let m ≥ 1 and ρ̂(0) be given. Then,

1

n
log Pn,ρ̂ (Km) ≤ 
(ρ̂) + o(1), (3.23)

where the o(1) term is uniformly bounded for (1/n, . . . , 1/n) ≤ ρ̂ ≤ ρ̂(0). Furthermore, if
m = 1 then the o(1) term is uniformly bounded for 0 ≤ ρ̂ ≤ ρ̂(0).

Proof. We first note that the lower bound on ρ̂ is chosen to guarantee that each layer has at
least one vertex. For m > 1, this guarantees that no vertices are strictly isolated. For m = 1
such a restriction is unnecessary – indeed, the existence of vertices which are isolated would
cause the left hand side of (3.23) to be negative infinity. Thus for the remainder of the proof
we assume that each vertex has at least one potential neighbor.

Following the proof of Theorem 3.1 up to around (3.19), we get

1

n
log Pn,ρ̂ (Km) = o(1) + sup

W ⊂V|W |=m

1

n
log Pn,ρ̂ (G (n, ρ̂) ∪ E +(W ) is connected), (3.24)
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where o(1) is independent of ρ̂. Then taking S as in the proof of Theorem 3.1, we have
by (3.21)

Pn,ρ̂[F(V \ S , S , 
E )] ≤ O(n)m
L∏

k=1

(
1 −

L∏
i=1

(
1 − αik

n

)�ρ̂in�
)�ρ̂k n�

, (3.25)

where the O(n)m term comes from Pn,ρ̂[F(S , V , 
E )] – here we have used the assumption
that each vertex has at least one potential neighbor – and the remainder of the right hand side
comes from bounding the event F(V , S , 
E ) by F(V , V , 
E ) and using (3.10). The result
then follows by applying (3.20) and taking limits.

Proof of Theorem 2.5. We note that for all η̂ with 0 ≤ η̂ ≤ ρ̂ we have

Pn,ρ̂ (〈C(v)〉 = �η̂n�) =
L∏

i=1

(�ρ̂in�
�η̂in�

)
Pn,η̂(K1)

L∏
i,j=1

(
1 − αij

n

)�η̂in�(�ρ̂jn�−�η̂jn�)
. (3.26)

Thus for a lower bound we note that for each η̂ ∈ S we have 1
n�η̂n� ∈ S for sufficiently

large n – following from S open. Thus for each η̂ ∈ S we use (3.26) and Theorem 3.1 to
get

lim inf
n→∞

1

n
log Pn,ρ̂

(
1

n
〈C(v)〉 ∈ S

)
≥ S(η̂, ρ̂) + 
(η̂) − η̂TA(ρ̂ − η̂). (3.27)

For an upper bound, note that 〈C(v)〉 can take only polynomially many values, and thus

Pn,ρ̂

(
1

n
〈C(v)〉 ∈ S

)
= eo(n) sup

η̂∈S

Pn,ρ̂ (〈C(v)〉 = �η̂n�). (3.28)

Now using (3.26) and Corollary 3.5, we get an upper bound which matches (3.27). This
proves the Theorem.

4. NON-PERCOLATING SUPERCRITICALITY

4.1. Overview

In order to prove Theorems 2.6 & 2.7, (as well as Theorem 2.1) we will have to consider
certain paths in density parameter space; roughly speaking, these represent progress in the
reduction of the density by the extraction of existing components. In this subsection, we will
first define the relevant sorts of paths and introduce a cost function for motion along these
paths. Our primary result of this section – Theorem 4.2 – relates the large deviation rate of
density reduction to the optimal cost among all paths which connect the densities. We shall
turn to some preliminary definitions that will culminate in a statement of Theorem 4.2 –
after which we can conclude this overview.

Let 
̂ : [0, ∞) �→ [0, ∞)L denote a path in density parameter space. Of exclusive
interest will be ascents, which are Lipschitz continuous paths emanating from the origin
and which are nondecreacing in all components and increasing in at least one component.
For convenience, we shall parameterize the ascents in such a way that |
̂(t)| = t for all
t > 0. Finally, we denote by P(η̂) the set of ascents that pass through the point η̂.
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For γ̂ a vector with |γ̂ | = 1 and t ≥ 0 let us define

1

χ(γ̂ , t)
= min

{
x ∈ [0, 1]

∣∣∣∣∣
L∑

i=1

γ̂i

x + t
∑L

j=1 αijγ̂j

≤ 1

∣∣∣∣∣
}

(4.1)

where, for historical reasons the above is denoted by a reciprocal quantity. If the minimum
is achieved at x = 0 we will, somewhat informally, declare χ to be infinite.

Next, we define ψ̂ by

ψ̂i(γ̂ , t) = γ̂it

1/χ(γ̂ , t) + t
∑L

j=1 αijγ̂j

(4.2)

It is noted that at t = 0, we have χ = 1 (and ψ̂ = 0). Thus by continuity, for t small
enough, [χ ]−1 > 0 (with ψ̂ non–trivial). However, under most circumstances, it will be the
case that for t � 1, the only choice is [χ ]−1 = 0. Here we let t� denote the supremum of
t’s for which χ < ∞ – where it is noted, by obvious monotonicity considerations, that t�

is well defined although possibly infinite. Assuming otherwise (since t� = ∞ represents
a trivial problem) we have for t > t�, the resultant ψ̂ is independent of t. We claim that
for t < t� the quantities (ψ̂ , χγ̂ ) represent a (density, average cluster size) pairing in the
subcritical regime while for t ≥ t� the model with density ψ̂ is critical with a corresponding
interpretation. This is the subject of our next Lemma.

Lemma 4.1. If v is a vertex chosen uniformly at random from V then

χ(γ̂ , t) = lim
n→∞ En,ψ̂(γ̂ ,t)[|C(v)|] (4.3)

with both sides infinity if t ≥ t�. Further, when t < t�,

lim
n→∞

En,ψ̂(γ̂ ,t)[〈C(v)〉]
En,ψ̂(γ̂ ,t)[|C(v)|] = γ̂ . (4.4)

Finally, for t ≥ t�, the model defined by Bψ̂ is critical and γ̂ is precisely the maximum
eigenvector of BT

ψ̂
(with eigenvalue unity).

Proof. Let us first consider the t < t� – subcritical – cases. The goal is to show that with
ρ̂ = ψ̂ and v̂ = χγ̂ , equation (2.10) is satisfied. For ease of exposition, let us temporarily
denote ŵi := ∑

j αijγ̂j. Then

[
BT

ψ̂
χ γ̂

]
i
=

L∑
j=1

ψ̂iαijχγ̂j = tγi

[χ ]−1 + tŵi
χŵi.

On the other hand, χγ̂ − |ψ̂ |−1ψ̂ is given, componentwise, by

χγ̂i − |ψ̂ |−1ψ̂i = χγi([χ ]−1 + tŵi) − γi

[χ ]−1 + tŵi

which is manifestly the same. Thus, as far as subcritical cases are concerned, via
Proposition 2.4, all claims have been vindicated.
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For t > t� the above is formally true with χ = ∞. Notwithstanding, let us first pause
to note that if there is any ŵi = 0, with γ̂i 
= 0 we can never get to criticality while if both
γi and ŵi are zero, the correct interpretation of the ratio (from the subcritical limit) is zero.
Proceeding, we have

[
BT

ψ̂
γ̂
]

i
=

L∑
j=1

ψ̂iαijγ̂j = γ̂i

ŵi
· ŵi = γ̂i

In light of the above, we may associate with (almost) every point on an ascending path
the critical or subcritical density ψ̂(
̂′(t)/|
̂′(t)|, |
̂(t)|); although due to our normalization
this simplifies, a.e., to ψ̂(
̂′(t), t). We next set

ξ(γ̂ , η̂) =
L∑

i=1

γ̂i log η̂i − γ̂ TAη̂. (4.5)

and on the basis of ξ and ψ̂ we define a free-energy like object for ascents:

H(
̂, a, b) =
∫ b

a

(
ξ(
̂′(t), 
̂(t)) − ξ(
̂′(t), ψ̂(
̂′(t), t))

)
dt. (4.6)

Most often, we will be interested in maximizing H over paths with fixed end-
points 
̂(a), 
̂(b), which will be clear from context and suppressed from our notation.

Finally, let C(1), C(2), . . . be the components of G (n, ρ̂) randomly ordered according
to size bias: I.e. C(1) is sampled by choosing a vertex uniformly and removing its entire
component and, in general, C(k) is sampled by removing the component of a vertex chosen
uniformly from the remaining graph after C(1), . . . , C(k−1) has been removed. Then for
0 ≤ η̂ ≤ ρ̂, let

ϒ(ρ̂, η̂, r, n) = Pn,ρ̂

(
∃k :

k∑
i=1

〈C(i)〉 = �ρ̂n� − �η̂n�, |C(i)| ≤ r ∀i ≤ k

)
. (4.7)

Put simply, ϒ(ρ̂, η̂, r, n) is the probability that, starting with the system at parameter ρ̂ if
we pluck out components at random we arrive at the system with parameter η̂ (and do so
without ever having selected a component of size larger than r).

