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Now, low point of exclusive reliance on parametric description of line integration.

-- Want to state (and prove) inequality which is obvious from Riemannian construction.  

Here, actually requires slight bit of cleverness.

Recall, from 32B there was second type of line integral.

Re(z)

Im(z)  C

�
As before, Γ a path and g(x,y) a function (smooth etc.) on path.

Γ parameterized by x = x(t), y = y(t) ; t1 ≤ t ≤ t2.
These have derivatives 

 

&x(t) and 
 

&y(t) respectively. Then we define 

 

gds =   
Γ
∫ g(x(t), y(t)) &x2 + &y2

t1

t2

∫ dt.

Reminder:  This was the type of path integral which did not depend on orientation of path.
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Finally, recall that if g(x  ,y)  1 then ds
Γ
∫ = Γ is called the arclength of the curve Γ.

Useful claim(s), as far as this course is concerned:

Now for 132 these second type of line integrals not so important in their own right.  
But needed to prove other results which are important.

| f (z)dz
Γ
∫ |  ≤   f (z) ds

Γ
∫

f (z) ds
Γ
∫ ≤  (|Γ|)[Fmax(Γ)] where Fmax(Γ) is the maximum value 

that |f  (z)| takes on along Γ.

First inequality means:  (1) do integral on lhs, will get complex number.  Take modulus of that 
complex number, will get positive real number.  That positive real number is smaller than (or equal 
to) what you would get if you did “other type” of 32B integral where “g(x ,y)” is |f  (z)|.

[I]

[II]

Most often, we use these in tandem -- eliminating the middle term.
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Inequality [II] actually trivial -- should be taught in 32B.  Do this for general g(x  ,y) which 
happens to be positive.  Write down line integral of g according to some parameterization:

where G = max
t1 ≤ t ≤ t2

 g(x(t), y(t))  is the maximum value 
that g achieves on the contour Γ.

But coefficient of this G is just the length of Γ and so we 

  
g(x, y)ds

Γ
∫   =  g(x(t), y(t)) &x2 + &y2

t1

t2

∫ dt   ≤  G &x2 + &y2

t1

t2

∫ dt

 
g(x, y)ds

Γ
∫   ≤   G|Γ|

just our second inequality for g = |f  (z)|.

First inequality slightly more serious.
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Actually will prove weaker form of [I] with x–tra factor of 2 (or 2 ) out front.  More clever derivation 
gets rid of excess factor.  But these numbers not important.  will just use these as crude bounds.

Look at real part:  Re[ f (z)dz
Γ
∫ ]  =  

 

[u(x(t), y(t)) &x − v(x(t), y(t)) &y]
t1

t2

∫ dt.

Now, in general, | h(q)dq
a

b

� |   �   | h(q) | dq
a

b

�

so  |Re[ f (z)dz
Γ
∫ ]|   ≤  

 

| [u(x(t), y(t)) &x − v(x(t), y(t)) &y]
t1

t2

∫ | dt.

So far, everything straight forward.  But now, want to borrow from vector theory:
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Recall that if A and B  are (2–component) vectors: 
 A = (a1, a2) ; B = (b1, b2) 

then 
| A  •  B| = | A || B||cosΘAB|  ≤  | A || B|   

(where ΘAB is the angle between A and B).

As far as the numbers a1, a2, b1 and b2 are concerned, all of this says: 

|a1b1 + a2b2|  ≤  ( a1
2 + a2

2 )( b1
2 + b2

2 ).
So, this is quite general and applies even 
if the “numbers” ak and bk happen to be 
time dependent, real and imaginary parts 
of some function, etc.

Thus |u
 

&x – v
 

&y|  ≤  [u2 + v2]ˆ[
 

&x2+ 
 

&y2]ˆ –  and this, of course is valid inside the  integrand.

So:  

 

| [u(x(t), y(t)) &x − v(x(t), y(t)) &y]
t1

t2

∫ | dt ≤
 

u2 + v2
&x2 + &y2

t1

t2

∫ dt

thatʼs | f    | thatʼs ds.

Thatʼs it for real part.  Derivation for imaginary part very similar gets us

| f (z)dz
Γ
∫ |  ≤   f (z) ds

Γ
∫2 .


