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Abstract: We consider the Ising systems in d dimensions with nearest-neighbor
ferromagnetic interactions and long-range repulsive (antiferromagnetic) interactions that
decay with power s of the distance. The physical context of such models is discussed;
primarily this is d = 2 and s = 3 where, at long distances, genuine magnetic interactions
between genuine magnetic dipoles are of this form. We prove that when the power of
decay lies above d and does not exceed d + 1, then for all temperatures the spontaneous
magnetization is zero. In contrast, we also show that for powers exceeding d + 1 (with
d ≥ 2) magnetic order can occur.

1. Introduction

While most of our knowledge of statistical mechanics is derived from studies of model
problems with short-range forces, in nature interactions more often fall off only in propor-
tion to an inverse power of the distance, U (r) ∼ 1/rs . This includes systems interacting
via Coulomb forces (s = 1), dipolar interactions (s = 3) as well as interactions caused
by collective effects such as strain induced interactions in solids or the effective entro-
pic interactions (analogous to Casimir forces) in lipid films. When the interactions are
sufficiently long-range, i.e., when s ≤ d, where d is the spatial dimension, the very defi-
nition of the thermodynamic limit is different than for short-ranged models. However,
even when s > d there can be qualitatively new, or at least unexpected, phenomena, cf,
e.g., [2–4, 29].

In the present paper we study a class of systems with long-range forces; namely, the
Ising models on Z

d , d ≥ 1, which are defined by the (formal) Hamiltonians

H = −
∑

〈i, j〉
Jσiσ j +

1

2

∑

i, j

Ki, jσiσ j . (1.1)
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Here σi ∈ {+1,−1}, i and j index sites in Z
d and 〈i, j〉 denotes a nearest neighbor pair.

The above notation expresses the relevant signs of all the couplings: J > 0 is the short-
range ferromagnetic interaction while Ki, j ≥ 0 represents the antiferromagnetic long
range interaction which we assume decays with power s of the distance between i and j .
We investigate the question of presence, and absence, of spontaneous magnetization in
such models.

The motivation for this work was provided by a paper of Spivak and one of us [27]
where it was conjectured that, in the presence (or absence) of an external field, discon-
tinuous transitions permitting coexisting states of different magnetization are forbidden
for antiferromagnetic power law interactions with range d < s ≤ d + 1. A heuristic
proof by contradiction was presented based on the explicit construction of a “micro-
emulsion” phase which has a lower free energy than the state of macroscopic two-phase
coexistence. Simply put, the anticipated surface tension between the two pure phases
would be negative—and divergent. The proof is heuristic in the sense that it makes the
physically plausible assumption that correlations in the putative coexisting phases have
reasonable decay and that there is a well defined interface.

As it turns out, versions of the above conjecture are actually more than 20 years
old. For example, on the physics side, modulated phases in 2D dipolar ferromagnets
were analyzed in [1, 11, 18]. On the mathematics side, in [8], models with extreme
anisotropic repulsive interactions which have very slow decay, but only among a sparse
set of spins, were considered and absence of spontaneous magnetism was proved. The
isotropic case, U (r) ∼ 1/rs , was also mentioned in [8] and the significance of the
interval d < s < d + 1 for the absence of magnetization was highlighted (with no
mention of s = d + 1). Related problems were described in [17] for systems with longer
range, e.g., Coulomb, interactions and in [8, 9] for the current setup with O(n)-spins.
Furthermore, general theorems demonstrating instability of phase coexistence under the
addition of generic long-range interactions have been proved in [7, 16, 26]. In the pres-
ent paper we provide a full proof of the absence of ferromagnetism in the model (1.1)
with d < s ≤ d + 1, thereby vindicating completely the arguments of [27]—at least for
h = 0.

The mathematical result presented in this note has the following consequence for
2D physics: Two-dimensional magnetic systems often have strong “crystal field” effects
which orient the electron spins (largely or entirely) in the z direction, perpendicular to
the plane in which they reside. This gives the problem of magnetic ordering an Ising
character. Interactions between nearby spins—quantum mechanical and somewhat com-
plicated—are, often enough, of the ferromagnetic type and considerably stronger than
the direct magnetic dipolar interactions (which are a relativistic effect). Thus, it seems
reasonable to study Ising ferromagnets in 2D contexts and conclude that there is a defin-
itive possibility for ferromagnetism. However, while possibly weak, there is always the
long-range 1/r3 repulsive interaction. The conclusion of this note is that, no matter
how small its relative strength may be, this interaction will preclude the possibility of
ferromagnetism among the z-components.

