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a b s t r a c t

We investigate, from a mathematical perspective, the problem of a layer of fluid attracted
to a horizontal plate when the layer is in equilibrium with a bulk reservoir. It is assumed
that as the temperature varies, the bulk undergoes a continuous phase transition. On the
basis of free energetics, this initially causes thinning of the layer but, at lower temperatures,
the layer recovers and rebuilds. We provide a mathematical framework with which to
investigate these problems. As an approximation, wemodel the layered system by amean-
field Isingmagnet. The layered system is first studied in isolation (fixed thickness) and then
as a system in contact with the bulk (variable thickness) with general results established.
Finally, we investigate the limit of large thickness. Here, a well defined continuum theory
emerges which provides an approximation to the discrete systems. In the context of the
limiting theory, it is established that discontinuities in the layer thickness (as a function of
temperature) or the derivative thereof are inevitable. By comparison with actual data from
Garcia and Chan (1998) [1] and Ganshin et al. (2006) [2] the discontinuities may indeed
be present but they are not quite in the form predicted by the theory. Finally – still in the
context of the limiting theory – it is shown that at low temperatures, the layer may be lost
altogether; the nature of the critical binding force is elucidated.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction: statement of the problem

The central purpose of this note is to provide, in the context of a well defined model, a statistical mechanics description
of a layered system interacting with a substrate, all of which is in the presence of a bulk reservoir. We will work at the level
of the mean-field theory. Usually the ‘‘mean-field theory’’ indicates a spin (or particle) system where, for a finite number,
N , of elements, each element interacts homogeneously and weakly with all (or many) of the other elements. Then one can
investigate the thermodynamic and statistical behavior asN → ∞. In this work, wewill consider a finite ensemble of L such
systems arranged in a linear fashion. Each such system should be envisioned as a d-dimensional system (d = 1or 2 of primary
importance) with the ‘‘line’’ extending in an orthogonal direction. For obvious reasons we will refer to the constituent
systems as layers. Here, the interactionmay be loosely described as follows: within each layer the interaction is of the above
describedmean-field type and further, each spin interactswith all (ormany) spins in the neighboring layers—ostensiblywith
a different interaction parameter. (We will briefly consider additional interactions between further neighboring layers but,
for present purposes, we regard this as an unnecessary complication.) Finally, there is a layer dependent chemical potential
term which represents the overall affinity that the layer has for the substrate. This is sufficient for an informal description;
the premise of this work is to figure out, on the basis of free energetics – compared to a background homogeneous system
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(reservoir) – howmany layers are present. Moreover, we stipulate without apology that each layer is fully present or absent
altogether, i.e., we will not consider the systems with partial layers. The regime of interest is when the reservoir undergoes
a continuous change of phase.

Themodels wewill consider are of the Ising type. At the level of themean-field theory, we believe that this simplification
is not too drastic. Indeed, it is likely thatmost of our results could have been derivedwith othermean-fieldmodels (provided
that the mean-field transition is continuous). In particular, most other mean-field theories differ from the Ising model only
via the value of various parameters. Thus, at various stages, we have substituted the particular numerical Ising parameters
(e.g., couplings) with generic parameters and, in all cases, results have proved to be independent of these substitutions.

The primarymotivation for this work is a series of remarkable experiments [1,2] that has captured the thinning effects of
4He thin films suspended above a reservoir of bulk 4He. The experiments have shown that the thickness of the film remains
relatively constant while the temperature is above the bulk critical temperature. However, these films (dramatically)
undergo thinning as the temperature is lowered through and below Tc . Then, as the temperature continues to lower, the
film will re-thicken to a substantial fraction of its previous equilibrium length. This thinning is consistent with the finite
scaling theory as it exhibits data collapse [2].

Treatments of order parameter fluctuations have accurately described the thinning in the critical region just above Tc [3].
In addition, treatments of surface fluctuations in the superfluid regime have explained the residual thinning of the film [4].
What remains unresolved is the relatively large part of the thinning which takes place in the vicinity of the critical region. It
is the opinion of the authors that the qualitative aspects of this phenomena can be described by the interplay of free energies
between the bulk and the film. Thus a good place to start is with amean-field theoretic treatment using the simplest possible
model. We have acquired qualitative understanding of this regime including, on the one hand a definitive prediction that
some form of discontinuous behavior for the layer thickness as a function of temperature is inevitable. On the other hand,
while the discontinuities are indeed present in the data, their quantitative formdiffersmarkedly from that of the predictions.
In particular, here we find – necessarily – that the thinning epoch endswith the discontinuity whereas when discontinuities
appear in the experimental data, they typically occur in the midst of the thinning process. Moreover, in the context of the
current work there is no residual thinning at low temperatures, i.e., generally, the original T > Tc thickness is fully restored.

It is most likely that the discrepancies are caused by the failure of the simplistic (classical) theory to capture important
(quantum) features of the superfluid low temperature state. This problem is currently under investigation by some of the
authors; our current hope/speculation is that the addition of ‘‘well understood’’ terms – at a phenomenological or first
principles level – will rectify all difficulties. However, as a form of a corollary, it would therefore seem that for an analogous
set up as in [1,2], with the bulk reservoir and films undergoing a classical continuous transition, conceivably within the
realm of experimental possibility, the inevitable discontinuities, etc., will also appear but here in the form predicted by the
present work.

2. Layered systems in isolation

Here we will study a system of L interacting Ising layers. The object will be referred to as a film—the thickness of which
is L. In this section, the thickness will be regarded as fixed and we will derive (at a certain level of mathematical standard)
basic properties of this system. These will be used in later sections to determine the nature of the film when L is allowed to
adjust ‘‘dynamically’’ in response to changes in external parameters.

Themean-field behavior of layered spin-systems – especially Ising systems near criticality – is hardly a new subject from
the physics perspective. An early reference (among those found by the authors) is [5] and, of course, there is the well known
analysis in [6]. The reader is invited to the review in [7] for relevant prior information.

From a mathematical perspective, this problem has been treated recently in the context of independent percolation
[8,9];mathematical results about systems of this sort are not readily found in the literature.Many of the Ising results (old and
new) have counterparts in the Bernoulli system. However notwithstanding the approach in [10,9] there is no bona fide free
energy with which a percolation model can interact with an external environment. For this, a genuine interacting system is
needed and we turn to the simplest example at hand.

2.1. The (basic) layered model

For the Ising model, with coupling J the free energy function of the (isotropic bulk) system with magnetization m is
provided by the following equation:

φβ(m) − log 2 = −
βJ
2
m2

+


1 + m

2


log


1 + m

2


+


1 − m

2


log


1 − m

2


=: −

βJ
2
m2

− SI(m) − log 2 (2.1)

where, in the future, wewill omit the constant from consideration so that the interesting portion of the free energy function
vanishes at m = 0. This formula is easily derived by the usual considerations, and is the appropriate object for the model
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defined on the complete graph. C.f., [11], especially Theorem5, for a general discussion of these points. The actual free energy
of the system is obtained by minimizing φβ(m); here we will deviate from standard conventions by not dividing out β:

f (β) = min
m∈(−1,+1)

φβ(m). (2.2)

The transition occurs at βc = J−1 meaning that for β > βc the above f is minimized bym(β) ≠ 0 and for β ≤ βc the optimal
magnetization is zero.

Consider, now a system of interacting layers, (formally defined on {1, . . . , L} which we denote by LL) and let us assume
that among the layers, the only interactions are between neighboring layers. Then the appropriate free energy function is

Φβ;L(m1,m2, . . . ,mL) = −
βJ0
2

L
k=1

m2
k − βJ1

L−1
k=1

mkmk+1 −


k

SI(mk) (2.3)

where, again, we have neglected constant terms.We shall refer to this as the basic model. The equation for themagnetization
profile, found by minimizing Φβ;L is readily seen to be

mk = tanh[βJ0mk + βJ1(mk+1 + mk−1)] (2.4)

where for convenience, an m0 = mL+1 = 0 may be envisioned. We shall abbreviate the array (m1, . . . ,mL) by m and often
use the alternative form

Φβ;L(m) = −
b
2


k

m2
k −

a
2


k

mk∆mk −


k

SI(mk) (2.5)

where b = β(J0 + 2J1), a = βJ1 and ∆ is the notation for the discrete Laplacian:

∆mk := (mk−1 + mk+1 − 2mk).

In Eq. (2.5), all sums run from1 to L and, again,whennecessary,we assume fictitious layers at 0 and L+1withmagnetizations
m0 = mL+1 ≡ 0. The free energy obtained by minimizing the right side of Eq. (2.3) will be denoted by FL. It is noted that (in
addition to β) we do not divide out L in the definition of FL. Finally, for the bulk free energy associated with this problem,
we will use φβ(m) as in Eq. (2.1) with the relevant J provided by

J = J0 + 2J1.

As our notations indicate, the main intention is to keep J0 and J1 fixed (and strictly positive) while β varies. We shall almost
always adhere to this convention and in the case of deviation, all relevant quantities will be clear from context.

While the systems defined by Eq. (2.3) will be adequate for our description of the physical processes of interest,
unfortunately, we will have some uses for general properties shared by all systems of this sort. This will be delegated to
the next subsection in the form of a massive theorem the statement(s) of which are important but the proof of which may
be omitted on a preliminary reading.

2.2. Properties of general layered models

For the purposes of this subsection, we shall temporarily consider the generalized version of the ferromagnetic Ising
layered system which is defined as follows.

Let K = (Ki,j | i, j ∈ LL) denote an array of interactions, which include i = j with Ki,j ≥ 0. It is assumed that the graph
consisting of vertices LL and edges (i, j) corresponding to the non-zero Ki,j is a connected graph. Then, consider the free
energy

ΦK(m) := −


j

SI(mj) −
1
2


i,j

Ki,jmimj (2.6)

and the associated mean-field equation

mk = tanh


j

Kk,jmj


. (2.7)

The following properties hold.

Theorem 2.1. Consider the generalized Ising layered system as defined. Then we have the following.

(0) All minimizers of ΦK satisfy Eq. (2.7).
(1) All minimizers of ΦK(·) have each mk of the same sign which hereafter, without loss of generality, will be taken to be non-

negative.
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(2) If Eq. (2.7) has a non-trivial non-negative solution, m (where by non-trivial it is meant that for some j, mj > 0) then for all k,
mk > 0. In particular, this holds for the minimizer of the functional in Eq. (2.6).

(3) Eq. (2.7) has at most one non-trivial non-negative solution.
(4) If K′

≻ K (meaning that K ′

i,j ≥ Ki,j for all (i, j)) with K ′

i,j strictly larger than Ki,j for at least one pair (i, j) then if Eq. (2.7) has
a non-trivial solution with the couplings K it also has a non-trivial solution for the couplings K′ and, denoting the respective
solutions by m′ and m, for all k, m′

k > mk.
(5) Regarding K as a matrix (with elements Ki,j) the necessary and sufficient condition for the existence of a non-trivial solution

is that the maximum eigenvalue of K exceed unity. Moreover, under this condition, the aforementioned solution minimizes
ΦK(·).

Remark. For the basic model, defined by Eq. (2.3), the eigenvalue condition reads

βJ0 + 2βJ1 > 1 − 2βJ1λ0 (2.8)

where

|λ0| = 1 − cos
π

L + 1
≈

1
2

π2

L2
(for L ≫ 1). (2.9)

Results along these lines (at least for large L) have been known in the physics literature for quite a while; e.g., the works in
[5,6] and various others; c.f., the review by [7]. However, these results are all based on linearization of the mean-field
equation (Eq. (2.4) or, more precisely the Ginzburg–Landau continuum version thereof) and, e.g., do not preclude the
possibility of discontinuous transitions at higher temperatures. But, in any case, all these results turn out to be essentially
correct and here a complete proof is provided. It is further remarked that in the context of layered percolation, most of these
results were established in [9,8] bymethods which are not dissimilar. Finally, it is remarked that some of themonotonicities
in the statement of Theorem 2.1 – but not necessarily their strict versions – can be derived by considering the layeredmodel
as a limit of actual Ising systems with long-range interactions. However, here we use only the basic structure of the mean-
field equations thence one may anticipate that these results hold for alternative spin-systems.

Proof. (0) This blatantly follows by differentiation of Eq. (2.6); it is included, for completeness and to emphasize that any
property of (all) solutions to Eq. (2.7) automatically holds for (all) minimizers of Eq. (2.6).

(1) Here, wemake the observation that ifm is a trial minimizer for the functional in Eq. (2.6), the free energy is only lowered
by replacing each component ofmwith its absolute value. Indeed, it is clear that entropy terms as well as the ‘‘diagonal’’
energy terms are unchanged by this transformation while the off diagonal terms are only get lowered.

(2) Suppose thatm satisfies this equationwith somemj ≠ 0 (and therefore positive by our convention). Examining the form
of Eq. (2.7), it is clear (by positivity of the tangent function and by the assumed fact that none of the othermagnetizations
are negative) that for all k such that Ki,k ≠ 0,mk > 0. The desired result follows from the definition of a connected graph.