We are now in a position to state the following, which is the central object of this section:

Theorem 4.2. Let ρ̂ and η̂ be given with ρ̂ ≥ η̂ ≥ 0. Then

lim
r→∞ lim

n→∞
1

n
log ϒ(ρ̂, η̂, r, n) = lim

ε→0
lim

n→∞
1

n
log ϒ(ρ̂, η̂, εn, n) = sup


̂∈P(η̂)∩P(ρ̂)

H(
̂, |η̂|, |ρ̂|).
(4.8)

Moreover, the convergence is uniform for ρ̂ bounded above.

Theorem 4.2 has an interpretation that is not without appeal. Assume that
|
̂(a) − 
̂(b)| � 1 so that we may envision the integrand for a minimizing path of H(
̂, a, b)

as essentially linear. The cost in (4.6) is now seen as [
̂(b) − 
̂(a)] times the probability –
measured on the exponential scale – of observing the system at parameter ψ̂ if the actual
system has parameter 
̂. Then, ψ̂ is chosen so that in a typical selection of its clusters, the
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size ratio is such that, typically, when these clusters are selected, the density decreases in
the (desired) direction of 
̂(a) − 
̂(b).

We now proceed with the overview: In the next subsection, we will present a variety of
results which concern the distribution of cluster sizes in these systems and in Subsection
4.3 these will be assembled into a proof of Theorem 4.2. In Subsection 4.4, we will study
the H–functional in its own right. In particular, we will define paths called natural ascents
which characterize the maximizers of the cost–functional. Subsection 4.5, noted for its
brevity, will contain the proofs of Theorems 2.6 & 2.7 as well as Theorem 2.1.

4.2. Cluster Distributions

Lemma 4.3. Let A, L, and ρ̂(0) be given, and for each ρ̂, let p(k̂, ρ̂, n) = Pn,ρ̂ (〈C(v)〉 = k̂),
where v is a vertex chosen uniformly at random from G (n, ρ̂). Then there exists a c = c(ρ̂(0))

and a p(k̂, ρ̂) – which may be acquired as the n → ∞ limit of p(k̂, ρ̂, n) – such that for all
ρ̂ ≤ ρ̂(0),

exp

(
−c

L∑
i=1

k̂2
i

(1 ∧ ρ̂i)n

)
≤ p(k̂, ρ̂, n)

p(k̂, ρ̂)
≤ exp

(
c(|k̂|2/n) + c

|ρ̂|n
)

, (4.9)

where the lower bound holds only for k̂ ≤ ρ̂n. In this bound, k̂2
i /ρ̂i is considered to be zero

if both k̂i and ρ̂i are zero, and p(k̂, ρ̂, n)/p(k̂, ρ̂) is considered to be one if both p(k̂, ρ̂, n)

and p(k̂, ρ̂) are zero. Furthermore, for all ρ̂, η̂ > 0,

p(k̂, ρ̂)

p(k̂, η̂)
= |η̂|

|ρ̂|
L∏

i=1

(
ρ̂i

η̂i
e−∑L

j=1 αij(ρ̂j−η̂j)

)k̂i

. (4.10)

Proof. Recall that V is the vertex set of G (n, ρ̂) and let W ⊂ V with 〈W 〉 = k̂ so that

g(k̂, ρ̂, n) =
L∏

i,j=1

(
1 − αij

n

)k̂i(�ρ̂jn�−k̂j) = e−ρ̂TAk̂+O(|k̂|2/n) (4.11)

is the probability that W is disconnected from V \W in G (n, ρ̂). Note that the error here is
uniformly bounded for ρ̂ bounded above. Let (sij ∈ N)1≤i≤j≤L be given and let T be a tree
on W which has sij edges between Wi and Wj for each i and j. Then if v is a vertex uniformly
chosen from V , we have

P(T spans C(v)) = |k̂|∑L
i=1�ρ̂in�g(k̂, ρ̂, n)

∏
1≤i≤j≤L

(αij

n

)sij
, (4.12)

where by ‘spans’ we means that T and C(v) have the same vertex set, and the edge set of
T is contained in that of C(v). Additionally, we have

∑
1≤i≤j≤L sij = |k̂| − 1, so

P(C(v) = T |TspansC(v)) =
[

L∏
i=1

(
1 − αii

n

)(k̂i
2)−sii

][ ∏
1≤i<j≤L

(
1 − αij

n

)k̂i k̂j−sij

]
(4.13)

= exp[O(|k̂|2/n)] (4.14)

whenever P(T spans C(v)) > 0. We note that this error term is independent of ρ̂.
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Now let N(k̂, (sij)) be the number of trees on k̂ layered vertices that have sij edges between
layers i and j for each i and j. We define

f (k̂) = |k̂|∏L
i=1 k̂i!

∑
(sij):

∑
i≤j sij=|k̂|−1

N(k̂, (sij))
∏

1≤i≤j≤L

α
sij
ij . (4.15)

Thus we have

p(k̂, ρ̂, n) = exp[O(|k̂|2/n) + O(1/(|ρ̂n|))]
(

L∏
i=1

k̂i!
)

f (k̂)
g(k̂, ρ̂, n)

|ρ̂|n|k̂|

L∏
i=1

(�ρ̂in�
k̂i

)
, (4.16)

where the O(1/(|ρ̂|n)) is non-negative, and comes from replacing
∑

i�ρ̂in� with |ρ̂|n in
the denominator. For an upper bound, we expand the binomials and bound �ρ̂in�!

�ρ̂in−k̂i�!
above

by (ρ̂in)k̂i . For a lower bound, we bound this same term below by (ρ̂in)k̂i exp(−O(k̂2
i /(ρ̂in))).

Now defining p(k̂, ρ̂) = limn→∞ p(k̂, ρ̂, n), we get both (4.9) and (4.10) (as well as the fact
that the limit exists). Note that without knowing N(k̂, (sij)), we cannot be more specific
about p(k̂, ρ̂) however, for subcritical ρ̂’s the quantity p(k̂, ρ̂) is a full probability mass
function.

We now define

M (η̂) =

µ : N

L �→ [0, ∞); µ(0, . . . , 0) = 0

∣∣∣∣∣∣
∑

k̂

k̂µ(k̂) = η̂


 (4.17)

M (η̂, r) = {µ ∈ M (η̂) | µ(k̂) = 0 for |k̂| > r}. (4.18)

We will use, repeatedly, the primitive bound∑
k̂

µ(k̂) ≤ |η̂|

for µ ∈ M (η̂).
This brings us to

Lemma 4.4. Given δ > 0, there exists a c > 0 so that for all η̂(1), η̂(2) with η̂(1) ≤ η̂(2),
δ ≤ |η̂(1)| ≤ |η̂(2)| ≤ 1/δ, and |η̂(2) − η̂(1)| sufficiently small, all µ ∈ M (η̂(2) − η̂(1), εn) for
some ε, and any function η̂(k̂) with η̂(1) ≤ η̂(k̂) ≤ η̂(2),

∑
k̂

µ(k̂) log
p(k̂, η̂(k̂), n)

p(k̂, η̂(2))
≤ c|η̂(2) − η̂(1)|

(
ε + |η̂(2) − η̂(1)| + 1

n

)
. (4.19)

Also, given ρ̂(2) ≥ ρ̂(1) > 0, there exists a c so that for all η̂(1), η̂(2) with ρ̂(1) ≤ η̂(1) ≤
η̂(2) ≤ ρ̂(2) and |η̂(2) − η̂(1)| sufficiently small, all µ ∈ M (η̂(2) − η̂(1), εn) for some ε, and
any function η̂(k̂) with η̂(1) ≤ η̂(k̂) ≤ η̂(2),

∑
k̂

µ(k̂) log
p(k̂, η̂(k̂), n)

p(k̂, η̂(2))
≥ −c|η̂(2) − η̂(1)|(ε + |η̂(2) − η̂(1)|). (4.20)
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Note that the difference in the requirements of the first and second half of the lemma is
that in the first half we require that η̂ be bonded away from zero in magnitude, whereas in
the second half we require that η̂ be bounded away from zero in all components.

Proof. Using (4.9) and the fact that µ(k̂) = 0 for |k̂| > εn – and the “primitive” bound –
we have that

−c′ε
L∑

i=1

η̂
(2)

i − η̂
(1)

i

1 ∧ η̂
(1)

i

≤
∑

k̂

µ(k̂) log
p(k̂, η̂(k̂), n)

p(k̂, η̂(k̂))
≤ c′

(
ε + 1

|η̂(1)|n
)

|η̂(2) − η̂(1)|, (4.21)

where c′ is the c in (4.9). Then using (4.10) we have

∑
i

(
η̂

(2)

i − η̂
(1)

i

)
log

(
η̂

(1)

i

η̂
(2)

i

)
≤
∑

k̂

µ(k̂) log
p(k̂, η̂(k̂))

p(k̂, η̂(2))

=
∑

k̂

µ(k̂)

[
log

|η̂(2)|
|η̂(k̂)| +

L∑
i=1

k̂i log
η̂i(k)

η̂
(2)

i

+
L∑

i=1

k̂i

L∑
j=1

αij(η̂
(2)

j − η̂j(k))

]

≤ |η̂2 − η̂(1)| log

( |η̂(2)|
|η̂(1)|

)
+ (η̂(2) − η̂(1))TA(η̂(2) − η̂(1)) : (4.22)

In the first and third term in the square brackets, we have replaced η̂(k) with η̂(1),
componentwize and pointwise; then this third term evolves into the quadratic form due
µ ∈ M (η̂(2) − η(1)) and in the first term, we use the primitive bound. The middle term(s)
can be neglected since each member is non–positive.