We remark that the absence of magnetization certainly does not disallow other types
of ordering. Indeed, a large body of physics literature [1, 5, 6, 10, 11, 14, 18, 19, 21–23,
27], points in the direction of modulated (striped and/or bubble) states in this and related
systems. (For an extremely insightful review of the phases produced by models of this
sort and many experimentally clear realizations of the corresponding physics, see [24].)
From the perspective of mathematics, recent rigorous estimates on ground-state ener-
gies [13], which are asymptotic in d ≥ 2 and exact in d = 1, also indicate striped order
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in the ground state. In fact, for certain special cases of the 1D ground-state problem, this
has been established completely.

The organization of the rest of this paper is as follows: In the next section we define
all necessary background and state the main results. In Sect. 3 we derive some estimates
on the strength of the long-range interaction between a box and its complement. These
are assembled into the proof of the main result in Sect. 4. Section 5 contains some open
problems and further discussion.

2. Statement of Main Results

As mentioned, for the problem of central interest we have Ki, j ∼ |i − j |−3 in d = 2,
where |i − j | is the Euclidean distance, but we may as well treat all powers for which
the interaction is absolutely summable. To be definitive we will simply take, for s > d,

Ki, j = 1

|i − j |s , (2.1)

with the proviso Ki,i = 0. We remark that more generality than (2.1) is manifestly
possible as is also the case with the ferromagnetic portion of the interaction in (1.1).
However, these generalities would tend to obscure the mechanics of the proofs and so
we omit them.

In order to define the corresponding Gibbs measures, let � ⊂ Z
d be a finite set and,

given a configuration σ ∈ {+1,−1}Zd
, let H� = H�(σ�, σ�c) denote the Hamiltonian

in � which is obtained from (1.1) by pitching out all terms with both i and j outside �.
Since s > d, the corresponding object is bounded uniformly in σ . Then the DLR for-
malism tells us that a probability measure on {+1,−1}Zd

—equipped with the product
σ -algebra—is a Gibbs measure if the regular conditional distribution of σ� = (σi )i∈�

given a configuration σ�c = (σi )i∈�c in the complement �c = Z
d \ � is of the form

Z�(σ�c)−1e−βH�(σ�,σ�c ), (2.2)

where

Z�(σ�c) =
∑

σ�

e−βH�(σ�,σ�c ) (2.3)

is the partition function. We will use the notation 〈−〉 to denote expectations with respect
to Gibbs measures (which may often stay implicit).

We wish to establish that all Gibbs measures corresponding to the above Hamiltonian
have zero average magnetization once s ∈ (d, d + 1]. We will employ some thermo-
dynamic arguments based, ultimately, on the notion of the free energy. To define this
quantity, let Z�,h(σ�c) denote the partition function in � with the Hamiltonian

H�(σ�, σ�c) − h
∑

i∈�

σi , (2.4)

i.e., for the model in homogeneous external field h. Let

�L = [−L , L]d ∩ Z
d . (2.5)
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Then there exists εL = o(|�L |)—with little-o uniform in h—such that for all σ,

σ̃ ∈ {−1, 1}Zd
,

∣∣∣∣log
Z�L ,h(σ�c

L
)

Z�L ,h(σ̃�c
L
)

∣∣∣∣ ≤ εL . (2.6)

In particular, the limit

f (β, h) = − 1

β
lim

L→∞
1

|�L | log Z�L ,h(σ�c
L
) (2.7)

exists and is independent of the boundary condition. Furthermore, the function
h �→ f (β, h) is concave for all h.

The independence of the free energy on the boundary condition is standard and fol-
lows from the uniform bound on energy per site; cf. [25, Theorem II.3.1]. In Sect. 3 we
will show that, perhaps not surprisingly, εL is order Lmax{2d−s,d−1} with a logarithmic
correction at s = d + 1.

The concavity of the free energy now permits us to define the spontaneous magneti-
zation m� = m�(β) via the right-derivative of h �→ f (β, h) at h = 0:

m� = − ∂ f

∂h+

∣∣∣
h=0

. (2.8)

It is clear that, by the plus-minus symmetry built into the model, the corresponding left
derivative equals −m�.

The statement of our main result is as follows:

Theorem 2.1. Consider the interaction described by the Hamiltonian in (1.1–2.1). Then
for all s ∈ (d, d + 1] and all β ∈ (0,∞), the spontaneous magnetization, m�, is zero.