We turn to the more substantive items.
(3) By standard compactness arguments, there are always minimizers of the functional in Eq. (2.6); by (0)–(2) above, these

are identically zero or componentwise positive (plus overall sign reverses which we do not discuss). We shall construct
the maximal positive solution of Eq. (2.7) and shortly thereafter, demonstrate that, if non-trivial, it is the only positive
solution of this equation. To this end, let us treat Eq. (2.7) as an iterative map:

m[n+1]
= Θ(m[n]) (2.10)

where, componentwise,

m[n+1]
k = Θk(m) := tanh


j

Kj,kmj


. (2.11)

By the aforementioned positivity properties and other apparent monotonicity properties, the following is observed.
Suppose thatm is componentwise positive andm′

≻ m—meaning that for all j,m′

j ≥ mj—then for each j,

Θj(m′) ≥ Θj(m) (2.12)

i.e., Θ(m′) ≻ Θ(m). Thus, starting at (1, . . . , 1) we obtain a non-increasing sequence that tends to a definitive limit
which we denote by m⋆. Moreover, it is claimed that if s is any other (non-negative) solution to Eq. (2.7) then m⋆

≻ s.
To see this, the iterative scheme is invoked; starting with initial conditions s = s(0) and (1, . . . , 1) = m(0), by the above
m(n)

≻ s(n); the former converges tom⋆ while the latter is identically s and, meanwhile, the ordering holds in the limit.
Finally, we show uniqueness. This is clear ifm⋆ is (identically) zero. Supposing otherwise, and further supposing that

there is another (lower) s which is componentwise positive satisfying Eq. (2.7). Using strict positivity of all relevant
components, we can find a t ∈ (0, 1) for which

s ≻ tm⋆ (2.13)
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while for at least one component, the jth,

sj = tm⋆
j . (2.14)

With this inmind, it is claimed that for any (fixed) non-negativem and for any t , all the functionsΘk(tm) are concave
in t . Moreover, each Θk is strictly concave if and only if at least one of the components ofmwhich enter Θk is non-zero.
Notwithstanding the weight of the preceding statement, the result is obtained by differentiating the tangent function.

Now since Θk(0, . . . , 0) ≡ 0 then, by the concavity we have that for all k, Θk(tm⋆) > tm⋆
k . In particular, Θj(tm⋆)

strictly exceeds tmj while, since it was supposed that tm⋆
≺ s, we should have Θk(tm⋆) ≤ Θk(s) for all k.

(4) This is a direct consequence of previously employed arguments. Starting from the initial conditions (1, . . . , 1) we
iterate according to Eq. (2.10) using the couplings K and K′ to generate the sequences here denoted by m[n] and m′[n],
respectively. For each n, by monotonicity of the couplings, we have m[n]

≺ m′[n] and the ordering holds in the limit,
which is denoted without superscript. Supposing then that the limiting maximal m is non-trivial, then so is m′ and,
indeed, for all j, m′

j ≥ mj. Writing the fixed point equation as

m′

j = Θ ′(m′) (2.15)

it is seen that m′

j ≠ Θ ′

j (m) any time there is a K ′

j,k > Kj,k. Since this was the hypothesis, there must be j’s for which
m′

j > mj. And thus, for any i ‘‘connected’’ to one of these j’s (by a non-zero (K ′

i,j)) we havem′

i > mi. The strict inequality
for each component now follows from the assumed graph connectivity.

(5) Finally, the necessary and sufficient conditions for non-trivialm’s associated with Eqs. (2.6) and (2.7): suppose thatm is
componentwise non-negative. Then, it is apparent that

Θk(m) ≥


j

Kk,jmj (2.16)

with the inequality strict whenever the right side is non-zero. Let κ denote the maximum eigenvalue of K and suppose
that κ ≤ 1. Form⋆, the maximal solution, we multiply both sides of Eq. (2.16) bym⋆ and sum. Using traditional bra–ket
notation, we obtain

⟨m⋆
| m⋆

⟩ ≤ ⟨m⋆
| K | m⋆

⟩ ≤ κ⟨m⋆
| m⋆

⟩ (2.17)

where the first inequality is an equality if and only ifm⋆ is identically zero. If κ ≤ 1, this is evidently the case.
Finally, suppose κ > 1. To show that m⋆ is non-trivial and minimizes ΦK(·), it is sufficient to show that ΦK is

not minimized by the trivial magnetization. Let m♯ denote the eigenvector associated with κ . By the Perron–Frobenius
theorem, all components ofm♯ are positive. Letting ε > 0 (with ε ≪ 1), we have

k

SI(εm
♯

k) =
1
2
ε2

⟨m♯
| m♯

⟩ + O(ε4) (2.18)

while the energy term is exactly −
1
2κε2

⟨m♯
| m♯

⟩. This is negative for ε small enough while ΦK evaluated at zero
magnetization profile is zero. �

2.3. Further properties of the basic model

We return attention to the basic model defined by Eqs. (2.3)–(2.5).

Theorem 2.2. If m is a non-trivial (positive) magnetization profile which minimizes Φβ;L(·), the following holds.

(i) The profile is symmetric about the midpoint (i.e., for k < L/2, mk = mL+1−k).
(ii) For each k, the discrete Laplacian is pointwise negative: ∆mk < 0.

Proof (i). The cases L even or odd differ only slightly; we omit full details of the even case. For L odd, let ℓ denote the
midpoint. We may write, for anym

Φβ;L(m) = ΦLeft
β;L + Φ

Right
β;L + qβ(mℓ) (2.19)

where ΦLeft
β;L accounts for all interactions involving all spins with index j < ℓ as well as the interaction ∝ mℓ−1mℓ, the

quantity Φ
Right
β;L is defined similarly and qβ(mℓ) accounts for all terms involving mℓ alone. Now suppose, e.g., ΦLeft

β;L ≤ Φ
Right
β;L .

Thenwewill replace themagnetizations on layerswith index larger than ℓwith themagnetizations of the reflection of these
layers about the midpoint:

mℓ+j → mℓ−j (j < ℓ). (2.20)

Then the free energy ‘‘improves’’ to 2ΦLeft
β;L + qβ(mℓ) for this symmetrized profile. In particular, a minimizing profile would

be symmetric which by uniqueness of the minimizer implies that theminimizing profile is symmetric.
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The argument for the even case is almost identical: let ℓ =
L
2 and ℓ′

= ℓ + 1 denote the two ‘‘midpoints’’. We may write
(using the same notation with slightly different meaning)

Φβ;L(m) = ΦLeft
β;L + Φ

Right
β;L +

1
2
βJ1(mℓ − mℓ′)2 (2.21)

and the argument proceeds along the same lines noting that replacing the higher half with the profile of the lower half also
gets rid of the last (positive) term on the right side of Eq. (2.21). �

Proof (ii). Let k ∈ LL (our notation for the lattice of L layers) and let us focus on the portion of the free energy function that
depends onmk. We write

Φβ;L(m) = −
1
2
βJ0m2

k − βJ1(mkmk−1 + mkmk+1) − SI(mk) + R(m) (2.22)

where R does not depend on mk and in case k equals 1 or L we invoke m0 = mL+1 = 0. Let us rewrite the mk-dependent
part denoting the result by p(mk):

p(mk) = −


1
2
βJ0 + βJ1


m2

k − SI(mk) − βJ1(mkmk−1 + mkmk+1 − m2
k)

= φβ(mk) − βJ1(mkmk−1 + mkmk+1 − m2
k). (2.23)

Now if we changemk → mk + δmk, we see

p(mk + δmk) = φβ(mk + δmk) − βJ1(mkmk−1 + mkmk+1 − m2
k) − 2βJ1(δmk∆mk) (2.24)

i.e., p(mk + δmk)− p(mk) = φβ(mk + δmk)−φ(mk)− 2βJ1(δmk∆mk) while, of course, R does not change. Now by item (4)
in Theorem 2.1, we have that in any minimizing profile, mk(β) < m(β) where m(β) is defined with coupling J = J0 + 2J1.
(This can be seen in any number of ways – the quickest is to compare with periodic boundary conditions, i.e., to connect
the first and last site which, miraculously, reproduces the magnetization of the bulk system.) Thus, if ∆mk ≥ 0, we could
(strictly) lower the free energy by increasingmk—all the way up tom(β). �

Corollary 2.3. If a and b (i.e., β , J0 and J1) are such that Φβ(·) is minimized by a non-trivial (positive) m then the maximum
magnetization occurs at the center(s). In particular, the magnetizations mk(β) rise from their lowest value at k = 1 in a strictly
monotone fashion till the ‘‘center’’ whereupon they fall, symmetrically, as one moves from the center to k = L.

Proof. Since mk is symmetric as a function of k, it is clear that the center must be some form of local extremum. Since
∆mk < 0 for all k and (as is not hard to see) the discrete analog of the usual elementary result holds, it follows that the center
must be a local maximum. Again invoking ∆mk < 0, there can be no local minima anywhere aside from the endpoints so it
follows that the center is themaximum. The remainder of the statements follow directly from the above (i) and (ii). �

Our final result of this subsection will be of pertinence for the large L systems.

Proposition 2.4. Let b = 1 + a|λ0| + gL−2 with g > 0 and with b and a as defined in Eq. (2.5), λ0 in Eq. (2.9) and, explicitly, J0
and J1 strictly positive. Moreover, the quantity gL−2 is considered, one way or the other to be ‘‘small’’. Then the magnetization is
positive. In particular, uniformly in L, for L sufficiently large,

mℓ > [const.]gL−1.

Proof. For L’s that are of order unity (i.e., any particular L) positivity of the magnetization is the content of item (5) in
Theorem 2.1. Of pertinence here is a statement that is uniform in L.

Our opening claim is that forµ < m(β), with β sufficiently close to (bulk) criticality, the following holds: the free energy
of the system on LL which has been constrained so that eachmk does not exceed µ, is less than Lφβ(µ).

Foremost, for eachm onLL, it is clear that the free energy is only lowered if we couple the first and last sites (with strength
J1) which, as mentioned earlier, restores the finite system to the effective status of the bulk. Now for fixed mk±1 ≤ µ, the
free energy associated with the kth site (c.f. Eq. (2.23)) is, as a function ofmk,

−S(mk) −


1
2
βJ0m2

k + βJ1mkmk+1 + βJ1mkmk−1


where here, if k is an endpoint, we adhere to the notation of periodic boundary conditions. From the above equation, it is
obvious, that, as far asmk is concerned the free energy is minimized whenmk±1 take on the maximum possible value. Thus,
the associated mean-field equation formk is

R(mk) = κbmk + (1 − κ)bµ (2.25)
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where R(x) = Arctanhx = x +
1
3x

3
+ · · · and κ = J0/(J0 + 2J1). We now show that for µ < m(β), the solution of Eq. (2.25)

actually exceeds µ. Thus the constrained free energy is (still) decreasing at mk = µ implying (with the addition of the
couplings between 1 & L) that allmagnetizations should saturate the constraint.

To make good on the above, let θ = θ(µ) denote the solution to Eq. (2.25)

R(θ) = κbµ + (1 − κ)bθ. (2.26)

Since it is assumed that µ < m(β), we have that

R(µ) < µ = κbµ + (1 − κ)bµ. (2.27)

Subtracting, we have R(µ) − (1 − κ)µ ≤ R(θ) − (1 − κ)θ .
Here and only here we make the ‘‘large L’’ assumption. In particular, it is stipulated that L is so large that (1 − κ)b < 1,

where b is defined in the statement of Proposition 2.4. In that case, the function R(x) − (1 − κ)x is monotone and the
preceding inequality obtained from Eqs. (2.26) and (2.27) imply θ(µ) > µ.

Thus, under the above constraint, the free energy of the system is greater than Lφβ(µ) which in turn is always in excess
of the expansion to quadratic order (in µ):

Lφβ(µ) > −
1
2
[a|λ0| + gL−2

]µ2. (2.28)

This will be contrasted with an estimate of the free energy which is achieved by a calculation up to quartic order
(notwithstanding that the details of certain numerical coefficients are unimportant). Here we use the lowest eigenfunction
of the Laplacian:

mk = ε sin


kπ
L + 1


with ε unknown (but small). Collecting all quadratic terms we find

Φβ;L(m) = ε2
×


1
2


k

m2
k −

b
2


k

m2
k −

a
2


k

mk∆mk + O(ε2)



= −
ε2

2


1 + |λ0|a +

g
L2

− 1 − |λ0|a


k

m2
k + O(ε4)

= −
1
4
ε2(L + 1)

g
L2

+ O(ε4). (2.29)

Meanwhile, the quartic order is simply

1
12

ε4

k

m4
k =

1
2
ε4(L + 1).

So, to leading order in g/L2 the free energy is (less than) −
1
4 (L + 1)g2/L4. Thus, it is seen that the actual magnetization at

the midpoint exceeds µ̃⋆ which satisfies

1
2
g2

L2
[1 + O(gL−2)]

1
a|λ0| + g/L2

= [µ̃⋆L]2 (2.30)

which amounts to the claimed statement. �

3. Discrete layered systems above a bulk

3.1. Quantities of interest, conventions

We let V (x) denote the potential energy of attraction to the plate as a function of the distance from the plate. In the range
of interest, V ≤ 0 and is monotone increasing.