Combining (4.21) and (4.22) and using the fact that |η̂(1)| is bounded below gives the
stated result.

Lemma 4.5. Let ρ̂, γ̂ be given with ρ̂, γ̂ ≥ 0 componentwise and |γ̂ | = 1. Then we have

sup
µ∈M (γ̂ )

∑
k̂

µ(k̂) log
p(k̂, ρ̂)

∑
�̂ µ(�̂)

µ(k̂)
= ξ(γ̂ , ρ̂) − ξ(γ̂ , ψ̂(γ̂ , |ρ̂|)). (4.23)

Proof. To reduce clutter, let us write ψ̂ in place of ψ̂(γ̂ , |ρ̂|). Then using (4.10) to rewrite
p(k̂, ρ̂) in terms of p(k̂, ψ̂), we have

∑
k̂

µ(k̂) log
p(k̂, ρ̂)

∑
�̂ µ(�̂)

µ(k̂)
=


∑

k̂

µ(k̂) log
|ψ̂ |
|ρ̂| p(k̂, ψ̂)

∑
�̂ µ(�̂)

µ(k̂)

+
∑

k̂

µ(k̂)

L∑
i=1

k̂i

(
log

ρ̂i

ψ̂i

−
L∑

j=1

αij(ρ̂j − ψ̂j)

) .

(4.24)

Due to the requirement that
∑

k̂µ(k̂) = γ̂ for each µ ∈ M (γ̂ ), the second sum on the right
hand side evaluates to ξ(γ̂ , ρ̂) − ξ(γ̂ , ψ̂). Thus it remains to be proved that
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sup
µ∈M (γ̂ )

∑
k̂

µ(k̂) log
|ψ̂ |
|ρ̂| p(k̂, ψ̂)

∑
�̂ µ(�̂)

µ(k̂)
= 0, (4.25)

which we shall do in two parts. We start by showing that the supremum is at least zero.
We recall that ψ̂ is either subcritical or critical. In the former case let χ(ψ̂) denote, as in

(4.1) the limiting average size of the appropriate connected cluster (see, also, Lemma 4.1)
and let us take µ(k̂) = [χ ]−1p(k̂, ψ̂). Then, since we are subcritical,

∑
�̂ µ(�̂) = [χ ]−1

while (4.4) – and the fact that µ(0, . . . , 0) = 0 – shows that indeed µ ∈ M (γ̂ ). Then using
|ψ̂ | = |ρ̂|, we have, for all k̂,

log
|ψ̂ |
|ρ̂| p(k̂, ψ̂)

∑
�̂ µ(�̂)

µ(k̂)
≡ 0. (4.26)

The critical cases are handled with a similar subcritical strategy. Let ψ̂(γ̂ , t) be as in
(4.2) and suppose t < t�. We are therefore assuming |ρ̂| ≥ t� so ψ̂ = ψ̂(γ̂ , t�). We utilize,
for t < t�

µt(k̂) = 1

χ(t)
p(k̂, ψ̂(γ̂ , t)).

Then, again by (4.4), etc., µt is in M (γ̂ ). The quantity of interest in (4.25) becomes

∑
k̂

µt(k̂) log
|ψ̂ |
|ρ̂| +

∑
k̂

µt(k̂) log
p(k̂, ψ̂)

p(k̂, ψ̂(γ̂ , t))

and we will let t ↑ t�. The first term is manifestly of order [χ ]−1 and vanishes in this limit.
As for the second, we will use (4.10) inside the log. We obtain∣∣∣∣∣∣

∑
k̂

µt(k̂) log
p(k̂, ψ̂)

p(k̂, ψ̂(γ̂ , t))

∣∣∣∣∣∣ ≤ 1

χ(t)

[∣∣∣∣∣log
|ψ̂(γ̂ , t)|

|ψ̂ |

∣∣∣∣∣ +
L∑

i=1

k̂i

∣∣∣∣∣log
|ψ̂i(γ̂ , t)|

|ψ̂i|

∣∣∣∣∣
]

+
∑

k̂

µt(k̂)

L∑
i=1

k̂i

L∑
j=1

αij|ψ̂j(γ̂ , t) − ψ̂j|. (4.27)

Again, the first term vanishes with [χ ]−1. As for the last two terms, since |ψ̂j(γ̂ , t) − ψ̂j|
will vanish as t ↑ t� and, meanwhile, µt(k̂)k̂i sums to something finite which is independent
of t (namely γ̂i) these terms go to zero as well.

To show that the supremum is at most zero, we drop the |ψ̂ |
|ρ̂| ≤ 1 term and the rest

follows from elementary convexity considerations. Indeed, let q(k̂) ∝ µ(k̂) be a probability
measure on N

L we have (regardless of whether µ ∈ M (γ̂ ))

µ(k̂) log
p(k̂, ψ̂)

q(k̂)
∝ q(k̂) log

p(k̂, ψ̂)

q(k̂)
= p(k̂, ψ̂)

[
q(k̂)

p(k̂, ψ̂)
log

p(k̂, ψ̂)

q(k̂)

]
.

Letting G(x) := −x log x – which is concave – then by Jensen’s inequality,
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∑
k̂

p(k̂, ψ̂)G

(
q(k̂)

p(k̂, ψ̂)

)
≤ G


∑

k̂

q(k̂)


 = G(1) = 0

and we have finished the proof of the lemma.

For the proof of Theorem 4.2, we will need to introduce a discrete version of M (γ̂ , r).
Let M(b̂, r) be the set of sequences indexed by elements of N

L \ {0} given by

M(b̂, r) =

mk̂ : N

L \ {0̂} → N :
∑

k̂

k̂mk̂ = b̂; mk̂ = 0 for |k̂| > r


 . (4.28)

We are then in need of a bound on the size of M:

Lemma 4.6. |M(b̂, r)| = exp
(

O
(

n
L+1
L+2 (log n)2

))
, where n = |b̂|, uniformly in r. In

particular, 1
n log |M(b̂, r)| = o(1).

Proof. We will prove this by instead bounding the size of the larger set

Q(n) =

mk̂ : N

L \ {0̂} → N :
∑

k̂

|k̂|mk̂ ≤ n


 , (4.29)

which does not depend on r at all. Let Jj = {k̂ ∈ N
L : 2j ≤ |k̂| < 2j+1}, and let w(a, b) =

|{k̂ ∈ N
b : |k̂| = a}| = (a+b−1

b−1

)
. We then note that for each (mk̂) ∈ Q(n), we must have∑

k̂∈Jj
mk̂ ≤ n2−j for all j. Thus we have

|Q(n)| ≤
∞∏

j=0

�n2−j�∑
a=0

w(a, |Jj|) (4.30)

≤
�log2 n�∏

j=0

nw(�n2−j�, |Jj|). (4.31)

We claim that

w(a, b) ≤
(

1 + a

b

)b
(

1 + b

a

)a

This is verified as follows: First, to simplifies matters a bit, note that by monotonicity in b,
we may replace (b−1)’s by b’s in the expression for w(a, b). If a = N and b = 1, the claim
is obviously true. Now we can increment b and the full claim follows an inductive argument
which uses the monotonicity of

(
1 + a

b+ϑ

)b (
1 + b+ϑ

a

)a
as a function of ϑ for ϑ > 0.

Next we claim that, e.g., if a ≥ b that

(
1 + a

b

)b
(

1 + b

a

)a

≤
(

4
a

b

)b

.

Indeed, this is manifestly an equality if a = b and logarithmic differentiation of both sides
verifies the result due to the fact that log(1 + b/a) ≤ b/a.
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All this allows us to estimate |Jj| ≤ cL2j(L+1), and so

w(�n2−j�, |Jj|) ≤ nO(n
L+1
L+2 ) (4.32)

for j = 0, . . . , �log2 n�. Combined with (4.31), this gives us the result.