The regime d < s < d + 1 of exponents for the vanishing of the spontaneous mag-
netization was surmised already in [8]; the present work covers this and, in addition, the
somewhat subtle borderline case s = d + 1. The above is about as strong a statement
as possible concerning the absence of magnetic order from a thermodynamic perspec-
tive; the implications for statistical mechanics are similar in their finality. Indeed, the
following standard conclusions are implied for the properties of equilibrium states:

Corollary 2.2. Let s ∈ (d, d + 1] and let µ be any infinite-volume Gibbs measure for
the Hamiltonian in (1.1–2.1) at inverse temperature β ∈ (0,∞). Let �L be as in (2.5).
For each ε > 0 there exists δ > 0 such that for all L sufficiently large and µ-almost
every boundary condition σ�c

L
,

µ

( ∣∣∣
∑

i∈�L

σi

∣∣∣ > ε|�L |
∣∣∣∣σ�c

L

)
≤ e−δ|�L |. (2.9)

In particular, µ-almost all configurations σ have zero block-average magnetization,

lim
L→∞

1

|�L |
∑

i∈�L

σi = 0. (2.10)

Finally, in any translation-invariant (infinite volume) Gibbs state, the expectation of the
spin at the origin is zero.



Absence of Ferromagnetism in 2D Ferromagnets 221

The last statement should not be interpreted as a claim that the state is disordered. In
fact, as already mentioned, one expects the occurrence of “striped states” at sufficiently
low temperatures; see our discussion in Sect. 1 and also Sect. 5. Note that no restrictions
are put on the nearest-neighbor coupling J ; the theorem works for all J ∈ R.

To complement our “no-go” Theorem 2.1, we note that for exponents s > d + 1,
spontaneous magnetization will occur under the “usual” conditions:

Theorem 2.3. Let d ≥ 2, pick s > d + 1 and consider the interaction as described in
(1.1–2.1). Then there exist J0 = J0(s, d) ∈ (0,∞) and C0 = C0(d) ∈ (0,∞) such that
for all β(J − J0) ≥ C0,

m� > 0. (2.11)

In particular, under such conditions, there exist two distinct, translation-invariant
extremal Gibbs states 〈−〉+ and 〈−〉− such that

〈σ0〉+ = −〈σ0〉− > 0. (2.12)

Strictly speaking, this result could be proved by directly plugging in a theorem
from [12, Sect.3], which is based on an enhanced Peierls estimate. Instead, we pro-
vide an independent way to estimate the contour-flip energy which is technically no
more demanding and permits the use of sharp contour-counting arguments [20] to
derive good estimates on J0 and the critical value of β at which the transition occurs.
As a result, the corresponding constants can be bounded as follows:

J0 ≤ C
πd

d + 1 − s
and C0 ≤ C

log d

d
, (2.13)

where πd is the “surface” measure of the unit sphere in R
d , and C is a constant of order

unity.

3. Estimates on Interaction Strength

In this section we will perform some elementary but in places tedious calculations that
are needed for the proof of our main results. We begin by an estimate on the energy cost
of turning large magnetized blocks to opposite magnetization:

Proposition 3.1. Let �L be as above and, for the couplings Ki, j described in (2.1),
consider the discrete sum

TL =
∑

i∈�L
j∈�c

L

Ki, j . (3.1)

Then, as L tends to infinity:

(i) For d < s < d + 1,

TL ∼ L2d−sQ, (3.2)

where Q ∈ (0,∞) is the integral

Q =
∫

x∈S1
y∈Sc

1

dx dy

|x − y|s . (3.3)

with S1 = {x ∈ R
d : |x |1 ≤ 1}.
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(ii) For s = d + 1, there exists a constant A = A(d) ∈ (0,∞) such that

TL ∼ ALd−1 log L . (3.4)

In both (i) and (ii) the symbol ∼ is interpreted to mean that the ratio of the two sides
tends to unity in the stated limit.

To prove this claim, we will instead consider the quantity TL ,a which is defined in
the same fashion as TL except that the “inside sum” now ranges over �L−a instead
of �L , providing us with a cutoff scale a. Of course we must allow a → ∞ and, for
s ∈ (d, d + 1), not much more is actually required but, to save work, we shall insist that
a/Ld+1−s → 0. (Indeed, we remark that while most of the up and coming is not strictly
necessary for these cases, it will allow for a unified treatment later.) For the marginal
case of s = d + 1 we need to implement the stronger requirement that a/ log L → 0.