The binding energy for the Lth layer will be denoted by cL and is defined by

cL = V (a0L) + µagH (3.1)

where a0 is the spacing between (centers of) layers, µa is the atomic mass and H the height of the layer above the bulk
(which may be taken as constant throughout the layer).

It is observed that since V goes to zero, the cL will eventually change sign. It seems clear that themaximum possible layer
thickness is precisely where this happens and so we define the following.
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Definition 3.1. The quantity L0 is defined as

L0 = max{L | cL ≤ 0}. (3.2)

A formal proof of the sentence preceding this definition will emerge when we have stated the criterion for the equilibrium
layer thickness.

The physical setup that we are modeling envisions that the material in each layer must be removed from the bulk at a
free energy cost of f (β) (per area) for each layer, with f (β) as given in Eq. (2.2). For L layers, this is offset by FL(β) (the layer
free energy at the stated couplings) plus the total energetic gain for binding – including the gravitational cost – here denoted
by CL:

CL =

L
J=0

cJ . (3.3)

Thus, the gain—or cost depending on sign—for L layers will be

DL = FL(β) + βCL − Lf (β). (3.4)

The equilibrium layer thickness is determined by the minimizer of DL:

Lβ = Argmin(DL). (3.5)

It is noted that forβ = 0 (where the aboveholds in a limiting sense)wehave FL(β) ≡ Lf (β) (= 0) and thus the nomenclature
L0 is actually appropriate. In the context of the mean-field theory, we have FL ≡ Lf (β) (= 0) down to the bulk critical
temperature which, in consequence, determines the starting point of the analysis.

3.2. Preliminary results

In this subsection, we establish basic properties of the discrete system. Our first results concern elementary properties
of Lβ .

Proposition 3.2. Consider theminimization problem as defined in and prior to Eq. (3.5) and let L0 be as defined in Eq. (3.2) (which
we tacitly assume has a non-frivolous value, e.g., L0 ≥ 3). Then (1) For all β , Lβ ≤ L0. (2) For β ≤ βc , Lβ ≡ L0. Finally, (3a) if
|CL0 | ≥ J1 then

lim
β→∞

Lβ = L0

if cL0 > 0 and, in case cL0 is exactly zero, the limit is L0 − 1.
(3b) If |CL0 | < J1 then

lim
β→∞

Lβ = 0.

Before our proof of Proposition 3.2, we will establish an auxiliary property of the layered systems which we will state as
a separate lemma.

Lemma 3.3. For L ≥ 2 and let mℓ(L) denote the maximum (midpoint) magnetization for the system on LL. Then

φβ(mℓ(L)) ≥ FL+1(β) − FL(β) ≥ φβ(mℓ(L + 1)).

In particular then, FL+1(β) − FL(β) ≥ f (β).

Proof. We start with the upper bound. Consider the system on LL+1 and let ℓ denote the index of the midpoint(s) with
the magnetization mℓ = mℓ(L + 1). We shall remove this magnetization/layer and, after recombination, use the array of
magnetizations withmℓ removed as a trial function for FL.

The entropy associated with this layer is just S(mℓ). All terms involvingmℓ in the energetics are

∆−

E =
1
2
βJ0m2

ℓ + βJ1mℓmℓ−1 + βJ1mℓmℓ+1 (3.6)

all of which will be ‘‘lost’’. There will be an energy ‘‘gain’’ from the coupling of the layers ℓ ± 1 which is given by

∆+

E = βJ1mℓ−1mℓ+1. (3.7)

Consider, then Φβ;L(m′) where m′ is the equilibrium magnetization profile for LL+1 with mℓ deleted. Then

FL+1 = Φβ;L(m′) + ∆+

E − ∆−

E − S(mℓ). (3.8)
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Let us note that

∆−

E − ∆+

E −
1
2
βJ0m2

ℓ − βJ1m2
ℓ = −βJ1(mℓ−1mℓ+1 + m2

ℓ − mℓmℓ+1 − mℓmℓ−1)

= −βJ1(mℓ − mℓ−1)(mℓ − mℓ+1) ≤ 0. (3.9)

Since (by Theorem 2.2 and Corollary 2.3) mℓ may be presumed to be the maximum magnetization on LL+1. Thus Eq. (3.8)
can be replaced with the inequality

FL+1 ≥ Φβ;L(m′) − S(mℓ) −


1
2
βJ0 + βJ1


m2

ℓ. (3.10)

The last two terms on the right add up to precisely φβ(mℓ) while Φβ;L(m′) is certainly not smaller than FL. The lower bound
has been proved.

The proof is similar for the other bound. Here, working in the direction L → L + 1 we will insert the maximum
magnetization, mℓ(L) into the midpoint of the array on LL (i.e., a repeat) thereby obtaining a trial function for FL+1. We
will abbreviatemℓ = mℓ(L) hoping this will not cause confusion with the notation from the first half of this proof.

The calculations are similar – albeit easier – so we shall be succinct. We have that mℓ ≥ mℓ+1. We insert the new
magnetization/layer between the layers ℓ and ℓ + 1. The result, using m̃ as notation for the so described array of L + 1
magnetizations is

Φβ;L+1(m̃) = FL + βJ1mℓmℓ+1 − βJ1mℓmℓ+1 −
1
2
βJ1mℓmℓ −

1
2
βJ0m2

ℓ − SI(mℓ)

= FL + φβ(mℓ). (3.11)

Thus, the right side is an upper bound on FL+1 and so the other bound is proved. �

We pause for an additional result along these lines (which is not strictly necessary for the up and coming and can be
omitted on a preliminary reading).What follows is a discrete concavity result concerning the free energy of layered systems:

Lemma 3.4. For the layered systems with L ≥ 2,

FL+2 − FL+1 ≤ FL+1 − FL.

Proof. Wewill establish that FL+2+FL ≤ 2FL+1 by transference of a layer from one copy ofLL+1 to another thereby obtaining
an upper bound on FL+2 + FL. Let ℓ denote the position of the maximummagnetization on LL+1. Then, transferring this layer
to the other copy of LL+1 between the ℓ − 1nth and ℓth layer, we obtain that the quantity

2FL+1 − βJ1[−(mℓmℓ+1 + mℓmℓ+1 − mℓ+1mℓ+1) + (m2
ℓ + mℓmℓ+1 − mℓmℓ+1)]

which is an upper bound on FL+2 + FL. However, the correction to 2FL+1 is seen to be −βJ1(mℓ − mℓ+1)(mℓ − mℓ−1) which
is not positive and the result is established. �

Remark 1. The preceding is ‘‘not good news’’ from the analytic perspective since it means that a sign change of the discrete
derivative of DL is not a sufficient condition for L = Lβ : this concavity of the FL’s implies that there may be several sign
changes. In particular, in the context of the large L0-theory, several local minima may be present with the global minimizer
shifting (discontinuously) as the temperature varies. Evidently. these behaviors will also manifest in the discrete systems.

Proof of Proposition 3.2. Let L > L0 then

FL + βCL = FL0 + (FL − FL0) + βCL0 + β

L
J=L0+1

cJ . (3.12)

Now by (several iterations of) Lemma 3.3, FL − FL0 ≥ (L− L0)f (β) and, by definition of L0, each cJ participating in the above
sum is positive. Thus

FL + βCL − Lf (β) > FL0 + βCL0 − L0f (β) (3.13)

and hence L ≠ Lβ which proves the first statement.
As for the second: for β ≤ βc , FL − Lf (β) ≡ 0 so DL = βCL and the minimum is clearly at L = L0.
Finally, for any L ≥ 3, DL − DL−1 provides

DL − DL−1 = FL − FL−1 + βcL − f (β) ≤ φβ(mℓ) − f (β) + βcL. (3.14)

Note that as β → ∞ both m(β) and mℓ(β) tend to one and it follows easily that β−1
|φβ(mℓ) − f (β)| → 0. Thus if cL < 0

then for all β sufficiently large, DL < DL−1 which implies (assuming, of course Lβ ≤ L0) that among all possible candidates
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for minimizers with L ≥ 3 the best option is L0 if cL0 < 0 and L0 − 1 (since the magnetization is never quite equal to unity)
if cL0 happens to be exactly zero.

A similar, explicit calculation shows (assuming c2 < 0) that for β ≫ 1, D2 < D1. Thus if for β large and we find
D1 < D0 ≡ 0, we are done while if D1 > 0, we are down to a comparison of zero (AKA D0) and DL0 .

For large β asymptotics, the difference between bulk and layered free energies is almost completely accounted for by the
energetics associated with the ‘‘missing coupling’’ in the layered system. In particular, for L ≥ 1

FL − Lf (β) < J1βm2 (3.15)

is obtained, e.g., by usingmk ≡ m(β) as a trial and a similar lower bound obtained by the reverse substitution. Hence

lim
β→∞

1
β

[FL − Lf (β)] = J1.

Thus if J1 > |CL0 |, then limβ→∞ Lβ = 0 while if J1 ≤ |CL0 | we acquire the above discussed options, usually L0. Note that in
the case of equality (again, highly ‘‘unlikely’’) we do not get Lβ → 0 in light of the strict inequality in Eq. (3.15) and the fact
that for finite β the magnetization is never quite unity. �

Remark 2. We remark that comparisons between substrate–Helium interaction energies (of the order of many degrees)
versus the relevant ‘‘coupling’’ energies for superfluids (of the order of a fewdegrees) obviously demonstrate that the Lβ → 0
scenario is not within the realm of interest for the setups in [1,2]. However, a remnant of this mathematical phenomenon
will reemerge when we discuss the large L0 theory where numerical differences between parameters can be washed out by
scaling and/or, arguably, large β is never reached.

Aside from the generalities described in this section, it is apparent that whenever L0 itself is of order unity the layered
problems must be treated on a case by case basis with the outcome depending in a complicated way on the specifics of the
model. (It also calls into question the use of mean-field theory with Ising interactions.) Moreover, it would seem that actual
systems with moderate L0 would be difficult to investigate experimentally. However (and fortunately) the experiments in
[1,2] indicate the need for a large L0-theory which will be the subject of the next subsection.

4. Large L0 theory

As discussed above, many disparate behaviors are possible when the initial number of layers, L0, is of order unity. Here
(and in the next section) we wish to describe emergent behavior for systems with L0 ≫ 1. In the current section, we will
discuss on amathematically informal level howwe arrive at the theory governing the L0 = ∞ limit and explore analytically
(AKA rigorously) the asymptotic possibilities. In the next section, we will provide the mathematical underpinnings which
tie the finite but large L0 models to this L0 = ∞ limit.

4.1. Large L0 preliminaries

Aswill emerge in this subsection, the basis for a large L0 theory is that (at least in the range of interest) CL ∼ L−3. Thus, we
may as well assume cL has the scaling of L−4

0 times a regular function of L/L0. This latter variable will be r . Thus, for r ∈ (0, 1]
we define c(r) via

c(r) = lim
L0→∞

L40c[rL0] (4.1)

i.e.,

cL ∼
1
L40

c


L
L0


. (4.2)

It is remarked that, from an alternative perspective, the large L0 theory can also be viewed in terms of a small a0 theory
which provides a modicum of justification for an ansatz along the above lines.

We are still assuming that c is increasing; let us for once and all make the stronger assumptions that c(r) is strictly
increasing on (0, 1] with c(1) = 0. (Thus, c(r) < 0 for r < 1). Also, there is no real loss in generality to assume that c is
smooth on (0, 1] but, as we shall see, it is pertinent to allow versions of c which diverge as r → 0.

Notwithstanding, the supposed existence of a non-trivial limiting c(r), the limit thinning problemmay end up, in essence,
to be a triviality or (worse) exhibit behavior that is highly unlikely from a physical perspective. These possibilitywill be offset
by a condition we refer to as the strong wetting condition. In its initial rendition, it has the appearance of a mathematically
sufficient criterion for non-triviality which, moreover, has as much to do with the parameters J0 and J1 of the Hamiltonian
as with c(r) itself. E.g., with fixed J0 and J1, if c0(r) satisfies the monotonicity criteria then the system is strong wetting for
c(r) = Ωc0(r) for all Ω sufficiently large. However, as the story plays out, something even more stringent is required (at
r ≪ 1) in order to prevent the layer from washing out altogether at low temperature parameter. (This leads to the sharp
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result stated in the abstract.) Notwithstanding, the precise statement of the strong wetting condition is somewhat arduous
and will be postponed till it is sufficiently motivated. If anxious, the reader is invited to Definition 4.3.