4.3. The Rate for ϒ

Proof of Theorem 4.2. We will prove this by getting an upper and lower bound, although
we will only show the upper bound explicitly. The proof of the upper bound requires a bit
of boot strapping, and the first half of the process is to show that for any δ > 0 there is a
c = c(η̂(2), η̂(1)) so that

1

n
log ϒ(η̂(2), η̂(1), εn, n)

≤ |γ̂ |[o(1) + c|γ̂ |] +
(
ξ(γ̂ /|γ̂ |, η̂(2)) − ξ(γ̂ /γ̂ , ψ̂(γ̂ /|γ̂ |, |η̂(2)|))

)
, (4.33)

for all ρ̂ ≥ η̂(2) ≥ η̂(1) with |η̂(1)|, |η̂(2)|−1 ≥ δ and sufficiently small γ̂ = η̂(2) − η̂(1), where
the o(1) term is uniformly bounded for η̂(1), η̂(2) (which are fixed independent of n) in this
domain and this term tends to zero as n tends to infinity and ε tends to zero.

We begin by setting b̂ = �η̂(2)n� − �η̂(1)n�, and noting that the event upon which
ϒ is based occurs if and only if there is some (mk̂) ∈ M(b̂, εn) so that exactly mk̂ of
C(1), C(2), . . . , C(

∑
m

�̂
) have 〈C(·)〉 = k̂. Thus we have

ϒ(η̂(2), η̂(1), εn, n) =
∑

m
k̂
∈M(b̂,εn)

(
∑

mk̂)!∏
mk̂!

[∏
p(k̂, η̂(2) − O(|γ̂ |), n)

m
k̂

]
, (4.34)

where the O(|γ̂ |) term is strictly bounded in magnitude by |γ̂ |. Now let mk̂ ∈ M(b̂, εn) be
chosen to maximize the summand. Since Lemma 4.6 gives us |M(b̂, εn)| ≤ e|γ̂ |o(n), we have

log ϒ(η̂(2), η̂(1), εn, n) ≤ |γ̂ |o(n) + log

(∑
mk̂

)!∏
mk̂!

[∏
p(k̂, η̂(2) − O(|γ̂ |), n)

m
k̂

]
, (4.35)

where the o(n) term is uniformly bounded in η̂(1), η̂(2), and ε as n → ∞. Now dividing by
n and using Stirling’s approximation, we get that there exists a µ ∈ M ( 1

n b̂, εn) with

1

n
log ϒ(η̂(2), η̂(1), εn, n) ≤ |γ̂ |o(1) +

∑
k̂

µ(k̂) log
p(k̂, η̂(2) − O(|γ̂ |), n)

∑
�̂ µ(�̂)

µ(k̂)
.

(4.36)

Note that the dangerous looking
∏

mk̂! in (4.35) does not cause us trouble – because it is in the
denominator – and the o(1) term is still uniformly bounded (e.g., by an inverse power of n).
For the equivalent step in the lower bound, one would use the fact that (mk̂) ∈ M(b̂, r)
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to bound the error. We now apply (4.19) from Lemma 4.4 in order to rid ourselves of the
n–argument in the p–term with the result:

1

n
log ϒ(η̂(2), η̂(1), εn, n)

≤ |γ̂ |o(1) + c|γ̂ |(ε + |γ̂ | + 1/n) +
∑

k̂

µ(k̂) log
p(k̂, η̂(2))

∑
�̂ µ(�̂)

µ(k̂)
(4.37)

for some c depending only on δ. By scaling µ by a factor of n/|b̂| we can apply Lemma 4.5
and use the continuity of ξ – which covers the O(1/n) gap between γ̂ and b̂/n – to get (4.33).

We next note that if all components (discovered in the ϒ process) in G (n, ρ̂) are of size
smaller than εn, then for every x ∈ (|η̂|, |ρ̂|) there must be at least one k so that

(|ρ̂| − x)n ≤
k∑

i=1

|C(i)| ≤ (|ρ̂| − x)n + εn. (4.38)

Next it is remarked that while the size bias, of course, skews the distribution of cluster
sizes, we recollect that this distribution is based on uniform selection of a vertex and then
“pulling out” that which is attached. As such, the process can be implemented dynamically
by stochastically growing the cluster of the each vertex selected after the selection has taken
place. Now let us suppose that ρ̂ is bounded above and that each component is bounded
strictly away from zero. And further, let us suppose that not too much of the overall sample
has been processed. Then, at any point, any particular cluster – with component sizes
independent of n – can be selected with probability uniformly bounded below independent
of n as is seen by the consideration of a sequence of pertinent events leading to that cluster.

Thus we have that for any given collection of integers m1, . . . , mj ∈ [|η̂n|, |ρ̂n|]1 there
exist a corresponding k1, . . . , kj so that

∑k�
i=1|C(i)| = m� for each � with probability ejO(εn).

Hence for all j the independence of edges in G (n, ρ̂) lets us write

ϒ(ρ̂, η̂, εn, n) ≤ ej[O(log n)+O(εn)] sup
ρ̂=ρ̂(j)≥...≥ρ̂(0)=η̂

|ρ̂(i)|=|η̂|+ i
j |ρ̂−η̂|

j−1∏
i=0

ϒ(ρ̂(i+1), ρ̂(i), εn, n), (4.39)

where the eO(log n) term – which comes from the number of choices for each ρ̂(i) – is uniformly
bounded for ρ̂ bounded above. We note at this point that each ϒ term has a trivial upper
bound of 1, and so – in preparation for the application of (4.33) – we will discard terms
on the right hand side of (4.39) for which |ρ̂(i)| < δ. Furthermore, to simplify notation, let
us consider only ρ̂ for which |ρ̂| ≥ δ at the moment. Then, because ϒ discretizes the ρ̂(i)

terms, the supremum can be considered to be taken over a finite set, so there is a specific
choice of (ρ̂(i)) which achieves the supremum. Using, temporarily,

f (ρ̂, η̂, r, n) := 1

n
log ϒ(ρ̂, η̂, r, n), (4.40)

1The range we are actually interested in is [|�η̂n�|, |�ρ̂n�|], but the “floors” will distract from the presented idea
and are omitted.
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we have for all ε, n, j the existence of a partition η̂ = ρ̂(0) ≤ . . . ≤ ρ̂(j) = ρ̂ with
∣∣ρ̂(i)

∣∣ =
|η̂| ∨ δ + i

j (|ρ̂| − |η̂| ∨ δ) such that

f (ρ̂, η̂, εn, n) ≤ jo(1) +
j−1∑
i=0

f (ρ̂(i+1), ρ̂(i), εn, n). (4.41)

Interpolating by straight lines, is is clear that (ρ̂(i) | i = 0, . . . j) defines an ascent
restricted to the interval [|η̂| ∨ δ, |ρ̂|] which we denote by 
̂ (remembering that 
̂ depends
on ε, n, and j). Let t(j,i) = |η̂| ∨ δ + i

j (|ρ̂| − |η̂| ∨ δ) We now apply (4.33) to the right hand
side of (4.41) to get

f (ρ̂, η̂, ε, n) ≤ jo(1) + O(1/j) + (|ρ̂| − |η̂| ∨ δ)
1

j

j−1∑
i=0

[
ξ

(

̂(t(j,i+1)) − 
̂(t(j,i))

j−1(|ρ̂| − |η̂| ∨ δ)
, 
̂(t(j,i))

)

−ξ

(

̂(t(j,i+1)) − 
̂(t(j,i))

j−1(|ρ̂| − |η̂| ∨ δ)
, ψ̂

(

̂(t(j,i+1)) − 
̂(t(j,i))

j−1(|ρ̂| − |η̂| ∨ δ)
, t(j,i)

))]
, (4.42)

where both error terms are uniformly bounded for ρ̂ bounded above. It is noted that the
substantive term in (4.42) is perfectly well defined, e.g. 
̂k(t(j,i+1)) − 
̂k(t(j,i)) vanishes if
and only if the the kth component of the corresponding ψ̂ vanishes – thence no difficulty
with interpretation of logs.

We next claim that, for all intents and purposes, the “substantive” term is just H(
̂, |η̂| ∨
δ, |ρ̂|). This is not quite exact since if ψ̂(
̂′, t) is subcritical, at time t(j,i) it will change a
bit over the course of [t(j,i), t(j,i+1)]. However, in these circumstance, the change in ψ̂ is (at
most) proportional to the change in t itself and/or the change in χ−1 – which in turn is
bounded by the change in t. Moreover, the object of proportion for the kth component is the
kth component itself which again alleviates any concerns about the singularities associated
with logarithms. On this basis it is seen that, in the course of each increment, the error
incurred by replacing the appropriate term in (4.42) by the integration of ξ(
̂′, 
̂)−ξ(
̂′, ψ̂)

along the corresponding portion of the path is, in fact, bounded by a uniform constant times
t(j,i+1) − t(j,i). We thus have

f (ρ̂, η̂, εn, n) ≤ jo(1) + O(1/j) + H(
̂, |η̂| ∨ δ, |ρ̂|) (4.43)

where the additional small error terms have been incorporated into the O(1/j) term. Obvi-
ously we may replace H(
̂, |η̂| ∨ δ, |ρ̂|) by the supremum over available 
̂ and, allowing j
to be a considered as a function of ε and n, we can replace both error terms with a single
o(1) term which tends to zero uniformly – for ρ̂ bounded above – as ε tends to zero and
n tends to infinity. Furthermore, it is straightforward to see that the maximal difference
between H(
̂, |η̂| ∨ δ, |ρ̂|) and H(
̂, |η̂|, |ρ̂|) is uniformly bounded – that is, for all η̂, ρ̂,
and ascents 
̂ – by an O(δ) correction, for small δ. Since we may retroactively declare δ to
have been picked as small as desired – after which we may take ε to be small and n large,
we find