Our claim is that the augmented quantities have the asymptotics that was stated for
their unadorned counterparts. This is sufficient since, keeping in mind the above require-
ments,

TL ,a ≤ TL ≤ TL ,a + 2dEs Ld−1a, (3.5)

where

Es =
∑

j

K0, j < ∞ (3.6)

denotes the maximum antiferromagnetic energy associated with a single spin flip.
For the purposes of explicit calculations, it will be convenient to replace Ki, j with the

quantities K̃i, j obtained by “smearing” the interaction about the unit cells surrounding
the sites i and j :

K̃i, j =
∫

|x−i |∞≤1/2
|y− j |∞≤1/2

dx dy

|x − y|s . (3.7)

It is noted that since all distances exceed (the large quantity) a, the approximation is not
severe:

Ki, j

(1 + θa−1)s
≤ K̃i, j ≤ Ki, j

(1 − θa−1)s
, (3.8)

where θ is a number of order unity. Thus, to prove the asymptotics for the TL ,a , we may
insert the K̃i, j and then perform blatant continuum integration.

As a technical step, for the proof we will need to calculate the total (long-range)
interaction between the line segment (−L ,−a) on the x-axis and the half-space in R

d

containing all points with positive x-coordinate:

Lemma 3.2. Consider the integral

I1(L , a) =
∫ L

a
dx

∫ ∞

0
dy

∫

Rd−1
dz

1

[(x + y)2 + |z|2]s/2 . (3.9)

In the limit when a/L → 0 (with L ≥ 1) when s < d + 1 and |log a|/ log L → 0
when s = d + 1,

I1(L , a) ∼
{

C1Ld+1−s, if d < s < d + 1,

C1 log L , if s = d + 1,
(3.10)

where C1 = C1(d, s) ∈ (0,∞).
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Proof. Scaling z by x + y yields

I1(L , a) = C̃1

∫ L

a
dx

∫ ∞

0
dy (x + y)d−1−s, (3.11)

where

C̃1 =
∫

Rd−1

dz

[1 + |z|2]s/2 . (3.12)

From here the result follows by direct integration. �

Now we are ready to prove the s < d + 1 part of Proposition 3.1:

Proof of Proposition 3.1(i). For r < 1 let Qr denote the integral (3.3) with x restricted
to a cube Sr instead of S1. Let T̃L ,a denote the quantity TL ,a with Ki, j replaced by K̃i, j .
A simple scaling yields

T̃L ,a = L2d−sQ1−a/L . (3.13)

Hence, all we need to show is that Qr remains finite as r ↑ 1. This in turn boils down to
the absolute convergence of the integral defining Q.

To show that Q < ∞ we note that the quantity (L −a)d−1 I1(L −a, a) in Lemma 3.2
may be interpreted as the integral of |x − y|−s over x ∈ �L−a and over y ranging
through the half-space marked by the hyperplane passing through a given side of the
cube �L . This implies

T̃L ,a ≤ 2d Ld−1 I1(L − a, a) (3.14)

and, more importantly,

Q ≤ 2d I1(1, 0). (3.15)

By Lemma 3.2 and the Monotone Convergence Theorem, I1(1, 0) < ∞ when s < d +1.
�


The proof of the critical case, s = d + 1, is more subtle. The following lemma
encapsulates the calculations that are needed on top of those in Lemma 3.2:

Lemma 3.3. Let s ∈ (d, d + 1] and consider the integral

I2(L , a) =
∫ L

a
dx

∫ L

a
dy

∫ ∞

0
dx̃

∫ ∞

0
d ỹ

∫

Rd−2
dz

1

[(x + x̃)2 + (y + ỹ)2 + |z|2]s/2 .

(3.16)

There exists C2 = C2(d, s) < ∞ such that for L � a � 1,

I2(L , a) ≤ C2Ld+2−s . (3.17)

Similarly to the quantity I1(L , a) in Lemma 3.2, the integral I2(L , a) may be
interpreted as the total interaction between the square (−L ,−a) × (−L ,−a) in the
(x, y)-plane and the quarter-space in R

d containing all points with positive x and y
coordinates.
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Proof of Lemma 3.3. Applying the bound

(x + x̃)2 + (y + ỹ)2 + |z|2 ≥ x2 + x̃2 + y2 + ỹ2 + |z|2 (3.18)

and scaling z by the root of x2 + x̃2 + y2 + ỹ2 we get

I2(L , a) ≤ O(1)

∫ L

a
dx

∫ L

a
dy

∫ ∞

0
dx̃

∫ ∞

0
d ỹ

[
x2 + x̃2 + y2 + ỹ2] d−2−s

2 . (3.19)