It turns out that under the strong(er) wetting condition, in the context of the large but finite L0 problems, the entire
thinning and recovery procedure takes place in the temperature range provided by β − βc of the order L−2

0 . Thus we write

β − βc =
B
L20

1
J0 + 2J1

(4.3)

with the scaling factor of the J ’s for continued convenience. In the a / b language, this reads b = 1+
B
L20
, the scaling unveiled

in Proposition 2.4.
The goal of this section will be to construct and analyze the asymptotic layered model for L0 → ∞, as B ranges in

[0, ∞). In the large L0 limit, with the temperature scaling as in Eq. (4.3) above, the correct scaling for the magnetization is
m(β) ∼ (β −βc)

1/2
∼ L−1

0 ; we defineM(B) = limL0→∞ L0m(β(B)). Then the well known result isM =
√
3B. Moreover, the

free energy change (in the bulk) scales like the fourth power of the magnetization, i.e., L−4
0 which, it is noted, is compatible

with the definition of c(r) provided by Eq. (4.1). In particular, for M ∈ R of order unity and β(B) as described in Eq. (4.3),
we make the following definitions:

ϕB(M) := lim
L0→∞

L40φ(L−1
0 M) (4.4)

and

fB := ϕB(M(B)). (4.5)

The results are ϕB(M) = −
1
2BM

2
+

1
12M

4 and fB = −
3
4B

2.
These formulas are beset with numerical coefficients which depend on the Ising nature of the mean-field interaction

and do not play a major rôle. Indeed, the principal difference between the Ising and other spin-systems, at this level of
approximation, is the coefficient in front of the quartic term. Thus, for computational ease and to demonstrate that the
conclusions reached do not depend on the Ising nature of the interaction (and to provide the reader with a familiar look) we
shall replace a 3 in the quartic coefficient with U−1. We thus get

ϕB(M) = −
1
2
BM2

+
1
4
UM4 (4.6)

so that

M(B) =


B
U

(4.7)

resulting in

fB = −
1
4
B2

U
. (4.8)

Finally, let us tend to the object of principal interest, Lβ that was defined in Eq. (3.5). Ultimately one is interested in the
rescaled version of Lβ namely

r̃B = lim
L0→∞

Lβ

L0
. (4.9)

The existence of this limit, which is not a priori obvious will be a subject of the mathematical section and will be proved as
the final result of this note (Corollary to Proposition 5.2). In this section, we will be content with the object, denoted by an
unadorned rB, which is associated with the continuum thinning model and which, ultimately, provides the value of the limit.

4.2. The continuum thinning model

We now turn our attention to the detailed situation in the large L0 limit. We shall begin in the discrete system and derive
a certain limiting system; as is not too surprising the result is the standard Ginzburg–Landau model appropriate for a 1D
inhomogeneous medium.We remind (and will continue to remind) the reader that the current section is informal; rigorous
details will be provided in the next section.

Starting from the mean-field equation (Eq. (2.4) in the language of Eq. (2.5)), we have

bmk + a∆mk = Arctanh(mk) = mk +
1
3
m3

k + · · · . (4.10)

Using the appropriate scaling with L0 described previously, for x ∈ [0, 1], we defineMB(x) by

mk = L−1
0 MB(kL−1

0 )
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using smooth interpolation if protocol requires. We write b = 1 + L−2
0 B and a ≈

J1
J0+2J1

=: A and obtain

mk +
1
L30

BMB + A
1
L30

M ′′

B = mk +
1
3

1
L30

M3
B + · · · (4.11)

so (with full justification coming later) as L0 → ∞, we have

AM ′′

B + BMB − UM3
B = 0. (4.12)

Where, we remind the reader that we have replaced the Ising value of 1
3 with a traditional U .

It is noted that Eq. (4.12) is the Euler–Lagrange equation for the functional

FB(r) = inf
MB

 r

0


1
2
AM ′2

B −
1
2
BM2

B +
1
4
UM4

B


dx. (4.13)

While, from a certain perspective, it is clear that the functional on the right side of Eq. (4.13) is the correct object for
the continuum theory, a proof requires some small effort. Indeed, we will show, in the corollary to Theorem 5.1 and
Proposition 5.2 that

FB(r) = lim
L0→∞

L30F[rL0] (4.14)

which is more than enough for present purposes.
We further define C(r) either directly out of CL and/or as the integral of c:

C(r) =

 r

ε0

c(r ′)dr ′ (4.15)

where the lower limit indicates that some care must be taken if the divergence of c at the origin is too strong. This subject
matter will be discussed in more detail in Section 4.4 and, in any case, will not usually be of direct concern till we discuss
B ≫ 1. At present, we will suppress the presence of cutoffs in our notation.

Thus, we obtain the continuum version of the layering problem:

DB(r) = C(r) + FB(r) − rfB
and then

rB = Argmin(DB(r)). (4.16)

In light of the upper and lower bounds that were proved in the discrete context in Lemma 3.3, it ‘‘must’’ be the case that
∂FB

∂r
= ϕB(Mℓ(r, B))

where Mℓ(r, B) denotes the value of the minimizer for the functional in Eq. (4.13) evaluated at the midpoint. This turns
out to be the case and later (Corollary 4.2) will be derived on the basis of the functional alone. With the above in mind, a
derivative condition which is a necessary but not sufficient condition for the determination of rB reads:

c(rB) + ϕB(Mℓ(r, B)) = fB.

The principal result of this section is contained in the up and coming theorem. It is remarked that the forthcoming is
completely rigorous under the assumption that various functions are ‘‘smooth enough’’ to employ classical analysis. A
primary objective of Section 5 is to demonstrate that the classical solution obtained here is indeed the only mathematical
possibility and indeed minimizes the functional in Eq. (4.13).

Theorem 4.1. Let Mℓ(r, B) denote themagnetization at the midpoint of the rescaled system on [0, r]. Then under the assumption
that the functional defined in Eq. (4.13) has a classical minimizer, the following holds.

There is a function µℓ(Q ) taking values in [0, 1) with argument Q in [0, ∞) – and the ℓ for decoration – such that

Mℓ(r, B) = [µℓ(A−1r2B)]M(B).

Moreover, µℓ(Q ) has the properties

• µℓ(Q ) is monotone nondecreasing.
• µℓ ≡ 0 for Q ≤ π2; µℓ > 0 for Q > π2.
• µℓ → 1 as Q → ∞. In particular, µℓ(Q ) ∼ 1 − e−

√
Q/2 for large Q .

Remark 3. Our analysis of Eq. (4.12) will provide the proof of the above stated theorem. Much of what is to follow, not to
mention the up and coming Lemma 4.7 could (we presume) be gleaned from the vast ancient literature on the subject of
elliptic functions. However, this might only supply marginal insight into the problem at hand and, in any case, our proofs
are elementary.
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Proof. The proof comes from the investigation of the functional defined on the right hand side of Eq. (4.13). The first step is
to write this functional in dimensionless form. For y ∈ [0, 1] let µ(y) be defined by

MB(x) = Mµ
x
r


. (4.17)

Then the integrand in Eq. (4.13) reads

A
B
U

1
r2


1
2
(µ′)2 −

1
2
Br2

A
µ2

+
1
4
Br2

A
µ4


where the argument of µ is still x/r and the integration is on [0, r] (so we will gain a further factor of r from the change of
variables). We arrive at

FB(r) =
AB
rU

inf
µ

 1

0

1
2
(µ′)2 −

1
2
Qµ2

+
1
4
Qµ4dx

=:
AB
rU

inf
µ

 1

0
LQ (µ)dx (4.18)

where

Q :=
Br2

A
.

The object of interest in Theorem 4.1 is just

µℓ(Q ) := µ


Q ;

1
2


namely the µ-function from Eq. (4.17), with all relevant parameters wrapped up into Q , and evaluated at the midpoint.

The proof of the first claim is the continuum version of the proof for the corresponding result in the discrete model. We
shall be brief. The continuum analog of the eigenvalue condition – sometimes known as the Poincaré inequality – here reads 1

0
(µ′)2dx ≥ π2

 1

0
µ2dx.

In this context, the above derived pretty much the same way as for the discrete systems; the Poincaré inequality may
be directly applied after an antisymmetric extension of µ to [0, 2]. Thus for Q ≤ π2, the functional is minimized by
µ ≡ 0. Moreover, similar reasoning shows that in this region, there is no non-trivial solution, formal or otherwise, to the
Euler–Lagrange equation:

µ′′
+ Qµ(1 − µ2) = 0. (4.19)

Thus the first half of the second item is proved.
Using the trial function ε sinπx; ε ≪ 1 it is seen that for Q > π2, FB(r) corresponds to non-trivial minimizers (or

‘‘near-minimizers’’). The existence of a genuine minimizing solution will follow, actually, by quadrature, which ultimately
proves the second half of the second statement.

Let us start by consideration of trial minimizers which, without loss of generality, are assumed to have piecewise
continuous first derivative. The first observation is that in any such trial minimizer, the function may as well be symmetric
with vanishing derivative at the mid-point. Symmetry follows immediately: if µ is a trial function suppose, e.g., that 1

2

0
LQ (µ)dx ≤

 1

1
2

LQ (µ)dx

then by replacing the right half of µ with its reflection from the left, we get a trial function of caliber at least as good as
µ. Next, we show by similar means that in any trial function – symmetric or otherwise – the midpoint derivative may as
well vanish (or the trial minimizer can be improved). For simplicity, we argue the symmetric case. Indeed, suppose that
|µ′(x)| → α > 0 as x →

1
2 . Let ε > 0 denote a sufficiently small number and let us consider the effect of replacing µ(x) by

µ
 1
2 − ε


in the region 1

2 − ε ≤ x ≤
1
2 + ε. It may be assumed that, for ε small, in this region,

c1(ε)α ≤ µ′(x) ≤ c2(ε)α

with c1, c2 → 1 as ε ↓ 0. Therefore, the benefit to the functional from cutting out the derivative term is at least, in absolute
value,

1
2
(c1α)2 · 2ε.
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On the other hand, there will be ‘‘loss’’ to the functional because, presumably, µ has been deprived of taking on optimal
values in this region. Now the change in µ between x =

1
2 − ε and x =

1
2 is at most c2αε. If PQ denotes the maximum value

of the derivative of 1
2Qµ2

−
1
4Qµ4, 0 ≤ µ ≤ 1 it is seen that the loss is at most, in absolute value,

(PQ c2αε) · 2ε.

Clearly, for ε sufficiently small, the benefits outweigh the losses. Thus, under the assumption of a classical minimizer, we
may presume that its derivative vanishes at the midpoint.

Now, the differential (Euler–Lagrange) equation displayed earlier admits the invariant

1
2


dµ
dx

2

+
1
2
Qµ2

−
1
4
Qµ4

= const.

On the basis of the preceding, we may identify the constant with value of the functional when the derivative vanishes:

1
2


dµ
dx

2

+
1
2
Qµ2

−
1
4
Qµ4

=
1
2
Qµ2

ℓ −
1
4
Qµ4

ℓ

where µℓ = µ
 1
2


. It is noted, perhaps coincidentally, that the invariant of interest, namely −Q

 1
2µ

2
ℓ −

1
4µ

4
ℓ


is the crucial

item governing the rate that the free energy of the layer changes with the layer thickness.
In any case, we write the above as

dµ
dx

2

= Q (µ2
ℓ − µ2)


1 −

1
2
(µ2

ℓ + µ2)


. (4.20)

The preceding equation is actually true but trivial ifQ ≤ π2. To avoid further provisos, let us assume for themidrange future
that Q > π2 where by the trial function analysis discussed after Eq. (4.19), all quantities in Eq. (4.20) are non-trivial. (The
relevant claims in the statement of this theorem at the point Q = π2 will follow, from both sides, by continuity.)

We now obtain an implicit expression for µ, namely µ(x)

0

dµ⋆

(µ2
ℓ − µ2

⋆)
1
2

1 −

1
2 (µ

2
ℓ + µ2

⋆)
 1
2

=


Qx, (4.21)

0 ≤ x ≤
1
2 . And the above can be used to derive the following identity for µℓ: µℓ

0

dµ⋆

(µ2
ℓ − µ2

⋆)
1
2

1 −

1
2 (µ

2
ℓ + µ2

⋆)
 1
2

=
1
2


Q . (4.22)

These two equations (executed in reverse order) actually define the function µ(x) as unfolds below. In particular, let us first
show that the relationship in Eq. (4.22) defines a function µℓ(Q ) for Q ∈ [π2, ∞) with values in [0, 1).

To this end, it is convenient to rid the integral of the µℓ dependence in the upper limit. We substitute

µ = µℓ sin θ

and Eq. (4.22) now reads π
2

0

dθ
1 −

1
2µ

2
ℓ(1 + sin2 θ)

 1
2

=
1
2


Q . (4.23)

This formmanifestly defines the inverse function, the ‘‘forward’’ function µℓ(Q ) with the stated properties follow if we can
demonstrate (strict) monotonicity and verify the ranges. These are immediate.

It is noted fromEq. (4.23) thatµℓ < 1 impliesQ < ∞with divergence ofQ asµℓ ↑ 1.Moreover,µℓ = 0 certainly implies
that Q = π2. Finally, letting µ

(1)
ℓ > µ

(2)
ℓ – both in the specified range – it is seen by inspection that Q (µ

(1)
ℓ ) > Q (µ

(2)
ℓ ).