1

n
log ϒ(ρ̂, η̂, εn, n) ≤ o(1) + sup


̂∈P(η̂)∩P(ρ̂)

H(
̂, |η̂|, |ρ̂|), (4.44)

where the o(1) term converges uniformly to zero as ε → 0 and n → ∞.
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The opposite bound, namely

1

n
log ϒ(ρ̂, η̂, r, n) ≥ o(1) + sup


̂∈P(η̂)∩P(ρ̂)

H(
̂, |η̂|, |ρ̂|), (4.45)

where the o(1) term tends to zero uniformly as r, n → ∞, is derived by the similar methods.
First, an analog opposite bound of the form in (4.33) is derived for small |γ̂ | – although due
to the weaker lower bound of Lemma 4.4 the bound only holds uniformly for η̂(1) larger that
δ in all components. Then, at the point of (4.39) we can simply pick any particular ascent
from η̂ ∨ (δ, . . . , δ) to ρ̂ and place the points ρ̂(i) along this path. The rest of the argument
is identical with the final step being an optimization over ascents, and using brute force to
traverse the distance from η̂ ∨ (δ, . . . , δ) to η̂.

4.4. Natural Assents

Consider an ascent, 
̂(t) which starts at the origin and goes at least some distance into the
supercritical region. Then (since at least one component increases) there is a unique t� such
that for t < t�, 
̂(t) is subcritical while for t > t�, it is supercritical. To define a natural
ascent, we shall treat separately the subcritical and super critical behaviors. Starting with
the former, it is stipulated that


̂′(t) =
[
I − BT


̂(t)

]−1

̂(t)∣∣[I − BT


̂(t)

]−1

̂(t)

∣∣ (4.46)

at least for 
̂ 
= 0. (As is not hard to see, if we actually wish to start the ascent at the origin,
an initial direction must also be specified.) Notice that (4.46) implies (c.f. (4.1) – (4.4)) that
ψ̂(
̂′, |
̂|) = 
̂ (while, of course, the associated average cluster size ratios, is proportional
to 
̂′). In the limit as t ↑ t� we find that 
̂′ tends to the limiting size ratio associated with the
critical density. Denoting these objects by γ̂c and ψ̂c respectively (so that γ̂c is the maximum
eigenvector of BT

ψ̂c
) we define, for t > t� 
̂′ ≡ γ̂c – with 
̂′′ ≡ 0 – i.e.


̂(t) = ψ̂c + (t − t�)γ̂c. (4.47)

Lemma 4.7. Let ρ̂(2) > ρ̂(1) ≥ 0 be given, and suppose there is a 
̂ ∈ P(ρ̂(1))∩P(ρ̂(2))

which is an ascent such that

H(
̂, |ρ̂(1)|, |ρ̂(2)|) = sup
�̂∈P(ρ̂(1))∩P(ρ̂(2))

H(�̂, |ρ̂(1)|, |ρ̂(2)|). (4.48)

Then there is some ĉ with
∑L

i=1 ĉi = 0 such that 
̂ + ĉ is a natural ascent restricted to
[|ρ̂(1)|, |ρ̂(2)|].

Proof. Let us abbreviate a = |ρ̂(1)| and b = |ρ̂(2)|. It is first noted that for any ascent 
̂

connecting ρ̂(1) to ρ̂(2) the portion of H consisting of
∫ b

a ξ(
̂′, 
) is a constant c which
depends only on ρ̂(1) and ρ̂(2) and hence need not be further discussed. Our first goal is
to establish lower bounds on the speed. Of course it may be the case that ρ̂

(2)

i = ρ̂
(1)

i for
one or more values of i in which case, in all available choices of ascents, 
̂i = const. We

Random Structures and Algorithms DOI 10.1002/rsa



482 CHAYES AND SMITH

claim that in all other circumstances, the speeds are, componentwise, uniformly bounded
below (recalling once more that our parameterization gives ascents whose total speed is
always one). We adopt the notation 
̂′ = γ̂ and, subtracting and adding

∑
i γ̂i log γ̂i, it is

seen that the remains of the integrand (after the −γ̂i log γ̂i term) are non–singular, with non–
singular derivatives as any particular γ̂i → 0. However the “principal” term is concave with
a singular derivative (∝ − log γ̂i) which, as we shall see, does not permit any component
of γ̂i to get too small. Indeed, let γi be non–trivial and suppose there is a set of size �t, on
which γ̂i does not exceed some ε with ε � 1. Let us find another portion of the path where
γi exceeds, half the total required rate of ascent:

γ̂i >
1

2

ρ̂
(2)

i − ρ̂
(1)

i

b − a
.

Here we may have to assume that �t is not too large which, obviously, we may do without
loss of generality. Denoting the two sets by b and s (big and small) we may consider the
canonical map from b to s and by this means, replacing γ̂i|b with (1−ε)γ̂i|b we can increase
γ̂i|s by an amount of order ε. The gain from this transfer, by consideration of the principal
part along the set s, is of the order |ε log ε|. Meanwhile the “losses” from the other parts of
the functional on both s and b are bounded above by a constant times ε for all ε sufficiently
small. Of course in addition, we must now recalibrate to unit speed but this causes changes
in the above effects which are also only of the order of ε. Thus, along a minimizer, for any
i in which ρ̂

(2)

i − ρ̂
(1)

i > 0, we may conclude that there is an ε0 > 0 – which will depend on
ρ̂(2) and ρ̂(1) – such that γ̂i > ε0 for a.e. t.

With the above in hand, we may now add a perturbation to the minimizing ascent secure
in the knowledge that, for sufficiently small perturbation, the resultant function is indeed
an ascent. The natural procedure is to derive Euler–Lagrange equations but, unfortunately,
there is no a priori guarantee that all required partial derivatives exist. For this reason we
deviate from the usual methods at the point where an integration by parts would normally
be performed.

Let ĝ : (0, ∞)L �→ R
L be a Lipschitz continuous function with ĝ(a) = ĝ(b) = 0 and∑L

i=1 g(t) = 0 for t ∈ (a, b). Then for all sufficiently small δ, we may write

H(
̂ + δĝ, a, b) = c −
∫ b

a
ξ
(
(
̂ + δĝ)′(t), ψ̂((
̂ + δĝ)′(t), t)

)
dt. (4.49)

Now suppose that γ̂ , t > 0 are given with |γ̂ | = 1. We recall that χ−1(γ̂ , t) and ψ̂(γ̂ , t) are
defined in such a way that either |ψ̂(γ̂ , t)| = t or χ̂−1(γ̂ , t) = 0. Using this, (see also (4.60)
we have

ξ(γ̂ , ψ̂(γ̂ , t)) = −1 + χ−1(γ̂ , t) +
L∑

i=1

γ̂i log ψ̂i(γ̂ , t), (4.50)

but we here we encounter our first problem with differentiability. Let η̂ be given with∑L
i=1 η̂i = 0. Then while ∂

∂δ
ψ̂(γ̂ + δη̂, t)|δ=0 and ∂

∂δ
χ−1(γ̂ + δη̂, t)|δ=0 are well defined in

the region where |ψ̂ | 
= t and the region where χ−1 > 0, the limiting values may not agree
on the boundary. Nevertheless, a careful calculation shows that the discontinuities in the
derivative arising from the last two terms in (4.50) cancel each other exactly, yielding

∂

∂δ
ξ(γ̂ + δη̂, ψ̂(γ̂ + δη̂, t))

∣∣∣∣
δ=0

= ξ(η̂, ψ̂(γ̂ , t)). (4.51)
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For brevity, let us for the remainder of the proof write ψ̂(t) for ψ̂(
̂′(t), t). Then by
combining (4.49) and (4.51), we see that any 
̂ which maximizes H(
̂, a, b) must have∫ b

a
ξ
(

ĝ′(t), ψ̂(t)
)

dt = 0. (4.52)

Since this must hold for all Lipschitz ĝ with ĝ(a) = ĝ(b) = 0 and
∑L

i=1 ĝi(t) = 0, we can
for any pair i, j take ĝi(t) = −ĝj(t) = g(t) with all other components zero and conclude

∫ b

a
g′(t)

[(
log ψ̂i(t) −

L∑
k=1

αikψ̂k(t)

)
−
(

log ψ̂j(t) −
L∑

k=1

αjkψ̂k(t)

)]
dt = 0 (4.53)

for every Lipschitz function g with g(a) = g(b) = 0. Thus the difference in the integrand
must be constant almost everywhere, meaning that there must exist some d̂ and f (t) such
that

log ψ̂i(t) −
L∑

k=1

αikψ̂k(t) = d̂i + f (t) (4.54)

for almost every t, for each i.
Since it will clean up the proof without making a substantial difference, let us suppose

that (4.54) holds for every t, instead of merely almost every t. We then claim (the proof of
which shall be postponed) that if T̂(x̂) is defined for x̂ critical or subcritical with

T̂i(x̂) = log x̂i −
L∑

k=1

αik x̂k , (4.55)

then T̂ is invertible and T̂−1 is increasing. This property necessarily implies that if t0 is a
time such that ψ̂(t0) is critical then for all t ∈ [a, b], we have f (t) ≤ f (t0). Indeed, assuming
the contrary at t = t′ then, from (4.54) we would have ψ̂(t′) supercritical and yet there
is no mechanism in the construction of ψ’s for anything except critical and subcritical.
Furthermore, if ψ̂(t) is subcritical, we have t = |ψ̂(t)| < |ψ̂(t0)| ≤ t0. From this we
conclude that if t� = inf{t : ψ̂(t) is critical}, then ψ̂(t) is critical and constant for t > t�.
Furthermore, since |ψ̂(t)| = t for t < t�, we must have that f is increasing, and thus ψ̂(t)
is increasing in all components. Thus ψ̂ is Lipschitz continuous.