Writing

r2 = x2 + y2 and ρ2 = x̃2 + ỹ2 (3.20)

we pass to the polar coordinates in both pairs of variables—with ρ ∈ (0,∞) and, as an
upper bound, r ∈ (a/2, 2L)—yielding the result

I2(L , a) ≤ O(1)

∫ 2L

a/2
dr r

∫ ∞

0
dρ ρ[r2 + ρ2] d−2−s

2 = O(1)

∫ 2L

a/2
dr rd+1−s . (3.21)

Here we scaled ρ by r and integrated ρ out to get the last integral. Since s ≤ d + 1, the
integral over r is order Ld+2−s . �

Proof of Proposition 3.1(ii). In this case we cannot simply set a = 0 and apply scaling.
Notwithstanding, we still have the bound

T̃L ,a ≤ 2d Ld−1 I1(L − a, a). (3.22)

By Lemma 3.2, we have

T̃L ,a ≤ 2dC1Ld−1 log L
[
1 + o(1)

]
, L → ∞. (3.23)

We claim that this bound is asymptotically sharp. Indeed, (3.23) overcounts by including
(the integral over y in) the intersection of two halfspaces—marked by two neighboring
sides of �L—multiple times. In light of the aforementioned interpretation of I2(L , a),
the contribution from each such intersection is bounded by Ld−2 I2(L , a). By Lemma 3.3,
this is at most order Ld−1. Hence we have (3.4) with A = 2dC1. �


Theorem 2.3 will require us to show that, for s > d + 1, the total strength of the
long-range interaction through the boundary of a finite set is of order boundary:

Proposition 3.4. Let s > d + 1. Then there is a constant C3 = C3(d, s) < ∞ such that
if � ⊂ Z

d is finite and connected, then

∑

i∈�

∑

j∈�c

Ki, j ≤ C3|∂�|, (3.24)

where |∂�| denotes the number of bonds with one endpoint in � and the other in �c.



Absence of Ferromagnetism in 2D Ferromagnets 225

Proof. Let V ⊂ R
d denote the union of unit cubes centered at the sites of �. Let

W = {
y ∈ V c : dist(y, V ) ≥ 1

}
. (3.25)

In light of (3.8), it suffices to show that, for some C < ∞,
∫

W
dy

∫

V
dx

1

|x − y|s ≤ C�(∂V ), (3.26)

where � denotes the surface measure on ∂V . (Indeed, we have �(∂V ) = |∂�|.) To this
end we note that the function x �→ (d − s)|x |−s is the divergence of the vector field
x �→ x/|x |s . The Gauss-Green formula thus tells us that for all y ∈ (V c)◦,

∫

V
dx

1

|x − y|s = 1

d − s

∫

∂�

τ(x) · (x − y)

|x − y|s �(dx), (3.27)

where τ(x) is the unit outer normal to the surface at point x (which is well defined �-a.e.
because ∂V is piecewise smooth). But |τ(x) · (x − y)| ≤ |x − y| and so

∫

V
dx

1

|x − y|s ≤ 1

s − d

∫

∂�

1

|x − y|s−1 �(dx). (3.28)

But s > d + 1 ensures that y �→ |x − y|−(s−1) is integrable over {y ∈ R
d : |y − x | ≥ 1}

and so integrating over y, applying Fubini’s theorem, extending the y-integral from
y ∈ W to {y : |y − x | ≥ 1}, and setting

C = (s − d)−1
∫

Rd
|z|1−s1{|z|≥1} dz, (3.29)

we get (3.26). �


4. Proofs of Main Results

Here we will prove the results from Sect. 2; we begin with Theorem 2.1. In our efforts to
rule out that m� > 0, it is useful to have a definite state that exhibits the magnetization.
Our choice will be the limit of states at positive external field that are constructed on the
torus.

Definition 4.1. Let h > 0 and let 〈−〉T;h denote an infinite volume state for the
interaction described in (1.1–2.1) at inverse temperature β and external field h that
is constructed as a limit of finite volume states with toroidal boundary conditions. We
define 〈−〉T to be any h ↓ 0 weak limit of the states 〈−〉T;h. When the occasion arises,
we will denote the measure associated with this state by wT.

