HOMEWORK FOR 255A

ROWAN KILLIP

Exercise 1. (a) Show that the norm in a Banach space X is weakly lower-semicontinuous.

(b) Deduce the corresponding property of sequences:

$$\left\| \underset{n \to \infty}{\text{w-lim}} x_n \right\| \le \liminf_{n \to \infty} \| x_n \|.$$

Remark. Similarly, the norm on X^* is lower-semicontinuous in the weak-* topology. The norm is not weakly continuous in any infinite dimensional Banach space. For example, given any $f \in C_c^{\infty}(\mathbb{R})$, then each of the following sequences converge weakly to zero in $L^2(\mathbb{R})$:

$$f_n(x) = n^{\frac{1}{2}} f(nx), \quad f_n(x) = n^{-\frac{1}{2}} f(x/n), \quad f_n(x) = f(x-n), \quad f_n(x) = e^{inx} f(x).$$

Exercise 2. Prove the following (strictly, Radon and F. Riesz treated the particular case of L^p , 1):

Theorem (Radon–Riesz). Let X be a uniformly convex Banach space. If x_n converges weakly to x and $||x_n|| \to ||x||$, then $x_n \to x$ in norm.

Exercise 3. Prove the following result of M. Riesz (and others):

Theorem. A subset \mathcal{F} of $L^p(\mathbb{R}^d)$, $1 \leq p < \infty$, is precompact if and only if it is (a) uniformly bounded, i.e., there exists M > 0 so that $||f|| \leq M$ for all $f \in \mathcal{F}$; (b) equicontinuous, i.e., for each $\epsilon > 0$ there is a $\delta > 0$ so that

$$|y| < \delta \implies \int |f(x+y) - f(x)|^p \, dx < \epsilon^p; \quad and$$

(c) tight, i.e., for each $\epsilon > 0$ there is an R > 0 so that

$$\int_{|x|>R} |f(x)|^p \, dx < \epsilon^p.$$

Exercise 4. Let $T : [0,1] \rightarrow [0,1]$ be continuous. Show that the extreme points of the set of invariant (regular Borel) probability measures are precisely the ergodic measures.

Exercise 5. Compute the norm of the matrix $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

Exercise 6. Let K(t,s) be continuous on $[0,1] \times [0,1]$ and define $T : C([0,1]) \rightarrow C([0,1])$ via

$$Tf(t) = \int_0^t K(t,s)f(s) \, ds.$$

Such "lower-triangular" operators are called Volterra operators. Show that T is quasi-nilpotent, that is, $||T^n||^{1/n} \to 0$ as $n \to \infty$.

Remark. This sort of integral operator shows up with reasonable regularity; typically, the lower triangularity condition reflects the fact causal nature of time (effects do not precede causes). The moral to this problem is 'factorials beat powers'.

Exercise 7. Let A be an $n \times n$ Jordan block with eigenvalue λ . Compute $(z-A)^{-1}$ and thence f(A) for arbitrary analytic f.

Remark. The special case $f(z) = e^{tz}$ should remind you of solving linear constant coefficient ODEs. Many (myself included) are first exposed (implicitly) to Jordan normal form as an algorithm for solving such ODEs.

When $\lambda = 0$, notice that the norm of the resolvent diverges as the size of the matrix grows for any $z \in \overline{\mathbb{D}}$, which is a reflection of the fact that $\overline{\mathbb{D}}$ is the spectrum of the (semi-infinite) unilateral shift. This behaviour, where the resolvent of a non-normal matrix has very large norm away from the spectrum, is known as the *pseudospectral* phenomenon. The region of the complex plane where it occurs is called the *pseudospectrum*.

Exercise 8. Let $A : X \to Y$ and let $B : Y \to X$ be bounded operators between Banach spaces. Show that

$$\sigma(AB) \cup \{0\} = \sigma(BA) \cup \{0\}$$

by finding a formula for $(z - AB)^{-1}$ in terms of $(z - BA)^{-1}$.

Remark. Note the special case when A and B are $n \times m$ and $m \times n$ matrices, respectively. When $m \neq n$, this already shows the necessity of taking the union with $\{0\}$.

Exercise 9. Let $A : \mathbb{R}^n \to \mathbb{R}^n$ be an invertible linear transformation. Show that

 $||A^{-1}|| = (\mu_n)^{-1}$

where μ_n denotes the *least* singular value.

Exercise 10. $A: H \to H$ be a compact operator and $\lambda_1, \ldots, \lambda_k$ non-zero eigenvalues with repetition not exceeding the *algebraic* multiplicity. Show that the product $\lambda_1 \cdots \lambda_k$ is an eigenvalue of $\wedge^k A$.

 $\mathbf{2}$