Since ψ̂ is Lipschitz continuous, it is almost everywhere differentiable. Then differenti-
ating both sides of (4.54) and multiplying by ψ̂i(t), we get[

I − BT
ψ̂(t)

]
ψ̂ ′(t) = f ′(t)ψ̂(t). (4.56)

Multiplying both sides by [I − BT
ψ̂(t)

]−1 and recalling that d
dt |ψ̂(t)| = 1 for t < t�, we get

d

dt
ψ̂(t) =

[
I − BT

ψ̂(t)

]−1
ψ̂(t)∣∣[I − BT

ψ̂(t)

]−1
ψ̂(t)

∣∣ (4.57)

for t < t�. From (4.4) and (4.46) we see that ψ̂ obeys the differential equation for a natural
ascent which we may call 
̂ (but, of course, with the wrong initial condition). Integrating

Random Structures and Algorithms DOI 10.1002/rsa



484 CHAYES AND SMITH

gives that, if t ≤ t�, then 
̂(t) + ĉ = ψ̂(t) for some ĉ. From (4.54) we can see that 
̂′(t)
is continuous, and since ψ̂(t) is constant for t > t�, we have that 
̂′(t) is the maximum
eigenvector of BT

ψ̂(t�)
for t > t�. Combined with the fact that (4.57) shows that ψ̂(t) restricted

to t < t� is indeed a natural ascent, this gives us the desired result.

Proof that T̂ given by (4.55) is invertible and T̂−1 is increasing. We first show that T̂ is
invertible. Let â and b̂ be given with â subcritical or critical and T(â) = b̂. Then for any x̂,
we can write x̂i = (1 − ŝi)âi. Doing this, we find that T̂(x̂) = b̂ if and only if

ŝi = 1 − e−∑L
j=1 αij âj ŝj . (4.58)

Since â is not supercritical, Lemma 2.2 tells us that all solutions to (4.58) are bounded by
zero; and thus T̂(x̂) = b̂ implies x̂ ≥ â. Similarly, if x̂ is a subcritical or critical solution
to T̂(x̂) = b̂, we must also have â ≥ x̂. Thus T̂ is injective from the set of subcritical and
critical densities, and is thus invertible over this domain.

To see that T̂−1 is increasing, let us define, for fixed ŷ the function F̂ by

F̂i(x̂) = eŷi+
∑L

j=1 αij x̂j . (4.59)

Now consider the iterative map

x̂(m+1)

i = Fi(x̂
(m)) ≡ F(m)

i (0̂)

and note that [T̂−1(ŷ)]i = F̂(∞)

i (0̂). (Indeed, T̂−1(ŷ) must be the minimal fixed point of F̂.
Since F̂ is order preserving and bounded below by zero, this minimal fixed point must be

the one starting from x̂ = 0̂.) Since F̂(·) is increasing as a function of ŷ, we see that T̂−1 is
increasing.

We conclude this section with a proof of existence of natural ascents

Proposition 4.8. Let ρ̂ denote any non–zero density. Then there is a unique natural ascent
passing through ρ̂.

Proof. To prove the above, we will use the H–functional and a certain modification to be
explained below. The usual strategy in situations of this sort would be to maximize H via a
maximizing sequence and compare (favorably) the functional evaluated at some limit of the
sequence with the maximized H. We will do something along these lines after we implement
our modifications. In any case, by Lemma 4.7, if we arrive at an object which maximizes H
it must be a natural ascent; and we will tend to uniqueness in the final portion of the proof.
First some standing notation: For a general ascent 
̂ we will denote the derivative by γ̂ and
the inverse of the associated χ by X.

Let us start by examining the final piece of H namely γ̂ T Aψ̂ . At fixed t > 0, reiterating
the arguments of Lemma 4.1 – and already discussed in the context of (4.50) – we have

ψ̂i

L∑
j=1

aijγ̂j = tγ̂i

∑L
j=1 aijγ̂j

X + t
∑L

j=1 aijγ̂j

= γ̂i − X

t
ψ̂i (4.60)

Now if ψ̂ is subcritical then when we sum the result we get 1 − X and, similarly, in the
critical cases since here X anyway vanishes. Thus, provided the correct relation between
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X and the norm of ψ̂ is enforced, the final term in the functional can be replaced by the
integral of 1 − X. We (re)make one more observation: Consider the first two pieces, the
integral of ξ(γ̂ , 
̂). It is noted that the contributers to the integrand satisfy

γ̂i log 
̂i = d

dt
[
̂i log 
̂i − 
̂i] (4.61)

and

γ̂ T A
̂ = 1

2

d

dt
(
̂T A
̂). (4.62)

Therefore the integral of these objects depends only on ρ̂ and not the ascent itself. Thus,
for all intents and purposes, these term may be omitted from our considerations.

Thus (assuming the appropriate relation between ψ̂ and X) the H–functional is furnished
by

I(
̂, X) :=
∫ |ρ̂|

0
[ξ(γ̂ , 
̂) −

L∑
i=1

γ̂i log ψ̂i + 1 − X]dt (4.63)

Now for given X : [0, |ρ̂|] → [0, 1] (with X(0) = 1) and ψ̂(γ̂ , t; X) that is defined by
the formula in (4.2) without regards to normalization we shall consider I(
̂, X). Obviously

sup

̂∈P(ρ̂),X

I(
̂, X) ≥ sup

̂∈P(ρ̂)

H(
̂). (4.64)

Eventually, we will establish that these are equal, for now, we consider the auxiliary problem
of maximizing I(·, ·)

To this end, let (
̂(n), X(n)) denote a maximizing sequence for I(·, ·) i.e.,

lim
n→∞ I(
̂(n), X(n)) = sup


̂∈P(ρ̂),X

I(
̂, X).

In accord with the above convention, we use γ̂ (n) as notation for the derivative of 
̂(n).
Since all quantities are bounded, we may extract convergent subsequences e.g., weak L2

convergence for the γ̂ ’s and X’s and e.g., uniform convergence for the 
’s. We assume, for
ease of notation, that the subsequence is in fact, the original sequence. We let the unadorned
γ̂ , X and 
̂ denote the sequential limit; it is noted that |γ̂ | = 1 (since this is linear).
Furthermore since the convergence of 
̂(n) is rather strong it is clear that 
̂ ∈ P(ρ̂). Thus
in the first, second and also the fourth term the limit of the maximizing sequence agrees
with the corresponding quantities evaluated at their limits.

Let us turn to the third item which is the most serious of the pieces. Consider the individual
components: − ∫ |ρ̂|

0 γ̂i log ψ̂idt. Let us, for simplicity, dispense with the minus sign – so the

goal is minimization. We claim that as a functional of 
̂’s and X’s this object (without the
minus sign) is convex.