Thus far we have established the existence of µℓ(Q ) in [π2, ∞)—which we may extend to ‘‘identically zero’’ in [0, π2
].

In the latter range, µ(x) is just zero and in the former, it is given implicitly by Eq. (4.21). The remainder of item 2 and all
of item 1 in the statement of this theorem has been proved. (Moreover, we now have some knowledge of the minimizing
magnetization profile.)

We turn to item 3 which we establish by elementary asymptotic analysis of Eq. (4.23). Writing 1 − µ2
ℓ = εQ and

transforming θ →
π
2 − φ we re-express Eq. (4.23): π

2

0

dφ
εQ +

1
2 (1 − εQ ) sin2 φ

 1
2

=
1
2


Q . (4.24)
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Using q2 =
2εQ
1−εQ

, the above amounts to

 π
2

0

dφ

(q2 + sin2 φ)
1
2

=


2

1 − εQ

 1
2 1
2


Q =

1
µℓ


Q
2

. (4.25)

Let Iq denote the left side. We would like to replace the sin2 φ with φ2, which certainly provides a lower bound:

Iq ≥

 π
2

0

dφ

(q2 + φ2)
1
2

= sinh−1 π

2
1
q

(4.26)

and which further implies the bound

1 − µℓ ≥ K1 exp−


Q
2

 1
2

(4.27)

with K1 a constant independent of Q . So, defining

Eq = Iq −

 π
2

0

dφ

(q2 + φ2)
1
2

(4.28)

we get an opposite bound of the form in Eq. (4.27) if we can show that Eq is bounded by a constant of order unity independent
of q. Subtracting out:

Eq =

 π
2

0

φ2
− sin2 φ

(q2 + φ2)
1
2 (q2 + sin2 φ)

1
2


(q2 + φ2)

1
2 + (q2 + sin2 φ)

1
2

 . (4.29)

In the numerator we may replace:

φ2
− sin2 φ ≤

1
3
φ4 (4.30)

and in the denominator, we may again replace sinφ with φ and set q = 0 with the result:

Eq ≤

 π
2

0

1
3φ

4

2(φ2)
3
2
dφ =

1
6

 π
2

0
φdφ (4.31)

which establishes an opposite bound of the form in Eq. (4.27). All claims have been established. �

Corollary 4.2. The derivative of FB(r) with respect to r is, in fact given by the free energy function evaluated at the midpoint,
ϕB(Mℓ(r, B)).

Proof. Here, it is convenient to go back to the original formwith unrescaled variables.We take from the above only the facts
that (1) FB(r) can be differentiated in the first place, (2) that for all r , the minimizing MB(x) has vanishing derivative at the
midpoint and (3) the continuity of Mℓ(r, B). Our proof consists of the continuum analog of Lemma 3.3. It may be assumed
that Br2 > Aπ2 otherwise, the desired result is trivial.

UsingMr,B(x) as temporary notation for the appropriateminimizing solution, consider first the situation on [0, r+δr]. As
a trial function, we may useMr,B(x) up to x =

1
2 r and then the constantMr,B

 r
2


(= Mℓ(r, B)) in the region

 r
2 ≤ x ≤

r+δr
2


and, as for the right half, we reflect. The result is

FB(r + δr) ≤ FB(r) + δrϕB(Mℓ(r, B)) (4.32)

and a one way bound has been established. On the other side, we can simply cut out the region
 r
2 ≤ x ≤

r+δr
2


(and its

reflection) to obtain

FB(r) ≤ FB(r + δr) −

 r+δr
2

r−δr
2


A
2
M ′2

r+δr,B −
B
2
M2

r+δr,B +
U
4
M4

r+δr,B


dx. (4.33)

By virtue of the fact that the derivative vanishes at the midpoint, the first term in the integral is o(δr). As for what remains,
we use continuity ofMr+δr,B as a function of x and continuity ofMℓ(r, B) as a function of r to obtain

FB(r) ≤ FB(r + δr) − δrϕB(Mℓ(r, B)) + o(δr) (4.34)

which completes the proof. �
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4.3. Evolution of thinning for strong wetting fluids

In this subsection, we commence investigation of the behavior of rB for 0 ≤ B < ∞.
First off, we can no longer postpone a precise formulation of the strongwetting condition. Mathematically, this condition

is initially seen to be sufficient (but apparently not necessary) to insure that ‘‘something interesting happens’’ as the
temperature parameter evolves. But it turns out – as will be demonstrated later – a stronger condition along these lines
is actually required to ensure that the layer does not dwindle away at low temperatures. (Discussion of various scenarios
which can occur without the strong wetting condition are postponed to the next subsection.)

Under this criterion of strongwetting it will be readily demonstrated that the thinning process will inevitably experience
discontinuities: either in rB itself or (‘‘generically unlikely’’) in its derivative. Indeed the discontinuity will occur as soon
as the current layer is not in the high temperature phase. Moreover, in the present context, the first such discontinuity
necessarily implies that a turning point has been reached. Specifically: once rB corresponds to a film thickness that is in the
low temperature phase (or critical state) then, at least for a while thereafter, rB is increasing.

These two points are not necessarily tied together and will be treated separately. In particular, the existence of
the discontinuities appears to be quite robust. By contrast, the occurrence of thickening subsequent to non-trivial
thermodynamic behavior in the layer is a direct consequence of the close ties between the physical descriptions of the
bulk and layer problems. Indeed, if additional thermodynamic forces are incorporated into the layered system that are not
present in the bulk, it might well be the case that thinning will continue after the discontinuities (as is apparently the case
in the data from [1,2]).

We note that for temperatures just below the critical temperature (specifically, B > 0 but less than A−1π2) the layer
is always subcritical and the thinning process follows an orderly evolution that we call free thinning. Here, rB satisfies
c(rB) = −B2/4U . Regardless of actual circumstances we shall denote the solution of the above by r◦:

r◦ : c(r◦) = −
1
4
1
U
B2. (4.35)

On the other hand, a layer of thickness r is in the low temperature phase provided r2B ≥ Aπ2. We define, for B > Aπ2,
the critical thickness r⋆ as the exact thickness for a layer which, if present, is just entering the low temperature phase:

r⋆ : Br2⋆ = Aπ2.

We formulate the condition of strong wetting in terms of these quantities:

Definition 4.3. Consider the continuum thinning problem as described. Then the system is said to satisfy the strong wetting
condition if for some B,

r⋆(B) = r◦(B).

Remark 4. Weremark that the above does not require any coincidence of parameters and could be replaced by r⋆(B) ≤ r◦(B)
for some B. Indeed r◦ starts out ‘‘ahead’’ (meaning smaller) at B = Aπ2 and either r⋆ catches up at some point or it does not.
Since both evolve continuously, the former implies the statement in the definition. It is noted that for any fixed c(r) as
described, the system satisfies strong wetting provided U is sufficiently large and/or A is sufficiently small. Similarly, strong
wetting is achieved if c is multiplied by a large ‘‘interaction strength’’ parameter.

On the other hand, a strong enough divergence of c(r) at r = 0 implies strong wetting independent of these parameters.
(Here, some small care must be taken to properly define the problem using cutoffs but these matters will not concern us
for the present.) In particular, notwithstanding the appearance of the strong wetting construction, some condition along the
lines of r⋆(B) ≤ r◦(B) for all values of B that are very large is, in fact, required in order for the continuum model to have
sensible large B behavior. As previously promised, these matters will be discussed in the next subsection.

Interestingly enough, the critical potential for guaranteed strong wetting (and sensible large B behavior) is c(r) ∼ r−4

namely the behavior associated with the mean-field – d ≥ 4 – Van derWaals interaction. Later we provide a sharp value for
the coefficient which separates ‘‘sensible’’ from ‘‘nonsensible’’ large B behavior.

Since we have assumed c(r) is smooth and increasing this means that when rB = r◦ then rB is smooth and decreasing.
Our first result, which hardly requires a proof, is that the initial free thinning epoch extends somewhat beyond B = Aπ2.

Proposition 4.4. Consider the continuum thinning problem as described in Eq. (4.16) and let

BT = sup{B | rB′ = r◦ for all B′ < B}.

Then BT = Aπ2
+ ϑ for some ϑ > 0.

Proof. For the ease of exposition,wewill argue from the integrated formof all relevant quantities.WeemployC(r) andFB(r)
as defined and we recall rB is the minimizer of C(r) + FB(r) − rfB. For B ≤ Aπ2, FB(r) vanishes identically and so, obviously
rB satisfies Eq. (4.35). Now consider B = Aπ2

+ δB with δB ≪ 1. Then, as r varies, the only portion of C(r) + FB(r) − rfB
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that is effected is the region 1 ≥ r ≥ 1 − δr with δr ∼
1
2δB/Aπ2 as δB → 0. Under the assumption of strict monotonicity

of c(r) and continuity of FB(r), (which, anyway, scales like δB) for δB sufficiently small, this region is well past the region of
the minimum and not strong enough to dispute the free thinning candidate for rB and the result follows. �

Of course the strong wetting condition ensures that the initial epoch of free thinning must eventually come to a close.
Let us denote by r• the (largest) mutual value:

r• = min{r◦(B) | r◦ ≤ r⋆} = max{r⋆(B) | r⋆ ≤ r◦}.

Analysis of the circumstances under the purported condition rB = r• lead, inevitably to the conclusion that there must be
discontinuities.

Theorem 4.5. Consider the continuum thinning problem as described and suppose the system satisfies the strong wetting
condition. Then the initial epoch of thinning is entirely the process of free thinning; i.e., the layer begins to re-thicken after B = BT .
Moreover, since r ′

B < 0 for B < BT and r ′

B ≥ 0 for B & BT there is always a discontinuity in the derivative at B = BT . Moreover,
at B = BT , it is generic that rB is discontinuous (with positive jump).

Proof of Theorem 4.5. Let us entertain the possibility that the free thinning occurs till the layer thickness is down to r•.
Denoting by B• the parameter value where this would occur, let us increase B : B• → B• + δB which causes the change
r : r• → r• + δr with δB, |δr| ≪ 1. Then, to lowest order, δr and δB are related by

c ′
+

∂ϕB(Mℓ)

∂r


δr =


f ′

B −
∂ϕB(Mℓ)

∂B


δB (4.36)

where all arguments are evaluated at (r•, B•). The above formula must be taken cum grano salis; certainly it is valid if δr > 0
but for δr < 0 it is only true under the auspices that |δr| is not too large compared with δB. This fine point need not concern
us since all relevant circumstances concerns the event that δr is positive.

This (first) claim is the following: regardless of the right side of Eq. (4.36), we claim that if coefficient of δr is negative,
then at B = B•, the free energy is minimized at an r > r•. Indeed, supposing this quantity to be negative we would lower
the free energy by simply increasing r above r•. Moreover, it is claimed that generically, either sign is possible. Since it turns
out that this is not entirely obvious, a separate proposition to this effect will be provided immediately subsequent to the
present proof. However, for future reference, we remark that by this reasoning, whenever r = rB, non-negativity of this
quantity must follow:

c ′(rB) +


∂ϕB(Mℓ)

∂r


(rB,B)

≥ 0. (4.37)

Back to the problem at hand, negativity of this combination at (r•, B•) implies that at B = B•, the free energy isminimized
by an rB•

> r• which, in particular, implies a low temperature layer. Now, initially (e.g., as discussed in Proposition 4.4, for
B . π2A) the layer thickness, rB (= r◦(B)) corresponded to a high temperature layer under free thinning. By the time
circumstances have permitted the opportunity to make the transition continuously through a critical layer it is apparently
already in a low temperature layer. It follows that at the (existential) point BT – which is evidently less than B• – there has
been a discontinuous jump of the layer thickness. Indeed, at this point, there are coexisting minimizing layer thicknesses
r+

BT
> r−

BT
satisfying

r+

BT

2
BT > π2A (low temperature layer);

r−

BT

2
BT < π2A (high temperature layer). (4.38)

It is noted that the discontinuity must go backwards; in particular, by definition, up to and including (r−

BT
, BT ), the free

thinning criterion is still satisfied.
In light of Proposition 4.6 below, these discontinuities are certainly generic. And needless to say, if the preceding

negativity criterion fails, it might still be the case that at B = B•, the free energy is minimized at a larger value of r than
r• due to a (sufficiently strong) turn around of c ′

+
∂ϕB
∂r at r > r•; the scenario for these cases is identical culminating in

Eq. (4.38).
A number of interesting possibilities would ensue if the coefficient of δB in Eq. (4.36) were (‘‘still’’) negative. However, as

will be demonstrated in Lemma 4.7, this quantity is positive. Thence, if c ′
+

∂ϕB
∂r is also positive at (r•, B•) corresponding to

an actual minimum of C(r) + FB(r) − rfB then rB turns around and obviously does so with derivative going discontinuously
from (strictly) negative to (strictly) positive.