Lemma 4.2. The measure wT is a Gibbs measure for the interaction described in
(1.1–2.1) at inverse temperature β. Moreover, wT is translation invariant, it satisfies
〈σ0〉T = m� and if mL denotes the block magnetizations,

mL = 1

|�L |
∑

i∈�L

σi , (4.1)

then for any µ with 0 < µ < m�,

lim
L→∞ wT(mL > µ) = 1. (4.2)
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Proof. These are standard results from the general theory of Gibbs states. Indeed,
translation invariance follows by construction while the fact that wT is Gibbs is a
result of the absolute summability of interactions; cf. [25, Corollary III.2.3]. To compute
the expectation 〈σ0〉T we recall that concavity of the free energy ensures that for any
h′ < h < h′′ and any translation-invariant Gibbs state 〈−〉h at external field h,

− ∂ f

∂h+(β, h′) ≤ 〈σ0〉h ≤ − ∂ f

∂h−(β, h′′). (4.3)

The definition of m�—and the construction of 〈−〉T—then implies 〈σ0〉T = m�. Finally,
we claim that mL → m� in wT-probability, implying (4.2). Indeed, if the random vari-
able mL were not asymptotically concentrated, then

cL : = wT(mL > m� + ε) (4.4)

would be uniformly positive (at least along a subsequence) for some ε > 0. But then
the DLR conditions and (2.6–2.7) would imply that, for any h > 0,

cLeh|�L |(m�+ε) ≤ 〈
eh|�L |mL

〉
T

=
〈

Z�L ,h

Z�L ,0

〉

T

= e−|�L |[ f (β,h)− f (β,0)+o(1)]. (4.5)

Hence we would conclude

f (β, h) − f (β, 0) ≤ −(m� + ε)h, (4.6)

in contradiction with (2.8). �

We now define the random analogue of the quantity TL denoted by TL . In each con-

figuration this quantity measures the antiferromagnetic interaction between the inside
and outside of a box of scale L:

TL =
∑

i∈�L
j∈�c

L

Ki, jσiσ j . (4.7)

The central estimate—from which Theorem 2.1 will be readily proved—is as follows:

Proposition 4.3. Consider the interaction described by (1.1–2.1) with s ∈ (d, d +1] and
β ∈ (0,∞) and let m� denote the spontaneous magnetization corresponding to these
parameters. For each λ ∈ (0, 1) there is L0 < ∞ such that for L ≥ L0,

〈TL 〉T ≥ λm2
�TL . (4.8)

To facilitate the proof we will state and prove a small lemma concerning the averaging
behavior of the Ki, j ’s:

Lemma 4.4. Let � and a be such that a � � and let V1 and V2 be two translates of ��

such that dist(V1, V2) ≥ a. Then for any σ ∈ {+1,−1}Zd
and any i0 ∈ V1 and j0 ∈ V2,

∣∣∣∣
∑

i∈V1
j∈V2

Ki, jσiσ j − Ki0, j0

(∑

i∈V1

σi

)(∑

j∈V2

σ j

)∣∣∣∣ ≤ C
�

a
Ki0, j0 |��|2. (4.9)

Here C is a constant independent of a, �, σ , i0 or j0.
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Proof. This is a simple consequence of the bound

∣∣Ki, j − Ki0, j0

∣∣ ≤ C
�

a
Ki0, j0 (4.10)

which follows by (discrete) differentiation of the formula (2.1) and using the fact that
the distance between V1 and V2 is at least a, while the difference between the minimum
and maximum separation of V1 and V2 is a number of order � and � � a. �

Proof of Proposition 4.3. For a = a(L) tending to infinity in the fashion described in the
proof of Lemma 3.1, it is sufficient to establish the inequality in (4.8) with TL replaced
by TL ,a and TL replaced by its random analogue, TL ,a , defined by the corresponding
modification of (4.7). We will need to introduce one more length scale, namely � = �(L)

which will also tend to infinity but in such a way that �/a → 0. We will assume that L , a
and � are such that both �L−a and �c

L may be tiled by disjoint copies of ��. (Technically
this only proves the result for a subsequence but the extension is trivial.)