In particular, focusing on i = 1 we claim that

x̂1 log ψ̂1(x̂, t; X) = x̂1 log tx̂1 − x̂1 log

[
X + t

L∑
j=1

ai,j x̂j

]
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is convex as a function of (x̂, X) (provided all quantities are all in an appropriate range).
Since the principal objects of interest concern differentiable functions and we are in finite
dimensions, the following is sufficient: Let (x̂(s), X(s)) denote affine functions (which for
s in some range keep all quantities positive). Then defining

F(s) := x̂1(s) log tx̂1(s) − x̂1(s) log[X(s) + t
L∑

j=1

ai,j x̂j(s)],

convexity of the full object is equivalent to convexity of F(s). (This is easily seen by appeal
to the definition of convexity according to supporting planes.) For brevity, let x̂1(s) =
y0 + sy′ := y and X(s) + t

∑
j aij x̂j(s) = Z0 + sZ ′ := Z . Then

F ′′(s) = 1

yZ2
(y′Z − yZ ′)2 ≥ 0. (4.65)

Having established convexity of γ̂i log ψ̂i the remainder our treatment is straightforward.
We may use a theorem of Mazur to construct convex combinations of the (γ̂ (n), X(n)), which
we shall denote by (γ̂

(m), X(m)), that converge strongly to (γ̂ , X). Then, e.g.,

lim
m→∞ −

∫ |ρ̂|

0
γ̂

(m)

1
log ψ̂1(γ̂

(m), X(m))dt ≡ −
∫ |ρ̂|

0
γ̂1 log ψ̂1dt

≥ lim
n→∞ −

∫ |ρ̂|

0
γ̂

(n)

1 log ψ̂1(γ̂
(n), X(n))dt. (4.66)

And finally, manifestly, limn→∞
∫ |ρ̂|

0 X
(n)dt = ∫ |ρ̂|

0 Xdt.

We thus conclude that our limit (
̂, X) is a legitimate maximizer of I(·, ·). It remains
to show that X and ψ̂ satisfy the appropriate relationship. To this end, let us start with
the consideration of a generic t where ψ̂ is supposed to be critical but, nevertheless, X is
positive. Under these conditions (for two reasons) the t−1ψ̂ would have norm less than 1.
Let us consider the pointwise change if X → X − δX with 0 < δX � 1. Then to within
o(δX),

−γ̂i log ψ̂i → −γ̂i log ψ̂i − γ̂iδX

X + t
∑L

j=1 aijγ̂j

= −γ̂i log ψ̂i − t−1ψ̂iδX.

Upon summing, there is a loss of t−1|ψ̂ |δX which (due to the final term in I that is linear in
X) is offset by a gain of δX. Clearly, in the region that is supposed to be critical, the value
of the functional can be improved unless X is actually zero. A similar argument shows that
in the subcritical regions, the functional can be improved unless X is such that t−1|ψ̂ | = 1.

It is now indeed evident that (4.64) holds as an equality and that there is a tangible
maximizer for H(·, 0, |ρ̂) in P(ρ̂). By Lemma 4.7, this maximizer is a natural ascent. We
turn to uniqueness.

Suppose, then, that there are two maximizing ascents. We shall denote these ascents by
(γ̂ , X) and (η̂, Y) although we may now assume (for a.e. t) the proper normalization of
the corresponding ψ̂–functions. We shall work in the language of the I–functional. Non–
uniqueness for the maximizers implies that strict concavity of the −γ̂i log ψ̂i term must fail,
a.e., for any convex combination of the solutions (since otherwise the combination would
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do better). Let t > 0 denote a generic time and let us assume linearity of the γ̂i log ψ̂i – term
under convex combinations of minimizers. We denote by (γ̂ , X) anf (η̂, Y) the extreme
solutions and (ζ̂ (s), W(s)) the linear interpolation with interpolation parameter s. Then
(4.65) implies

1

t
ψ̂i( ˆζ(s)) ≡ γ̂j − η̂j

X − Y + t
∑L

j=0 aij(γ̂j − η̂j)

i.e., is independent of the parameter s. Applying (4.50) to γ̂ , then η̂ then ζ̂ (s) itself – using the
constancy of ψ̂ – yields that W(s) is given by the corresponding convex combination of X

and Y. With this in hand, the constancy of ψ̂ implies that the numerators and denominators
in the expressions for ψ̂(γ̂ ) and ψ̂(η̂) are separately equal so, in particular γ̂ = η̂ and we
conclude there is only one maximizing ascent.

4.5. Main Proofs

Proof of Theorem 2.6. Consider any (non–zero) ρ̂. By the considerations of Theorem 4.2
and the definition of Sr , in order to establish (2.15) it is sufficient to show

sup

̂∈P(ρ)

H(
̂, 0, |ρ̂|) = �(ρ̂). (4.67)

By Proposition 4.8, we can evaluate this supremum along natural ascents and, as will be
demonstrated this indeed yields �(ρ̂).

It is observed that in the subcritical region of a natural ascent, 
̂ ≡ ψ̂ and the integrand
of H vanishes identically. We are done with the cases of subcritical (and critical) ρ̂’s and
turn to the supercritical cases.

Here we let ρ̂� denote the (unique) point of entry of the ascent into the critical region.
Then, for t ≥ |ρ̂�|, we have ψ̂(t) ≡ ρ̂� and 
̂′(t) ≡ (ρ̂ − ρ̂�)/(|ρ̂| − |ρ̂�|) Then, from the
definitions in (4.6) and (4.5), all quantities can be integrated directly which yields

∫ |ρ̂|

|ρ̂�|
ξ(
̂′, 
̂) − ξ(
̂′, ψ)dt = (I) + (II) + (III) + (IV)

where

(I) =
L∑

i=1

[
(ρ̂i log ρ̂i − ρ̂i) − (

ρ̂�
i log ρ̂�

i − ρ̂�
i

)]
,

(II) = −1

2
(ρ̂T Aρ̂ − [ρ̂�]T Aρ̂�),

(III) = −[|ρ̂| − |ρ̂�|]
L∑

i=1

ρ̂i − ρ̂�
i

|ρ̂| − |ρ̂�| log ρ̂�
i ,

(IV) = |ρ̂| − |ρ̂�|. (4.68)

(Item (IV) may seem a bit mysterious but it is recalled from earlier discussions that in the
critical region, the final piece of the H–functional reduces to the integral of 1 − χ−1 and
here χ−1 is zero.)
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The combination of (I) + (III) + (IV) yields
∑L

i=1 ρ̂i log ρ̂i/ρ̂
�
i . As for (II), we write

1

2
(ρ̂T Aρ̂ − [ρ̂�]T Aρ̂�) = 1

2
(ρ̂T Aρ̂ + [ρ̂�]T A(ρ̂ − ρ̂�) − [ρ̂�]T Aρ̂)

and use the fact that [ρ̂�]T A(ρ̂ − ρ̂�) = |ρ̂| − |ρ̂�|. The proof of (4.67) is complete and the
uniform convergence clause of this theorem follows from Theorem 4.2.

Corollary 4.9. For ρ̂ supercritical, �(ρ̂) < 0.

Proof. While, in principal this follows directly from (2.14), we instead shall look at the
integrand of H in the supercritical region. For simplicity, let us revert to the ψ̂ , γ̂ language
i.e., 
̂′ = γ̂ , 
̂ = ψ̂ + τ γ̂ for τ := t − t� ≥ 0. We have

[ξ(γ̂ , 
̂)]i := γ̂i log(ψ̂i + τ γ̂i) − γ̂i

L∑
j=1

aij(ψ̂j + τ γ̂j) (4.69)

so, of course [ξ(γ̂ , 
̂) − ξ(γ̂ , ψ̂)]i vanishes at τ = 0. Differentiating with respect to τ :

d

dτ
[ξ(γ̂ , 
̂) − ξ(γ̂ , ψ̂)]i = γ̂ 2

i

ψ̂i + τ γ̂i

− γ̂i

L∑
j=1

aijγ̂j

≤ γ̂i

ψ̂i

[
γ̂i −

L∑
j=1

ψ̂iaijγ̂j

]
= 0 (4.70)

where the last identity follows from the fact that γ̂ is the critical (and maximal) eigenvector
of BT

ψ̂
. It is noted that, at least for some i, the inequality is strict for τ > 0.

Proof of Theorem 2.7. Let Br be the event that all components in G (n, ρ̂) are of size r or
bigger, and recall that Sr is the event that all components in G (n, ρ̂) are of size smaller than r.
Then for all η̂ with 0 ≤ η̂ ≤ ρ̂,

P

(
θ̂ (εn, n, ρ̂) = 1

n
�η̂n�

)

= eO(1)

[
L∏

i=1

(�ρ̂in�
�η̂in�

)]
Pn,η̂(Bεn)Pn,ρ̂−η̂(Sεn)

L∏
i,j=1

(
1 − αij

n

)η̂in(ρ̂jn−η̂jn)

, (4.71)

where the error term comes from rounding (and is uniformly bounded). Following the proof
of Theorem 2.5, we note that for each η̂ ∈ S we have 1

n�η̂n� ∈ S for sufficiently large n.
We will also use that for m > |ρ̂|/ε, we have K1 ⊂ Bεn ⊂ Km. Now for a lower bound we
fix a η̂ ∈ S with η̂ > 0, combining Theorem 3.1, Theorem 2.6, and direct calculation gives

lim inf
ε→0

lim inf
n→∞

1

n
log P

(
θ̂ (εn, n, ρ̂) = 1

n
�η̂n�

)
≥ S(η̂, ρ̂) + 
(η̂) + �(ρ̂ − η̂) − η̂TA(ρ̂ − η̂). (4.72)
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For an upper bound, since θ̂ (εn, n, ρ̂) can take only polynomially many values, we have

P(θ̂(εn, n, ρ̂) ∈ S ) = eo(n) sup
η̂∈S

P

(
θ̂ (εn, n, ρ̂) = 1

n
�η̂n�

)
. (4.73)

Note also that for any nonzero η̂, and particular (finite) n we have

P(θ̂(εn, n, ρ̂) = η̂ ∨ (1/n, . . . , 1/n)) ≥ eO(1)P(θ̂(εn, n, ρ̂) = η̂), (4.74)

(although we would be willing to accept any sub-exponential correction). Thus using
Corollary 3.5 we may replace the Pn,η̂(Bεn) term in (4.71) with a uniform upper bound
of exp(n
(η̂) + o(n)). Furthermore, using Theorem 2.6, we may replace the Pn,ρ̂−η̂(Sεn)

term with a uniform bound of exp(o(n) + n�(ρ̂ − η̂)), in which the o(n) term requires us
to first take n → ∞ followed by ε → 0.