Finally, we turn to the case where c ′
+

∂ϕB
∂r vanishes at (r•, B•). Here one must look at higher order terms or, if necessary,

non-perturbatively to ensure that C(r) + FB(r) − rfB is really uniquely minimized at r = r•. If not, there already has been a
jump in rB or there is about to be a jump in rB. If so, then in light of the positivity of f ′

B−
∂ϕB
∂B therewill anyway be a turnaround

of rB with a sharp singularity in the derivative of rB at B = B+
•
. �
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Proposition 4.6. Consider the functions c(r), r•(B), etc., as defined. Then at the point r = r•, B = B•, the quantity

c ′(r•) +
∂ϕB

∂r
(r•, B•)

can be of either sign depending on the details of c(r).

Remark 5. As the analysis belowwill show, the sign of the above displayed quantity depends only on the ratio of |r ′
⋆| to |r ′

◦
|

at r = r•. Since, it is recalled, r• is the first point of intersection of these curves, and r⋆ is ‘‘coming from above’’, it follows
that |r ′

⋆(B•)| ≥ |r ′
◦
(B•)| (with equality only marginally possible). From a mathematical perspective, if any function r◦(B)

is prescribed satisfying the constraints of monotonicity and the correct limiting behavior r◦(B) → 1 as B → 0 then the
corresponding c(r) can be constructed. Indeed, denoting the inverse function of r◦(B) by B◦(r), we may simply write

c(r) = −
1
4
B2

◦
(r)
U

.

Thus, assuming r◦(B) is smooth and (‘‘first’’) intersects r⋆ at some point (r•, B•) then local distortions in the vicinity of this
intersection point can achieve any ratio of |r ′

⋆|/|r
′
◦
| in (1, ∞) with only mild effect on c(r).

Fromamore physical perspective, suppose that r◦(B), and hence c(r), is immutable butwe allow A as a control parameter.
(While the condition of ferromagnetism puts bounds on the allowed values of Awe shall ignore these fine points for the time
being.) For the ease of exposition, let us suppose thatwe have a bounded derivative for r◦(B) at B = 0 and, say, r◦(B) vanishes
at B = H (e.g., the case of a linear potential). Then, as A → 0, B• → 0 and we will have |r ′

⋆(B•)| divergent. So, in particular,
for A sufficiently small, |r ′

⋆(B•)| ≫ |r ′
◦
(B•)|. Note that in this range, there have to be multiple points of intersection between

r⋆(B) and r◦(B). On the other hand, if A is large, we will find r⋆(B) > r◦(B) for all B in [0,H]. It follows that there is an Ac
at which there is a first point of intersection (and, generically, only a single point of intersection) at which the derivatives
match.
Proof of Proposition 4.6. We write

|c(r◦)| =
1
4
B2

U
and, differentiating, we have

|c ′(r◦)|
dr◦dB

 =
1
2
B
U

= |c(r◦)|
2
B
.

Thus, just after a few steps,dcdr
 r ′

◦

r ′
⋆

|r ′

⋆| = 2
r⋆
B

 c(r◦)r⋆

 .
It is noted that the combination |r ′

⋆B/r⋆| amounts to a logarithmic derivative of r ′
⋆ with respect to log B and is exactly 1

2 so,
evaluating at (r•, B•) we arrive at

|c ′(r•)| = 4
r ′
⋆

r ′
◦

 c(r•)r•

 . (4.39)

Now, let us turn our attention to the free energetics. Writing

ϕB(Mℓ(r, B)) = −
1
2
B2

U


µ2

ℓ(Q ) −
1
2
µ4

ℓ(Q )


(4.40)

(where Q = Br2/A) we have, in general,

∂ϕB

∂r
= −

1
2
B2

U
(1 − µ2

ℓ)
dµ2

ℓ

dQ
∂Q
∂r

.

Now it is a direct consequence of Lemma 4.7 below that the quantity K defined by

K :=
dµ2

ℓ

dQ


Qc

(4.41)

satisfies KQc ≥ 1. (Here, Qc = π2.) However, as can be readily verified by perturbative calculations, the inequality is strict:

1 < KQc =

 π
0 sin2 θdθ π
0 sin4 θdθ

=
4
3 . Continuing the derivation, we have∂ϕB

∂r


(r•,B•)

=
1
2
B2

U
K · 2rBA = 4

 c(r•)r•

KQc (4.42)
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which is strictly greater than (but comparable to) the quantity 4|c(r•)|/r• which is the coefficient of r ′
◦
(B•)/r ′

⋆(B•) that figures
into the right hand side of Eq. (4.39). Thus, depending on the magnitude of r ′

◦
(B•) to r ′

⋆(B•), the quantity in the display of the
statement of this proposition can indeed be of either sign. �

The key inequality alluded to earlier (which demonstrates that after free thinning is over, thickening must commence,
at least for a while) is now presented:

Lemma 4.7. Whenever r2B ≥ Aπ2,
∂

∂B
ϕB(Mℓ(r, B)) <

∂

∂B
ϕB(M)

where, at r2B = Aπ2, the derivative is interpreted as being in the positive direction.

Proof. As discussed previously, the inequality can be verified perturbatively for r2B − Aπ2
≪ 1. Furthermore, for large B

(and fixed r) this can be shownon the basis of asymptotics. As for the general case,writingMℓ(r, B) = µℓM (withM2
= B/U)

the object to be differentiated is

−
B2

U


1
2
µ2

ℓ −
1
4
µ4

ℓ


while on the right, it is just −

1
4
B2
U . Multiplying throughout by 1

A r
4 which does not affect the partial derivative, the left side

is, to within constants, the derivative w.r.t Q of Q 2
 1
2µ

2
ℓ −

1
4µ

4
ℓ


, which is to be compared with d

dQ
1
4Q

2. Thus, it is enough
to show that the derivative of Q 2(1 − µ2

ℓ)
2 is negative.

We go back to the implicit identity for µℓ(Q ): Differentiating both sides of Eq. (4.23) w.r.t. Q yields the further identity π
2

0

1 + sin2 θ
1 −

1
2µ

2
ℓ(1 + sin2 θ)

 3
2
dθ

dµ2
ℓ

dQ
=

1
√
Q

. (4.43)

Now inside the integrand,

2 > 1 + sin2 θ

and
1

1 − µ2
ℓ

>
1

1 −
1
2µ

2
ℓ(1 + sin2 θ)


so we arrive at

2
1 − µ2

ℓ

 π
2

0

dθ
1 −

1
2µ

2
ℓ(1 + sin2 θ)

 1
2

dµ2
ℓ

dQ
≥

1
√
Q

. (4.44)

Substituting from Eq. (4.23) we conclude

Q
dµ2

ℓ

dQ
> (1 − µ2

ℓ)

which is equivalent to the statement that d
dQ


Q (1 − µ2

ℓ)
2

< 0. �

4.4. Large B asymptotics and strong wetting revisited

Once the discontinuity has occurred and the recovery of the layer has begun, we may begin to investigate the behavior
at large B. Obviously if B ≫ 1, then, for intermediate values of r , Mℓ(r, B) is very close to M(B) and so derivative of DB(r)
(c.f. the display prior to Theorem 4.1) is dominated by c(r), which we have stipulated to be strictly negative. Thus, it would
seem, we drive toward r = 1.

A calculation based on this display (prior to Theorem 4.1) along with the large Q asymptotics contained in Theorem 4.1
indicates that

rB : c(rB) ≍ −
B2

U
exp−


r


2B
A


is anticipated. Thus, in particular if c(r) ≍ −(1 − r) as r → 1, then

rB ≍ 1 −
B2

U
exp−


2B
A


.



2372 L. Chayes et al. / Physica A 391 (2012) 2353–2380

It is remarked that in the above displays, the symbol ≍ implies the existence of upper and lower bounds of the indicated
form (for sufficiently large B) which may differ by numerical constants.

While the preceding is certainly ‘‘true’’ in some sense, we now arrive at a small embarrassment of the large L0-theory. In
particular, throughout this section, we have been attempting to minimize C(r) + FB(r) − rfB. Our next initial claim is that
unless this object is identically minus infinity (due to C(r) ≡ −∞) the layer will eventually disappear altogether. This is
notwithstanding the fact that for reasonable models the above asymptotics will hold; evidently, this is for large but not too
large value of the inverse temperature parameter B.

A proof of the statement concerning the disappearance of the layer will follow as an immediate corollary to the up and
coming lemma. However, for the meanwhile, let us recall that for all intents and purposes C(r) is defined by

C(r) =

 s

0
c(s)ds

so in essence we are asking that the above integral be divergent at the lower limit (leading to the embarrassment: C(r) ≡

−∞).
Obviously, the problemcanbe addressed by an elementary renormalization featuring a cutoff at the lower limit. However,

evenwith this device, we shall later show that, actually, a sufficiently strong divergence of c(r) is required in order to prevent
destruction of the layer as B → ∞.

We shall discuss these matters shortly after we show that the finite C(0) models indeed eventually dispense with their
layers. The seminal result, which will be used throughout, concerns the existence of an asymptotic surface energy for the
existence of a layer.

Proposition 4.8. For fixed r > 0, as B → ∞,

FB(r) − rfB ≍
A1/2B3/2

U
.

Further, the above holds even if r → 0 when B gets large provided that r2B tends to infinity.

Proof. Recalling the form of Eq. (4.18), let us seek asymptotics on

IQ := min
µ

 1

0
LQ (µ)dx.

Note that the potential term, temporarily denoted by QV (µ), saturates at µ = 1 with value 1
4Q . Working on


0, 1

2


, we get

an upper bound by using a trial function with linear rise to µ = 1 in the region [0, ∆]. I.e. µ̃(x) =
x
∆

in [0, ∆] with ∆ to be
determined; we will neglect any benefit from the potential portion of the functional in this region. As a result

1
2
IQ ≤

1
2

1
∆2

× ∆ −


1
2

− ∆


1
4
Q .

I.e., IQ ≤ −
1
4Q +

1
∆

+
1
2Q∆. It is noted that the first term represents the bulk free energy. The second term is positive and,

minimizing over ∆, we find

IQ ≤ −
1
4
Q + cl


Q ,

with cl a constant of order unity.
We seek a complimentary upper bound. Recall that µ(x) rises monotonically in


0, 1

2


to its maximum value µℓ(Q ) < 1.

For Q large, µℓ is nearly one—certainly bigger than 1
2 . Let ∆⋆ denote the point where µ achieves 1

2 . Then

1
2
IQ ≥ −∆⋆QV


1
2


+

 ∆⋆

0

1
2
(µ′)2dx −


1
2

− ∆⋆


·
1
4
Q .

I.e.,

IQ ≥ −
1
4
Q + c̃∆⋆Q +

 ∆⋆

0
(µ′)2dx

with c̃ > 0 a positive constant of order unity.
Now, using Jensen’s inequality, ∆⋆

0
(µ′)2dx = ∆⋆

 ∆⋆

0
(µ′)2

dx
∆⋆

≥ ∆⋆

 ∆⋆

0
µ′

dx
∆⋆

2

=
1

∆⋆

 ∆⋆

0
µ′dx

2

=
1
4

1
∆⋆

.
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Thus we learn that IQ ≥ −
1
4Q + c̃∆⋆

+
1
4

1
∆⋆ . This is true for the actual ∆⋆ of the minimizer. It is thus certainly true that

IQ ≥ −
1
4
Q + min

∆


c̃∆ +

1
4

1
∆


.

Minimizing, we obtain IQ ≥ −
1
4Q + cu

√
Q .

Now it is clear from Eq. (4.18) that

FB(r) − rfB =
AB
rU


IQ +

1
4
Q


with Q = r2B/A. We thus have FB(r) − rfB ≍
A1/2B3/2

U as promised; the only proviso being that the relevant Q go to
infinity. �

On the basis of the preceding it is hard (from certain perspectives) to imagine anything besides a sharp constant in these
relations. This is indeed the case – and will actually be needed later – but for those so inclined, such a result may simply be
assumed and one may proceed directly to Corollary 4.10 below.

Lemma 4.9. There is a non-trivial κ (meaning 0 < κ < ∞) such that

lim
Q→∞


IQ +

1
4
Q

Q−1/2

= κ.

Equivalently if B → ∞ and r = r(B) (with r ≤ 1) is some function which ensures r2B → ∞ as B → ∞ then

[FB(r) − rfB]B−3/2
→ κ

as B → ∞.

Proof. Let r1 = r1(B) and r2 = r2(B) with r1 < r2 be two functions that satisfy the above stated criterion. (As usual, these
r ’s may be thought of as fixed numbers but more flexibility is allowed and, actually, this sort of flexibility will be required
later.) We denote the corresponding Q -values by Q1 and Q2, respectively. We may write

[FB(r2) − r2fB] − [FB(r1) − r1fB] =

 r2

r1

∂

∂r
[FB(r) − rfB]dr. (4.45)

The argument of the integrand is known (c.f., Corollary 4.2) to be ϕB(Mℓ(r, B)) − fB. We may express these quantities in
terms of the dimensionless objects introduced in Theorem 4.1:Mℓ(r, B) = M(B)[µℓ(Q )] and we have that (exactly)

ϕB(Mℓ(r, B)) − fB =
1
4
B2

U
(1 − µ2

ℓ(Q ))2 =:
1
4
B2

U
εQ .