Let V1 and V2 denote translates of �� with V1 ⊂ �L−a and V2 ⊂ �c
L and let us

pick i0 ∈ V1 and j0 ∈ V2. Let

q� = wT(m� > µ). (4.11)

The following is now easily derived using Lemma 4.4: On the event that the average
magnetization in both V1 and V2 exceeds µ (which has probability at least 2q� − 1) the
contribution of i ∈ V1 and j ∈ V2 to the random variable TL ,a is at least

[
1 + O(�/a)

]
Ki0, j0 |��|2µ2. (4.12)

On the other hand, on the complementary event (which has probability 1 − q�) the
contribution can be as small as

−[
1 + O(�/a)

]
Ki0, j0 |��|2. (4.13)

This means that the blocks V1 and V2 contribute to 〈TL ,a〉T at least

[
1 + O(�/a)

]
Ki0, j0 |��|2

[
µ2(2q� − 1) − (1 − q�)

]
. (4.14)

Finally, Lemma 4.4 also gives

Ki0, j0 |��|2 = [
1 + O(�/a)

] ∑

i∈V1

∑

j∈V2

Ki, j . (4.15)

Noting that the error O(�/a) holds uniformly in the position of V1 and V2, we may now
sum over all (disjoint) translates of V1 and V2 in �L−a and �c

L , respectively, to get

〈TL ,a〉T ≥ [
1 + O(�/a)

](
µ2(2q� − 1) − (1 − q�)

)
TL ,a . (4.16)

Since we assumed �/a → 0 and q� → 1 as L → ∞, the right-hand side exceeds λµ2TL
once L � 1. �
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Proof of Theorem 2.1. By the inherent spin-reversal symmetry, an enhancement of the
standard Peierls contour (de)erasement procedure yields, for any κ > 0,

wT(TL ≥ κTL) ≤ e−2β[κTL−2d J Ld−1]. (4.17)

Indeed, considering the probability conditioned on the configuration outside �L , we
may split the energy into two parts: the energy inside Ein(σ ) and the energy Ebdry(σ )

across the boundary of �L . The important difference between these objects is that Ein
is invariant under the (joint) reversal of all spins in �L , while Ebdry changes sign. Using
the fact that the conditional measure has the Gibbs-Boltzmann form, and restricting the
partition function in the denominator to configurations obeying TL ≤ −κTL , we get

wT(TL ≥ κTL |σ�c) ≤
∑

σ : TL≥κTL
e−β[Ein(σ )+Ebdry(σ )]

∑
σ : TL≤−κTL

e−β[Ein(σ )+Ebdry(σ )] . (4.18)

Now let us reverse all spins in �L in the lower sum; this yields

wT(TL ≥ κTL |σ�c) ≤
∑

σ : TL≥κTL
e−β[Ein(σ )+Ebdry(σ )]

∑
σ : TL≥κTL

e−β[Ein(σ )−Ebdry(σ )] . (4.19)

But

Ebdry(σ ) ≥ κTL − 2d J Ld−1 (4.20)

for every σ in these sums and so (4.17) holds pointwise for wT(TL ≥ κTL |σ�c). Inte-
grating over the boundary condition, we get (4.17).

To finish the proof, we now note

〈TL 〉T ≤ TL wT(TL ≥ κTL) + κTL wT(TL < κTL). (4.21)

We learned in Proposition 4.3 that for any λ < 1 the left-hand side is bounded below by
λm2

�TL for all L large enough. Thus we have, ∀κ ∈ (0, 1) and ∀λ ∈ (0, 1)

λm2
� − κ

(1 − κ)
≤ wT(TL ≥ κTL) (4.22)

once L � 1. But Proposition 3.1 tells us TL � Ld−1 and so, in light of (4.17), the
L → ∞ limit forces λm2

� ≤ κ . Taking κ ↓ 0 yields m� = 0 as claimed. �

Proof of Corollary 2.2. Let µ be an arbitrary Gibbs state. A variant of the inequality in
(4.5) tells us that, for any h > 0,

µ(mL > ε|σ�c
L
) ≤ e−h|�L |ε Z�L ,h(σ�c

L
)

Z�L ,0(σ�c
L
)
. (4.23)

Since m� = 0, the ratio of the partition functions behaves like

Z�L ,h(σ�c
L
)

Z�L ,0(σ�c
L
)

= exp{|�L | [o(h) + o(1)]} (4.24)

and so, choosing 0 < h � 1, the right-hand side decays exponentially in |�L |. An
analogous derivation (involving h < 0) shows a bound on µ(mL < −ε). The second
part of the claim now follows by the Borel-Cantelli lemma. �
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We will also finish the proof of the existence of magnetic order for s > d + 1:

Proof of Theorem 2.3. The proof is a simple modification of the standard Peierls argu-
ment. Consider the box �L and let µ+

L denote the Gibbs measure in �L with plus
boundary condition in �c

L . We claim that µ+
L(σ0 = −1) � 1 once J and β are suffi-

ciently large (in d ≥ 2). Indeed, given a connected set � ⊂ �L whose component is
connected and which contains the origin, let A� denote the event that σ0 = −1 and
that ∂� is the outer boundary of the connected component of −1’s containing the origin.
(In other words, �c is the unique infinite connected component in the complement of
the connected component of −1’s containing 0.)

