

Name:			
	Last	First	MI
Section:			
Student II	D#		

Math 132 Section 2 Spring 2021

Problem Set # 6

Problem (1) Let $\vec{F} = \langle P, Q \rangle$ denote a conservative vector field, $\vec{F} = \nabla \phi$, which is defined in some region that includes a simple closed contour Γ and its interior. It may be assumed that ϕ is twice differentiable. While it is obvious on the basis of potential theory that

$$0=\oint_{\Gamma}\vec{F}\cdot d\vec{r}$$

show that this result can also be obtained via Green's theorem.

Problem (2) Let $f(z) = z^{\alpha}$ where α is real and not equal to -1. Of course when α is non-integer we had better say something about the range of " θ " – to be definitive, $0 \le \theta \le 2\pi$. Let Γ denote the circle of radius R. Derive a formula for

$$\oint_{\Gamma} z^{\alpha} dz.$$

Your formula should agree with all known answers including the limit $\alpha \rightarrow -1$.

Problem (3) Let z = z(s) denote a path \mathcal{P} in \mathbb{C} that is parameterized by arc–length. Derive a (beautiful) formula for the curvature $\kappa(s)$ along \mathcal{P} .

Problem (4) Let f(z) be an analytic function in a circular region Ω wherein lie the points z_1 and z_2 . It is known that for all z in Ω , |f'(z)| < M. Show that $|f(z_1) - f(z_2)| \le M|z_1 - z_2|$.

Problem (5) If γ s the straight line segment from z = R to $z = R + 2\pi i$ (with R > 0) show that

$$\left|\int_{\Gamma} \frac{\mathrm{e}^{3z}}{1+\mathrm{e}^{z}} dz\right| \le 2\pi \frac{\mathrm{e}^{3R}}{\mathrm{e}^{R}-1}.$$

Problem (6) If Γ is the circle of radius 3 centered at the origin, show that

$$|\int_{\Gamma} \frac{dz}{z^2-1}| \leq \frac{3}{4}\pi.$$

Problem (7) Consider the functions $P_n(s)$ defined by the integral formulas

$$P_n(s) = \frac{1}{\pi} \int_0^{\pi} (s + i\sqrt{1 - s^2}\cos\vartheta)^n d\vartheta$$

where $|s| \leq 1$. (These are the famous Legendre polynomials.) Use the integral inequalities which have been discussed to show that for all these s, $|P_n(s)| \leq 1$. **Problem (8)** Let K(z) be a *bounded* analytic function of z which is to say that there is a number $B < \infty$ such that for all z, |K(z)| < B. Now consider the contour integral

$$I_R := \oint_{C_R} \frac{K(z)dz}{z^2}$$

where C_R is the circle of radius R centered at the origin. Get an estimate on $|I_R|$ and compute $\lim_{R\to\infty} I_R$. Later we will show on the basis of the above and similar argument that such functions are not particularly interesting.

Problem (9) Suppose that in and on the unit circle f(z) is of the form

$$f(z) = \frac{A_k}{z^k} + \frac{A_{k-1}}{z^{k-1}} + \dots + \frac{A_1}{z} + g(z)$$

where g is analytic (for all z in and on the unit circle). show that

$$\oint_{|z|=1} f(z)dz = 2\pi A_1.$$

Problem (10) Determine the domain of analyticity for the function

$$f(z) = \sec \frac{z}{2}$$

and use this calculate $\oint_{|z|=2} f dz$.

Problem (11) Calculate the following integral:

$$\int_{\Gamma} \frac{dz}{1+z^2}$$

where Γ is the line segment from z=1 to z=1+i

Problem (12) Let Γ be the circular contour of radius 2 centered at the origin. Compute

$$\oint_{\Gamma} \frac{\sin 3z}{z - \frac{\pi}{2}} dz$$
 and $\oint_{\Gamma} \frac{z e^z}{2z - 3} dz$.

Problem (13) Following the procedure implemented in class, compute

$$I_a = \int_0^{2\pi} \frac{\cos\theta d\theta}{1 + a^2 - 2a\cos\theta}$$

for the case |a| > 1. Check your answer by deriving the formula for I_a when |a| > 1 from the formula for I_a when |a| < 1.

Problem (14) Consider again the integral

$$I_a = \int_0^{2\pi} \frac{\cos\theta d\theta}{1 + a^2 - 2a\cos\theta}$$

featured in Problem 13. For |a| < 1 this is known to equal $\frac{2\pi a}{1-a^2}$. Regarding a as a *small* parameter, check your answer to order a^3 by direct expansion of the integrand.