Thus, so far,

[FB(r) − rfB]r2r1 =
1
4
B2

U

 r2

r1
εQdr

where [X(s)]s2s1 is the notation for X(s2) − X(s1). We change the variable of integration to Q : dQ = 2A−1/2B1/2Q 1/2dr . Thus

1
4
B2

U

 r2

r1
εQdr =

A1/2B3/2

8U

 Q2

Q1

1
Q 1/2

εQdQ . (4.46)

Since all associated Q ’s are large, we may apply the asymptotics from Theorem 4.1, item (3): εQ ≍ e−
√
2Q . The final integral

is rapidly convergent with its principal contribution from the vicinity of the lower limit. We learn:

lim
B→∞

[FB(r2) − r2fB] − [FB(r1) − r1fB]
B−3/2

≤ lim
B→∞

const. ×
A
U
e−

√
2Q1 = 0. (4.47)

The combination of this result and the asymptotic statement of Proposition 4.8 (for the non-triviality clause) imply the
second statement in this lemma.

As for the first statement, we write, once again, FB(r) − rfB =
AB
rU


IQ +

1
4Q

. Dividing both sides by B3/2A1/2

U , we learn on
the basis of our first result that

IQ +
1
4
Q

Q−1/2

→ κ

as Q → ∞. �
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Corollary 4.10. If C(0) ≠ −∞ then as B → ∞, rB → 0.

Remark 6. If c(r) is a regular function, then C(0) ≠ −∞ necessarily implies C(0) = 0; notwithstanding, without any
additional provisos, we may imagine a δ-function at the origin with strength C0 (with C0 < 0). Thus, C(0+) = C0 while
C(0) = 0. In these circumstances, the stated result still holds and the proof is unaffected. However, depending on the
regular part of C , in the presence of the δ-functions the large B asymptotics may well be different—no matter how small C0.
More importantly, for large value of |C0| – or a sizable ‘‘additive’’ value of C(r) for r ≪ 1 – sensible evolution of the layer
toward r = 1 will persist for correspondingly sizable values of B.

Proof. Consider the object to be minimized namely C(r) + FB(r) − rfB. For r = 0 (as opposed to 0+) this is zero according
to the present assumption. Supposing that

lim sup
B→∞

= r∞ > 0.

Let Bn → ∞ so as to satisfy rn → r∞ where rn := rBn . Then for n large, 1
A r

2
nBn also gets large and the layer free energy

satisfies

C(rn) + FBn(rn) − rnfBn & C(r∞) + κB3/2
n

where κ > 0 is discussed in Proposition 4.8 and Lemma4.9. This is certainly bigger than zero for B sufficiently large (implying
that rB must converge to zero). �

Remark 7. It is not hard to see that if |C(r)| < Kr for some finite K then for B sufficiently large, rB will be identically zero.
Indeed look along a sequence where r2BB tends to some definite limit which could be finite or infinite. If the limit is infinite,
then large Q asymptotics are applicable and we would have

C(rB) + FB(rB) − rBfB ≈ −KrB + κB3/2

so we would certainly be better of with zero. Alternatively, if r2BB → AQ with π2 < Q < ∞ then

FB(rB) − rBfB →
AB
rU


IQ +

1
4
Q


(in the sense of ratios). The quantity in square brackets is strictly positive and as is seen, its coefficient is proportional to
B3/2; again we are better off with zero. If r2BB tends to zero the situation is not so clear in the Q language but if anyway r2BB
is eventually less than (or equal to) π2 then the layer term drops out of our analysis and C(r) − rfB ≥ [−K +

1
4B

2/U]r and
(for B large) we are again better off with zero.

By contrast, if 1
r C(r) diverges as r → 0, which is merely the statement that c(r) → −∞, then for large B we are, at

worst, back to free thinning with rB = r◦ as described in Eq. (4.35). Note that this includes the case of a δ-singularity: here,
for r > 0, C(r) = C0 +Cρ(r) (where Cρ denotes the regular piece). Obviously, the minimizer is to be found among the r > 0
options since this is certainly less than −r 1

4
B2
U for r small.

It is evident that systems with C(0+) > −∞ – even those that heretofore have been demonstrated to have undergone
thinning and substantive recovery in some reasonable interval of the parameter B – will ultimately undergo reentrant
thinning behavior via another large discontinuity. And this can happen via termination of the layer (immediate or otherwise)
at finite B or ultimate disappearance via a free thinning mechanism.

The distinction between the various modes of behavior which have been informally elucidated above is not all too
important except as a mathematical curiosity: no effect of this sort seems to have been observed experimentally (to the
authors’ knowledge) and, back in the discrete setting, such effects do not easily occur. Foremost, there is Proposition 3.2
which essentially guarantees that as β → ∞Lβ must return to L0. However, it is clear that the inequality |CL0 | > J1 is
inconsistent with the scaling in Eqs. (4.1) and (4.2).

Indeed, after a bit of reflection, it is seen that this scaling is tantamount to the assertion that

J0, J1 ≫ V (a0L0).

Thereafter – it is presumed – the minute changes in the free energy at β & βc ultimately augments the r.h.s. with an L−4
0

which ‘‘compensates’’ for the fact that V (a0L0) ≈ c(r = 1)L−4
0 which in turn vindicates the extreme inequality in the

above display. Thus, it must be accepted that the entirety of the large L0-theory – which notwithstanding its shortcomings
is reasonably satisfactory – also amounts to a theory for r ’s which do not deviate too much from unity. At smaller values of
r , the theory (i.e., in form of the scaling of Eqs. (4.1) and (4.2)) breaks down. While this should not affect matters near r = 1,
clearly it is required that some augmented scaling of the attractive potential allows the behavior of V (x) at small scales to
dominate B3/2 for B ≫ 1.

The relevant cure obviously requires a non-integrable divergence of c(r) as r → 0 which in turn requires some formal
adjustments to the theory. Let us tend to these preliminary matters.
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We start by defining

Cε0(r) =

 r

ε0

c(r ′)dr ′

and

D
[ε0]
B (r) = Cε0(r) + FB(r) − rfB.

Now it is clear that if D
[ε0]
B (r) is minimized by some r [ε0]

B > ε0 then for all ε < ε0,

r [ε]
B = r [ε0]

B .

Moreover (for fixed B) for ε0 sufficiently small, r [ε0]
B > ε0. Thus wemay define themodel via the small ε0 limit and, formally,

rB = lim
ε0→0

r [ε0]
B .

Notwithstanding, a variant of Corollary 4.10 demonstrates that in fact the divergence of c must be sufficiently strong or
else, as B → ∞, the layer dwindles away as B → ∞. The dividing line is precisely the mean-field version of the Van der
Waals force which – coincidentally or otherwise – is related to the strong wetting condition.

Definition 4.11. Recalling r◦(c(r◦) = −B2/U) and r⋆(r⋆ = A1/2π/
√
B) and the strong wetting condition (r⋆ ≥ r◦) for some

Bwe define

(i) an η-violation (of strong wetting) if for all B sufficiently large,

ηr⋆(B) > r◦(B);

(ii) an η-enhancement (of strong wetting) if for all B sufficiently large,

ηr⋆(B) < r◦(B).

As is easily demonstrated, these enhancements/violations correspond to (short distance) bounds by the mean-field Van
der Waals attractive potential.

Theorem 4.12. Consider the continuum thinning problem as described in Eq. (4.16) but augmented with non-integrable c(r) as
discussed prior to Definition 4.11. Then there is a number v ∈ (0, ∞) such that

• if c(r) has an η-violation with η < v then

lim
B→∞

rB = 0;

• if c(r) has an η-enhancement with η > v then

lim
B→∞

rB = 1.

Proof. We claim that η-enhancements/violations are equivalent to Van der Waals bounds on c(r) for r small. Consider first
the violations. We have, assuming B large enough, r◦ < ηr⋆ so

−
B2

U
= c(r◦) ≤ c(ηr⋆).

However, ηr⋆ = η


A
Bπ so for all r sufficiently small,

−
η4A2π4

U
1
r4

≤ c(r) (4.48)

(which, ifη is small, is seen to be a ‘‘weak’’ Van derWaals bound since both sides are negative). Similarly, for an enhancement,
we get exactly the opposite bound as in Eq. (4.48) for r sufficiently small. In this vein, it is remarked that the proof of the
two statements in this theorem are in essence identical after the reversal of inequalities and we will not explicitly repeat
the arguments; we focus on the η-violations.

Let us assume that

lim sup
B→∞

= r̃ > 0;

we shall demonstrate that (regardless of r̃) this is impossible for η smaller than some v to be specified. Consider instead
r = r(B) satisfying Br2(B)/A = Q with Q any fixed number of order unity (an optimal value of which will be specified
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later). We will show that for η smaller than a particular value, we can produce a choice of Q for which C(r̃) + FB(r̃) − r̃ fB >
C(r) + FB(r) − rfB for B sufficiently large. (By continuity this demonstrates the stated result). First, we write

C(r̃) − C(r) =

 s0

r
c(r)dr +

 r̃

s0
c(r)dr.

The second integral is a constant independent of B (and r) and the first can be estimated via Eq. (4.48): s0

r
c(r)dr ≥ −

1
3

η4A2π4

U
1
r3

+ const.

Next we use the formula in Eqs. (4.45) and (4.46) to write

[FB(r ′) − r ′fB + C(r ′)]r̃r ≥
A2

U
1
r3


−

1
3
(ηπ)4 +

1
8
Q 3/2

 Q̃

Q

1
[Q ′]1/2

εQ ′dQ ′


+ const., (4.49)

where Q̃ = [r̃]2B/A and it is remarked that the integral formula is obviously valid even if Q < π2. We may, of course,
neglect consideration of the constant term since the principal term is multiplied by r−3

→ ∞. Similarly, the upper limit on
the integralmay be replaced by infinity due to the rapid convergence of the integrandwhich easily absorbs themultiplicative
singular term (∝ B3/2

∝ r−3). Consider, then, the quantity

Γ (Q ) :=
1
8
Q 3/2

 Q̃

Q

1
[Q ′]1/2

εQ ′dQ ′.

Obviously Γ (0) = 0 and Γ (Q ) → 0 (rapidly) as Q → ∞. It therefore follows that there is a maximum to this function
which is achieved at a finite (and non-zero) value Q = Q ♯. We denote this maximum value by Γ ♯; 0 < Γ ♯ < ∞. Evidently,
if 1

3 (ηπ)4 < Γ ♯ and r2B/A = Q ♯ the left hand side of Eq. (4.49) is positive and, therefore, the large B-minimum is near r = 0
inversely proportional to B1/2. We will call v the value of η which saturates the bound:

1
3
π4v4

= Γ ♯.

The argument under strong enhancement is quite similar. Supposing lim infB→∞ rB = 0, we may again write our
expression for Q assuming, if necessary along some sequence that the Q ’s converge to some value. This value may be finite
or infinite. Under η-enhancement, for any r̃ of order unity, we obtain an inequality which is the exact reverse of Eq. (4.49)
(with different constant terms). Now if we assume that η > v, the r = r̃ behavior is more favorable, according to free
energetics, than small r-regardless of the behavior of Q .

Finally, we will show that if the superior limit of rB is strictly positive then, in fact, rB → 1. Indeed the sharp asymptotics
provided by Lemma 4.9 (c.f., Eq. (4.47)) indicate that for all sufficiently large B, the choice r = 1 does better than any
fixed r less than 1. Thence, on the basis of ‘‘derivatives’’ one recovers the asymptotics displayed at the beginning of this
subsection. �

Remark 8. It is noted that the mean-field Van der Waals attraction

c(r) = −γ
1
r4

is both enhancement and violation and is thus the borderline case. The theorem applies so evidently, there is a γc such that
for γ < γc the layer disappears and for γ > γc it experiences full recovery.

Outside the realm of physics, it is therefore easy to construct models with strange behavior. Indeed, supposing c(r) =

−θ(r) 1
r4

with θ of order unity slowly varying above and below the critical value. Clearly, such potentials are capable of
producing an infinite sequence of jumps back and forth between small minimizers and minimizers close to one.

5. Large L0 mathematics

Our first result of this section will be a complete proof that the functional defined in Eq. (4.13) has a unique minimizer,
i.e., the one which we have produced by quadrature. (Here it will be convenient to work with the dimensionless version).
Since it may be assumed that results along these lines are well established, we will be as succinct as possible. Moreover,
several of the principal steps have already been established in the context of Theorem 4.1 and Corollary 4.2.

Theorem 5.1. Consider the functional

FQ (µ) :=

 1

0
LQ (µ)dx


=

 1

0


1
2
µ′2

− Q
1
2
µ2

+ Q
1
4
µ4

dx


.
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Then FQ has the unique minimizer which is identically zero for Q ≤ π2 and given by the implicit formulas provided in
Eq. (4.21) and Eq. (4.22) for Q > π2.