Thus from (4.71) and (4.73) we have

1

n
log P(θ̂(εn, n, ρ̂) ∈ S ) ≤ o(1) + sup

η̂∈S

[S(η̂, ρ̂) + 
(η̂) + �(ρ̂ − η̂) − η̂TA(ρ̂ − η̂)].
(4.75)

Taking n → ∞, followed by ε → 0, we get the desired upper bound, and prove the
result.

Proof of Theorem 2.1. By Theorem 2.7, we will have proved Theorem 2.1 if we can show
that

S(η̂, ρ̂) + 
(η̂) + �(ρ̂ − η̂) − η̂TA(ρ̂ − η̂) (4.76)

is maximized only when η̂i = θ̂ �
i (ρ̂) for all i. The easiest way to see this is to use an

idea mentioned in [4] following Theorem 2.1 therein: Dropping the � term and taking
exponentials, we find

en[S(η̂,ρ̂)+
(η̂)−η̂TA(ρ̂−η̂)] = eo(n)

L∏
i=1

[(�ρ̂in�
�η̂in�

)(
1 − e−∑L

j=1 αij η̂j
)η̂in

(
e−∑L

j=1 αij η̂j
)(ρ̂i−η̂i)n

]
.

(4.77)

Well known results regarding binomials give us that the right hand side is exponentially

small unless η̂i
ρ̂i

≈ 1 − e−∑L
j=1 αij η̂j , which is to say that η̂i must satisfy (2.2) for all i. We can

also get this result by maximizing S(η̂, ρ̂) + 
(η̂, ρ̂) − η̂TA(ρ̂ − η̂) directly, and we note
that the maximum is zero (as, indeed, it must be). If ρ̂ is critical or subcritical, this finishes
the proof, since �̂(ρ̂) = 0 (and Lemma 2.2 shows that θ̂ �(ρ̂) = 0).

If ρ̂ is supercritical, the �–term may be negative, i.e., if ρ̂ − η̂, is still supercritical.
However, the contribution from the remaining terms certainly does not exceed the value
acquired at η = θ� (which happens to be zero). Thus we are finished if we can show that
ρ̂ − θ̂ � is not supercritical – again forcing � = 0. Supposing, to the contrary that ρ̂ − θ̂ � is
supercritical. Let κ̂ denote the solution to the appropriate mean–field equation:

κ̂j = (
ρ̂j − θ̂ �

j

)(
1 − e−∑L

i=1 αij κ̂i
)
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purported to be not identically zero. Then, consider τ̂ which is given, componentwise, by
the sum τ̂i = θ̂ �

i + κ̂i. Then it is not difficult to show that τ̂ satisfies the original mean–field

equation, 2.2 i.e., τ̂j = ρ̂j(1 − e−∑L
i=1 αij τ̂i). Thus, the conclusion that κ̂ is not identically

contradicts the maximality – and uniqueness – of the θ̂ � solution to the mean–field equation,
(2.2).

We may thus conclude that, ρ̂ − θ̂ � is indeed not supercritical and, therefore, in the cases
where ρ̂ is supercritical, the maximum of S(η̂, ρ̂)+
(η̂)+�(ρ̂ − η̂)− η̂TA(ρ̂ − η̂) is only
achieved at η̂ = θ̂ �.

5. THE FINAL STAGE

We finish this note with a proof of Theorem 2.8 which requires one additional preliminary
lemma:

Lemma 5.1. Let Kε (AKA Bεn) be the event that all components of G (n, ρ̂) are of size at
least εn, and recall that K1 is the event that G (n, ρ̂) is connected. Then for all ρ̂(1) and ρ̂(2)

with ρ̂(2) ≥ ρ̂(1) > 0 and sufficiently small ε > 0,

lim sup
n→∞

sup
ρ̂:ρ̂(1)≤ρ̂≤ρ̂(2)

1

n
log Pn,ρ̂

(
Kc

1

∣∣Kε

)
< 0. (5.1)

Proof. Given vertex sets X , Y ⊂ V , let Km|X represent the event that G (n, ρ̂) has m or
fewer components when restricted to X , and let X � Y represent the event that there
are no edges between vertices of X and Y in G (n, ρ̂). Then with m = |ρ̂|/ε, we have

Kε ∩ Kc
1 ⊂

⋃
A ⊂V :|A |≥εn,|V \A |≥εn

[
(A � V \ A ) & Km

∣∣
A

& Km

∣∣
V \A

]
, (5.2)

and so

Pn,ρ̂

(Kε ∩ Kc
1

) ≤ eo(n) sup
η̂:|η̂|≥εn,|ρ̂−η̂|≥εn

(�ρ̂in�
�η̂in�

)
Pn,ρ̂ (Km

∣∣
A

)Pn,ρ̂ (Km

∣∣
V \A )e−nη̂TA(ρ̂−η̂), (5.3)

where A ⊂ V is a set with 〈A 〉 = �η̂n�. Since the “cost” of moving a vertex from A to
V \A (or the reverse direction) is at most polynomial, we can add the requirement that both
η̂n and �ρ̂n� − �η̂n� are bounded below by (1, . . . , 1) without altering the error term. By
applying Corollary 3.5 (and immediately dropping the added requirement on η̂), we have

Pn,ρ̂

(Kε ∩ Kc
1

) ≤ eo(n) sup
η̂:|η̂|≥ε,|ρ̂−η̂|≥ε

L∏
i=1

(�ρ̂in�
�η̂in�

)
en(
(η̂)+
(ρ̂−η̂)−(ρ̂−η̂)TAη̂). (5.4)

From this and Theorem 3.1, if we let

h(γ̂ ) =
L∑

i=1

γ̂i log
1 − e−∑L

j=1 αij γ̂j

γ̂i
+ 1

2
γ̂ TAγ̂ , (5.5)
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we get (using uniform convergence)

lim sup
n→∞

sup
ρ̂:ρ̂(1)≤ρ̂≤ρ̂(2)

1

n
log Pn,ρ̂

(
Kc

1

∣∣Kε,2

) ≤ sup
ρ̂:ρ̂(1)≤ρ̂≤ρ̂(2)

η̂:|η̂|≥εn,|ρ̂−η̂|≥εn

h(η̂) + h(ρ̂ − η̂) − h(ρ̂). (5.6)

By writing x̂i = t
∑L

i=1 αijη̂j and ŷi = t
∑L

i=1 αijρ̂j, we find, after some calculations,

d

dt

[
1

t
(h(tη̂) + h(t(ρ̂ − η̂)) − h(tρ̂))

]

= 1

2t

L∑
i=1

[
η̂ix̂i

1 + e−x̂i

1 − e−x̂i
+ (ρ̂i − η̂i)(x̂i − ŷi)

1 + e−(x̂i−ŷi)

1 − e−(x̂i−ŷi)
− ρ̂iŷi

1 + e−ŷi

1 − e−ŷi

]
. (5.7)

It is not hard to show that x 1+e−x

1−e−x = x coth(x/2) is strictly increasing on (0, ∞), and so (5.7)
shows that t−1[h(tη̂) + h(t(ρ̂ − η̂)) − h(tρ̂)] is decreasing in t for any applicable choice of
η̂. Then by taking t → 0, we find

h(η̂) + h(ρ̂ − η̂) − h(ρ̂) < g(η̂) + g(ρ̂ − η̂) − g(ρ̂). (5.8)

where g(γ̂ ) = ∑L
i=1 γ̂i log

∑L
i=1 αij γ̂j

γ̂i
. As a final step, we differentiate with respect to αkk ,

which yields

d

dαkk
(g(η̂) + g(ρ̂ − η̂) − g(ρ̂)) = (η̂k ŷk − ρ̂k x̂k)

2

x̂k(ŷk − x̂k)ŷk
. (5.9)

Thus g(η̂) + g(ρ̂ − η̂) − g(ρ̂) is increasing as αkk → ∞, but a brief examination shows

lim
α11,α22,...,αLL→∞ g(η̂) + g(ρ̂ − η̂) − g(ρ̂) = 0. (5.10)

Combined with (5.8), this means that h(η̂) + h(ρ̂ − η̂) − h(ρ̂) < 0 for all applicable ρ̂ and
η̂. Since h is continuous and we are working on a compact set, this proves the lemma.

Proof of Theorem 2.8. From the independence of edges in G (n, ρ̂), we have

Pn,ρ̂

(
Qε | θ̂ (εn, n, ρ̂) = 1

n
�η̂n�

)
= Pn,η̂

(
Kc

1

∣∣Kε

)
. (5.11)

The result then follows from Lemma 5.1.
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