Student ID: _____

Prof. Alan J. Laub

June 9, 2011

Math 33A/1 – FINAL EXAMINATION Spring 2011

Instructions:

- (a) The exam is closed-book (except for one two-sided page of notes) and will last two and a half hours. No calculators, cell phones, or other electronic devices are allowed at any time.
- (b) Notation will conform as closely as possible to the standard notation used in the lectures, not the textbook.
- (c) Do all 6 problems. Problems 1–5 are worth 15 points each and problem 6 is worth 25 points (5 subparts, each worth 5 points). Hand in the exam with work shown where appropriate. Some partial credit may be assigned if warranted.
- (d) Label clearly the problem number and the material you wish to be graded. Make sure your name and student ID are clearly marked above.
- 1. In a certain experiment, the following measurements (t_i, y_i) are taken:

(-2,8), (-1,3), (0,1), (1,5), (2,10).

It is desired to "fit" this data set with a function of the form

 $y = \alpha + \beta t^2$

where α and β are parameters to be determined. Compute the best parameters α and β (in the 2-norm sense) using the method of linear least squares.

2. Consider the initial-value problem

$$\dot{x}(t) = \frac{dx(t)}{dt} = Ax(t); \quad x(0) = x_0$$

for $t \ge 0$. Let $A = \begin{bmatrix} 0 & 1 \\ -5 & -6 \end{bmatrix}$ and $x_0 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

- (a) Is A asymptotically stable? Why or why not?
- (b) Determine an explicit expression for x(t), i.e., solve the initial value problem.

- 3. (a) For what values of the scalar *a*, if any, is the matrix $A = \begin{bmatrix} a & 2 & 2 \\ 2 & a & 2 \\ 2 & 2 & a \end{bmatrix}$ positive definite? Show your reasoning carefully, i.e., state explicitly which criterion for positive definiteness you are using.
 - (b) For what values of the scalar *b*, if any, is the matrix $B = \begin{bmatrix} b & -4 & -4 \\ -4 & b & -4 \\ -4 & -4 & b \end{bmatrix}$ pos-

itive definite? Show your reasoning carefully, i.e., state explicitly which criterion for positive definiteness you are using.

4. The spectral factorization or spectral representation of a symmetric matrix $A \in \mathbb{R}^{n \times n}$ is given by

$$A = \lambda_1 x_1 x_1^+ + \dots + \lambda_n x_n x_n^+$$

= $\lambda_1 x_1 x_1^T + \dots + \lambda_n x_n x_n^T$
= $\lambda_1 P_1 + \dots + \lambda_n P_n$

where λ_i denotes the *i*th eigenvalue of A with corresponding *unit* eigenvector x_i and P_i denotes the *i*th spectral projector.

(a) Write the spectral factorization of the matrix $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ in the form

$$\lambda_1 P_1 + \lambda_2 P_2$$

(b) Show that the matrices P_1 and P_2 are orthogonal to each other, i.e., that $P_1P_2 = 0$.

5. Let
$$A = \begin{bmatrix} -2 & -4 & 4 \\ 0 & -10 & 8 \\ 0 & -12 & 10 \end{bmatrix}$$
.

- (a) Find a nonsingular matrix S that makes A similar to a diagonal matrix and compute the similarity $S^{-1}AS$ or, alternatively, show that such a matrix S does not exist.
- (b) Verify the formulas $Tr(A) = \lambda_1 + \lambda_2 + \lambda_3$ and $det(A) = \lambda_1 \lambda_2 \lambda_3$.

6. Let $A = \frac{1}{10} \begin{bmatrix} 1 & 4 & 2 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \\ 1 & 1 & 2 \end{bmatrix}$ and suppose you compute (e.g., using MATLAB) an SVD

 $U\Sigma V^T$ of A to produce the following matrices:

$$U = \begin{bmatrix} -0.6530 & 0.5231 & 0.0236 & 0.5472 \\ -0.5402 & 0.0903 & -0.4393 & -0.7120 \\ -0.4275 & -0.3424 & 0.8079 & -0.2176 \\ -0.3147 & -0.7752 & -0.3921 & 0.3824 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 0.6922 & 0 & 0 \\ 0 & 0.1445 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$
$$V = \begin{bmatrix} -0.2796 & -0.3490 & 0.8944 \\ -0.7805 & 0.6252 & 0.0000 \\ 0.5592 & -0.6981 & -0.4472 \end{bmatrix}.$$
Suppose that you also compute, from this data, that $A^+ = \begin{bmatrix} -1 & 0 & 1 & 2 \\ 3 & 1 & -1 & -3 \\ -2 & 0 & 2 & 4 \end{bmatrix}.$

As you know, many things about A as a linear transformation are available immediately (or via a brief, easy calculation) from its SVD. In some of the following, you are asked to determine a few of them. Any attempt at any other method of determining them will receive zero credit (as well as potentially wasting your time).

- (a) Determine the rank of A and A^+ .
- (b) Draw a diagram of the four fundamental subspaces of A and indicate the dimensions of each subspace.
- (c) Determine *orthonormal* bases for each of the four fundamental subspaces of A.
- (d) Determine the orthogonal projections $P_{\mathcal{R}(A)}$ and $P_{\mathcal{N}(A)}$ numerically from A and/or A^+ .
- (e) Find the minimum (2-)norm solution of the linear least squares problem $\min_x ||Ax b||_2$ where $b = \begin{bmatrix} 1 & 2 & 1 & 1 \end{bmatrix}^T$.