Proof. The situation for Q ≤ π2 has been discussed; let us assume that Q > π2. We start by considering a minimizing
sequence (µ[k] | k ∈ N) for the functional FQ which, as previously mentioned, may consider to be piecewise smooth. Since
all quantities are even, we may only consider elements that do not change sign, without loss of generality non-negative.
Since the ‘‘potential’’ term namely −

Q
2 µ2

+
Q
4 µ4 is bounded belowwith bound saturating at µ = 1, it may be assumed that

for all k, 0 ≤ µ[k](x) ≤ 1. Since the potential term is finite, the ‘‘kinetic’’ term must be separately finite, i.e., for each µ[k] in
the sequence,


(µ′

[k])
2dx is bounded by a constant independent of k. Thus, (µ[k]) is a bounded sequence inH1

0 [0, 1]. We letµ
denote the weak limit. By employing trial functions (e.g., ε sinπx; ε ≪ 1 as discussed shortly after Eq. (4.19)) we know that
the limiting µ is non-trivial. We will show that µ is actually a minimizer for FQ (·). First, by weakness of the convergence
(AKA lower semicontinuity)

lim
k→∞

 1

0
(µ′

[k])
2dx ≥

 1

0
(µ′)2dx.

Further, by Sobolev embedding,


µ2
[k]dx →


µ2dx and, by boundedness, a similar result applies for the fourth power.

Thus, indeed, µ is a genuine minimizer for the functional. Our aim is to show that this µ is none other than the classical µQ .
We may look to the weak form of the Euler–Lagrange equation which here implies that for any suitable test function η,

the quantity

µ′η′
− Q (µ − µ3)η

integrates to zero. This necessarily implies that µ′ itself has a weak derivative (namely +Q (µ − µ3)) which places µ in a
higher Sobolev space, e.g. W 2,∞

[0, 1]. But now since µ′
∈ W 1,∞

[0, 1] the weak derivative of (µ′)2 exists and is given by
2µ′

× [the weak derivative of µ′]. Thus, in conclusion, the quantity

1
2
(µ′)2 + Q


1
2
µ2

−
1
4
µ4


has zero weak derivative, i.e., is a.e. constant. We can now establish, essentially by the classical arguments employed in
Theorem 4.1 that µ′ vanishes at (and is small in the neighborhood of) x =

1
2 . Indeed, suppose that in some very small

neighborhood of xε :=
1
2 − ε, the function µ′ averages to Hε with H large to be specified below. Then, since the weak

derivative of µ′ is bounded above (by Q ) we may conclude that throughout

xε,

1
2


µ′ is bounded above by H1ε and below

by H2ε where H1 and H2 are large numbers comparable to H .
We will consider an alternative to µ which we denote by µ̃. Here (restricting attention to the left half of [0, 1] and

reflecting) we define µ̃ = µ for x < xε and µ̃ ≡ µ(xε) in

xε,

1
2


. We now show that if H is too large, µ̃ would provide a

better minimizer for the functional than µ. Indeed, the ‘‘gain’’ from the kinetic (derivative) portion of the functional is at
least H2

2ε
2
× ε. As for the ‘‘potential’’ portion of the functional, let us write, for x ∈


xε,

1
2


,

µ(x) = µ(xε) + δµ(x).

Then for all such x, δµ is bounded above by ε2H1. Now, the derivative with respect to the argument of the potential term,
i.e., − Q

2 µ2
+

Q
4 µ4 which we temporarily denote by V (µ), is always smaller in magnitude than 1

2Q . Thence in

xε,

1
2


,

|V (µ) − V (µ̃)| = |V (µ(xε) + δµ) − V (µ(xε))| ≤
1
2
Qε2H1.

Thus the potential loss is nomore than 1
2Qε3H1 which is much smaller than H2

2ε
3 if H is large. Thus, evidently for somemild

value of cwemust have |µ′(x)| < c
 1
2 − x

 for a.e. x. In particular, the derivative ‘‘vanishes’’ (e.g., in the sense of the Lebesgue
average) at x =

1
2 . We may identify the a.e. constant value of 1

2 (µ
′)2 + Q

 1
2µ

2
−

1
4µ

4

with the value of Q

 1
2µ

2
−

1
4µ

4

at

the midpoint. In particular, then Eq. (4.20) indeed holds a.e. on [0, 1]. The production of the unique classical solution now
follows the derivations in Eqs. (4.21) and (4.22) and we have established that our minimizer is the (classical) µQ . �

Proposition 5.2. Let m[L]
k = m[L]

k (β) denote the solution to Eq. (4.10) for 1 ≤ k ≤ L, where L = [rL0] with L0 serving to define
the temperature parameter B and r ∈ [0, 1] fixed. We define for x ∈ [0, 1] of the form x(L + 1) = integer,

M [L]
r2B(x) := Lm[L]

x(L+1)(β)

where the relation between β and B is given in Eq. (4.3). For general x ∈ [0, 1], we define M [L]
B (x) via linear interpolation. Then,

for any p < ∞, M [L]
r2B

(x) converges strongly in W 1,p to the unique non-trivial (if applicable) function associated with FQ (as
described in Eq. (4.17)).
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Proof. We start with the observation (from Theorem 2.1 item 4) that for every x and B, M [L]
B (x) is essentially bounded by

M(B)

=

√
3B

, i.e., for any λ > 1,

M [L]
B (x) < λM(B)

for all L sufficiently large. Thus (M [L]
B (x)) is a sequence of bounded functions on [0, 1] and we may extract a subsequence

which converges, weakly e.g., in L2[0, 1]. We will denote the weak limit by M⋆
B(x); our aim is to show that this M⋆

B(x) is
MB(x), the solution to Eq. (4.12), whose properties were elucidated in Theorem 4.1.

To this end, we note that Eq. (4.12) is in fact satisfied in weak form by M⋆
B(x). Let η(x) denote an infinitely differentiable

function on [−ε, 1 + ε] for some small ε and, for appropriate integer k, let ηk := η
 k
L


. Then, multiplying Eq. (4.10) by ηk

and summing we have (with the superscript [L] suppressed)

L+1
k=0

aηk∆mk =

L+1
k=0

(Arctanh(mk) − bmk)ηk. (5.1)

We may sum by parts:

L+1
k=0

aηk∆mk =

L+1
k=0

amk∆ηk

(where we have used that mk is identically zero outside L). Now, multiplying by L3 and replacing sums by integrals (which
only procures an error that vanishes as L → ∞) 1

0
AM [L]

B (x)η′′(x)dx =

 1

0


−BM [L]

B (x) +
1
3
(M [L]

B )3


η(x)dx + o

1
L


(5.2)

where the error term also accounts for the expansion of the arctangent. Now the above equation does not immediately imply
that the weak form of Eq. (4.12) is satisfied by the limitingM [L]

B (x) because we have no guarantee of the convergence (weak
or otherwise) of (M [L]

B )3. For this reason and in order to be able to identify the limit, we shall seek bounds on the gradients of
mk. (We remark that the former motivation can be satiated by somewhat easier means than the forthcoming but we must
still handle the latter.) We shall argue somewhat informally since a similar derivation has already been presented in the
context of the continuummodel. In the forthcoming, while we will be working on the lattice, L still finite, we will rescale L
to the unit interval. Thus e.g., when we speak of the ε-neighborhood of the midpoint, we are actually describing the order
of εL sites.

We claim a linear bound on ∇m[L]
k in the direction away from the midpoint. Specifically, for s ∈


0, 1

2


there is a finite

H = H(a, b) such that for all L sufficiently large,

∇m[L]
ks < Hsmb

1
L

where ks is the closest point further than Ls lattice sites from the midpoint and, we remind the reader that mb is the bulk
magnetization.

Suppose, then that this is violated: i.e., for a large H – the specifics of which will be clarified below – the above is an
equality for some s ∈


0, 1

2


. Now, on account of Theorem2.2 item (ii) (that the Laplacian is negative), this actually represents

an upper bound on the magnitude of the gradient in the s-neighborhood of the midpoint. Our first contention is that at the
midpoint (and therefore throughout the neighborhood) the derivative will still be of this order if H ≫ B. Indeed for k, k′ in
L, we may use the mean-field equation (Eq. (2.4)) to obtain

|∇m[L]
k − ∇m[L]

k′ | ≤
1
a

j=k′
j=k

|Arctanh(m[L]
j ) − bm[L]

j |. (5.3)

Now each m[L]
j is less than mb (by Theorem 2.1 item (4)) so bm[L]

j ≥ Arctanh(m[L]
j ) and thus bm[L]

j − Arctanh(m[L]
j ) ≤

(b − 1)m[L]
j ≤ (b − 1)mb. Thus for k − k′

≤ sL the most the derivative could fall is (b − 1)mbsL = BmbsL−1 so now
(assuming B ≪ H) we have that at the midpoint (and throughout the s-neighborhood)

|∇m[L]
ℓ | ≥

H′smb

L
(5.4)

with a complimentary upper bound.
We shall first show that this is impossible (for H too large) on the basis of free energetics. Indeed, considering a ‘‘small’’

ε-neighborhood of the midpoint, it is seen that by replacing the ostensibly minimizing magnetization profile with its value
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at kε throughout this neighborhood, there is a lowering of the ‘‘kinetic’’ portion of the free energy at least as large as

H2
1ε

2m2
b
1
L2

× 2εL ∼
H2ε3m2

b

L
.

The calculation for the ‘‘potential’’ term is surprisingly similar. Let us write, for kε ≤ k ≤ ℓ, the magnetization as
mk = mkε + δmk where, for convenience, we have temporarily dropped the [L] superscript. Then, according to the gradient
upper bound,

δmk ≤
Hεmb

L
· εL = Hε2mb. (5.5)

Now the potential term in the discrete free energy functional is simply −
1
2bm

2
k − SI(mk) which is temporarily denoted by

Ωb(mk). Then, for each k in the ε-neighborhood of the midpoint, the raise in the free energy after the truncation at k = kε

is no more than

max
0≤m≤mb

[Ω ′

b(m)]δmk ≤ max
0≤m≤mb

[Ω ′

b(m)]Hε2mb.

But Ω ′

b(m) is exactly bm− Arctanh(m) which, in the range of interest is not more than (b− 1)mb. Thus the potential loss is
no more, in magnitude, then

Hε2mb · (b − 1)mb · 2εL ∼
Hε3m2

b

L
.

By (informal) comparisonwith the ‘‘kinetic benefit’’ a fewdisplays above, it is clear thatH cannot be too large, and in addition
there must be an actual linear bound (with a not too large H) on ∇m[L]

k of the form in the display just before Eq. (5.3).
Recalling that M [L]

B (x) was defined by linear interpolation, this means that the (weak) derivative, (M [L]
B )′(x) – which is

piecewise constant – is essentially bounded. Thus, going to a further subsequence if necessary, it may be assumed that
(M [L]

B ) is converging to M [L]
B weakly in W 1,p for any finite p. Whence (again by the Sobolev embedding theorem) M [L]

B itself
converges strongly in Lp and the weak version of Eq. (4.12) is indeed satisfied byM⋆

B(x).
In the context of Theorem 5.1, we know that for r2B ≤ Aπ2 the only solution isMB ≡ 0; here we are fine. For r2B > Aπ2,

weak solutions include the unique non-trivial minimizer associatedwith the functionalFQ as well as the trivial solution.We
must rule out the latter. This is accomplished by invoking Proposition 2.4which, in the current language boundsM [L]

B


x =

1
2


below strictly away from zero uniformly in L for all L sufficiently large (whenever B > Aπ2). This midpoint bound together
with the (uniform) bound on the weak derivative establishes that M⋆

B(x) indeed corresponds to the non-trivial solution in
the regime B > Aπ2.

Finally, we refer back to Eq. (5.2) which, along with the uniform bound (below by zero and above by M(B)) on M [L]
B (x))

implies the existence of a bounded (weak) second derivative. Thus, the weak convergence can be promoted to the space
W 2,p which implies strong convergence inW 1,p. �

Corollary 5.3. FB(r) is given by

FB(r) = lim
L0→∞

L30F[rL0]. (5.6)

Moreover

lim
L0→∞

Lβ

L0
= rB.

Proof. The object L30FL is, in accordwith Eq. (5.2) the appropriate free energy functional for the continuummodel ‘‘evaluated
at’’ M [L]

B (x). (It is emphasized that the error terms involve expansions of the entropy term and do not involve gradients of
M [L]

B (x). Thus, with the uniform bounds onM [L]
B (x) these disappear in the large L0 without need for further discussion.) Using

the strongW 1,p convergence ofM [L]
B (x) to theminimizer of the appropriate continuum free energy functional, the first result

follows.
The second item follows from the first: if it is imagined (e.g., along a subsequence) that Lβ/L0 is converging to something

other than rB then, on the basis of the above, Lβ would not minimize DL – associated with the L0 model – for L0 sufficiently
large. �
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