Given σ ∈ A�, let σ ′ be the result of flipping all spins in � (including the +1’s). We
have

H�L (σ ) − H�L (σ ′) ≥ 2J |∂�| − 2
∑

i∈�

∑

j∈�c

Ki, j . (4.25)

By Proposition 3.4 the second term in the exponent is bounded by C3|∂�|. Letting J0 =
C3 and applying the argument in (4.18–4.19), we thus get

µ+
L(A�) ≤ e−2β(J−J0)|∂�|. (4.26)

But µ+
L(σ0 = −1) can be written as the sum of µ+

L (A�) over all connected � ⊂ �L (with
connected complement) containing the origin. The standard Peierls argument shows that
this sum is dominated by the � = {0} term once e+2β(J−J0) exceeds the connectivity con-
stant for the so-called Peierls contours. It follows that µ+

L(σ0 = −1) � 1 for J > J0
and β sufficiently large, uniformly in L . Taking the weak limit L → ∞ produces a
magnetized infinite volume Gibbs measure µ+ and, by symmetry, a counterpart nega-
tively-magnetized state µ−. �


5. Open Problems

We finish by some comments and a few open problems. First, the present paper shows
the absence of magnetization at h = 0. A natural question is now as follows:

Problem 1. Let s ∈ (d, d + 1]. Characterize the values h �= 0 at which the free energy
is continuously differentiable in homogeneous external field h.

An answer to this question depends strongly on the precise structure of low-
temperature states. In particular, if there is a rigid stripe order (see Problem 3) it is
possible that, for some particular values of h, there will be phase coexistence between
different arrangements of stripes. Whether that has an effect on the continuity of the
magnetization is not clear.

To move to our next problem, let us recall the main reason why the exponent s = d +1
is critical for the disappearance of magnetic order: For s ≤ d + 1, the gain to be obtained
from the antiferromagnetic interaction “through” the boundary of a volume of scale L
is order L2d−s which—including the log L correction when s = d + 1—overpowers
the short-range surface cost of order Ld−1. However the short-range calculation only
applies under the conditions where one envisions a surface tension, e.g., discrete spins.
If we replace the Ising spins by, say, plane rotors, the cost due to local interactions for
turning over a block now scales as Ld−2. Various exponents will readjust accordingly.
Thus we pose:
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Problem 2. For the Ising spins replaced by O(n)-spins, and the spin-spin interactions
given by the dot product, find the range of exponents s for which the spontaneous mag-
netization vanishes.

The problem is interesting due to competing effects in the vicinity of the (purported)
interfaces. It has been stipulated in [8] that, in these cases, magnetism will not occur
for d < s < d + 2. See [9] for some relevant calculations.

As for our next problem we note that, as already mentioned, absence of magnetism
is far from ruling out other types of order, with striped states being a prime candidate.
Thus we ask:

Problem 3. Prove the existence of striped states at low temperatures for interactions of
the type discussed in this note.

Some mathematical progress [13] and a great deal of physical progress [1, 5, 6, 10,
11, 14, 18, 19, 21–23, 27] in this direction has been made for the ground state problem.
But, at present, the positive-temperature case is far from resolved.

Finally, we recall that much of our proof was based on thermodynamic arguments
which, to begin with, require the existence of thermodynamics. Notwithstanding, anal-
ogous results should hold even for interactions that decay so slowly that the standard
techniques ensuring the existence of the free energy fail. An instance of some genuine
interest arises from Ref. [17]: Consider the model with the Hamiltonian as in (1.1) but
with the long-range interaction term modified into

∑

i, j

Ki, j (σi − ρ)(σ j − ρ). (5.1)

The quantity ρ plays the role of “background charge” density; the spin configurations
are restricted to have average ρ (otherwise their energy diverges).

Problem 4. Suppose Ki, j ∼ |i − j |−1 in d = 2, 3 (and, in general, Ki, j ∼ |i − j |−s

with sd < s ≤ d and d ≥ 2). Prove that the free energy is differentiable in ρ, at ρ = 0.

On the basis of [28] one can infer that the lower bound, sd , on the region of expo-
nents in the previous open problem satisfies sd ≤ d − 1. However, it is noted that,
for s = d − 2, there is a (complicated) counterexample to differentiability [15] so,
presumably, sd ≥ d − 2.
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